From the Sector

Reset
133 results
SGL Carbon: Großauftrag für Batteriegehäuse (c) SGL Carbon
SGL Carbon: Großauftrag für Batteriegehäuse
13.01.2020

SGL Carbon: Contract for composite battery enclosures

  • New composite e-mobility application gains momentum
  • Strengthening regional footprint in North America
  • Potential for further extensions

Following the production of first prototypes of battery enclosures for a Chinese automotive manufacturer in 2018, SGL Carbon has now received a contract from a North-American automaker for high-volume serial production of carbon and glass fiber-based composite top and bottom layers for battery enclosures. The serial production of the components will start end of 2020. The carbon fibers and fabrics as well as the assembled components come from SGL Carbon’s fully integrated value chain. On top of this order, there is the potential for more extensions with further substantial volumes for the shared platform business of the manufacturer.

In addition, SGL Carbon has won a smaller volume contract from a European sports car manufacturer to serially produce bottom layers made of composite as of mid-2020. The company is additionally in talks with further automakers to develop and manufacture battery enclosure solutions for their e-car platforms.

  • New composite e-mobility application gains momentum
  • Strengthening regional footprint in North America
  • Potential for further extensions

Following the production of first prototypes of battery enclosures for a Chinese automotive manufacturer in 2018, SGL Carbon has now received a contract from a North-American automaker for high-volume serial production of carbon and glass fiber-based composite top and bottom layers for battery enclosures. The serial production of the components will start end of 2020. The carbon fibers and fabrics as well as the assembled components come from SGL Carbon’s fully integrated value chain. On top of this order, there is the potential for more extensions with further substantial volumes for the shared platform business of the manufacturer.

In addition, SGL Carbon has won a smaller volume contract from a European sports car manufacturer to serially produce bottom layers made of composite as of mid-2020. The company is additionally in talks with further automakers to develop and manufacture battery enclosure solutions for their e-car platforms.

“Driven by the increasing need for e-cars worldwide and thus for new flexible chassis platforms, our composite battery enclosures are a very promising new application in our product portfolio. The recent contract wins show that our approach of developing custom-made solutions based on our integrated value chain offers an excellent value proposition”, says Sebastian Grasser, Head of Automotive Segment.

More information:
SGL Carbon
Source:

SGL Carbon

SGL Carbon (c) SGL Carbon
SGL Carbon
11.12.2019

SGL Carbon produces composite leaf springs for Ford Transit

  • First glass fiber based leaf spring project in series by Ford worldwide
  • From development to serial production

Since midyear, SGL Carbon has produced longitudinal leaf springs made of glass fiber-based composite for Ford Transit rear axles in series. The springs are used in combination with the Transit Skeleton chassis. Thus, they are applied where high payloads play an important role, for example in caravanning models or specific commercial vehicle variants of the Transit. In comparison to conventional leaf springs, the innovative composite leaf spring weighs about 50 percent less while offering increased security standards. The serial application is supported by a one-to-one compatibility with standard steel springs.

 

  • First glass fiber based leaf spring project in series by Ford worldwide
  • From development to serial production

Since midyear, SGL Carbon has produced longitudinal leaf springs made of glass fiber-based composite for Ford Transit rear axles in series. The springs are used in combination with the Transit Skeleton chassis. Thus, they are applied where high payloads play an important role, for example in caravanning models or specific commercial vehicle variants of the Transit. In comparison to conventional leaf springs, the innovative composite leaf spring weighs about 50 percent less while offering increased security standards. The serial application is supported by a one-to-one compatibility with standard steel springs.

 

More information:
SGL Carbon
Source:

SGL Carbon

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt (c) SGL CARBON SE
SGL Carbon Large-Tow-IM-Carbonfaser Produktion am US-Standort Moses Lake
03.12.2019

Collaboration between SGL Carbon and Solvay

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

“For Solvay, this is an opportunity to lead the aerospace adoption of a composite material based on 50K IM carbon fiber. This is a highly competitive value proposition that brings more affordable high-performance solutions to our customers. We see this as the first step in a long-term partnership,” said Augusto Di Donfrancesco, member of Solvay’s executive committee.

“By combining SGL’s carbon fiber expertise in our newly developed, unique 50K IM fiber with Solvay’s resin formulation and aerospace market expertise, both partners are aiming to develop an advanced aerospace material system. This alliance supports our strategic direction and accelerates our growth in the attractive aerospace market,” said Dr. Michael Majerus, spokesman of the management board of SGL Carbon.

Composite materials for aerospace applications represent a multi-billion-dollar market that is expected to grow strongly in the coming decade. Solvay and SGL Carbon are uniquely positioned to develop solutions to address the needs of this market.

More information:
Solvay SGL Carbon Carbonfaser
Source:

SGL CARBON SE

(c) Eric RAZ, Airbus Helicopters
25.11.2019

SGL Carbon serially delivers composite materials for rotor blades to Airbus Helicopters

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

“The order emphasizes our growing presence in the aerospace business. With the fabrics for Airbus Helicopters, we have realized, qualified, and started serial production for a material concept for primary structural components for the first time,” underscores Dr. Andreas Erber, Head of the Aerospace segment in the business unit Composites – Fibers & Materials at SGL Carbon.

The current deliveries are part of a framework contract with Airbus Helicopters, intended to gradually intensify collaboration. Besides the current development of materials for helicopter components, Airbus Helicopters and SGL Carbon have worked together in the area of component material processing for Airbus group aircraft doors for years. In addition, Airbus and SGL Carbon are jointly involved in various associations and research projects in the area of components, such as Carbon Composites e.V.

 

More information:
SGL Carbon
Source:

SGL CARBON SE

Monforts at Techtextil India (c) Monforts
A recent Monforts texCoat installation.
20.11.2019

Monforts at Techtextil India

Monforts Textilmaschinen GmbH & Co. KG will be providing information on its extensive range of coating and finishing technologies for the production of nonwovens and technical textiles at the forthcoming Techtextil India exhibition.

“India is already a very important market for Monforts and there are exciting prospects ahead for Indian manufacturers of technical textiles, who are well positioned to capitalise on growth opportunities,” says Monforts Head of Denim Hans Wroblowski, who will be at the Monforts stand in Hall 4, booth C52 at the show. “India has one of the largest working-age populations in the world and a complete textile value chain for both natural and synthetic fibres.”

In addition, he adds, India’s government, through its Ministry of Textiles, has been actively promoting the growth of technical textiles through various programmes based on investment promotion, subsidies, the creation of infrastructure and the stimulation of consumption.

Monforts Textilmaschinen GmbH & Co. KG will be providing information on its extensive range of coating and finishing technologies for the production of nonwovens and technical textiles at the forthcoming Techtextil India exhibition.

“India is already a very important market for Monforts and there are exciting prospects ahead for Indian manufacturers of technical textiles, who are well positioned to capitalise on growth opportunities,” says Monforts Head of Denim Hans Wroblowski, who will be at the Monforts stand in Hall 4, booth C52 at the show. “India has one of the largest working-age populations in the world and a complete textile value chain for both natural and synthetic fibres.”

In addition, he adds, India’s government, through its Ministry of Textiles, has been actively promoting the growth of technical textiles through various programmes based on investment promotion, subsidies, the creation of infrastructure and the stimulation of consumption.

As a result, India’s Ministry of Textiles is forecasting that the growth of technical textiles in the country will be over 18% annually in the next few years, from a value of US$16.6 billion in 2018 to US$28.7 billion in 2021.

Value addition

High value-added technical products such as wide-width digital printing substrates, carbon fabrics for high-performance composites, filter media, flame retardant barrier fabrics and heavy-duty membranes are now being coated on Monforts texCoat ranges and finished with the company’s industry-leading Montex stenters.

“Since we acquired the technology that our coating units are based on in 2015, we have made a lot of refinements,” says Hans. “All of these developments are reflected in higher coating accuracy and the resulting quality of the treated fabrics. At the same time, our latest multi-functional coating heads offer an unprecedented range of options, with a wide range of modules available.”

The texCoat user interface is now equipped with the unique Monforts visualisation system and the magnetic doctor blade has greater power reserves. Options include a carbon fibre-reinforced composite coating drum with a more scratch-resistant surface and maximum rigidity and remote control which simplifies exact adjustment for the operator.

Montex stenters in special executions are meanwhile ideal for the drying and finishing of both technical woven fabrics and nonwovens and characterised by high stretching devices in both length and width.

“The European-built Montex range of stenters has earned its leading position in the technical textiles market due to the overall robustness, reliability and economy of these machines,” Hans concludes. “Whatever the intended end-product – and we continue to discover potentially new areas in which technical textiles can be utilised all the time – we have the machine specification and know-how to turn ideas into reality. In India we also benefit from the strong sales and service support of A.T.E. Enterprises.”

Texchtextil India takes place alongside World of Composites at the Bombay Exhibition Centre in Mumbai from November 20-22.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG by AWOL Media.

(c) Chomarat
14.11.2019

METSTRADE show 2019: Chomarat provides Arcona Yachts with C-PLYTM carbon reinforcement

Chomarat Group, expert in composite reinforcements for the marine market developed a high performing C-PLYTM reinforcement for the hull and deck of Arcona 435 and 465. Both cruiser-racer are a unique combination of comfort onboard and performances, for fast family cruising and high-level races thanks to their specific design, and the use of C-PLY™. The carbon NCF reinforcement allows structural design benefits, premium surface quality and overall parts cost saving.

“With 45 years of expertise, Chomarat is a pioneer in developing solutions to achieve weight reduction, improved surface appearance and stronger structure.

C-PLY™ makes it possible to meet these specifications, while ensuring stable quality and cost-effectiveness” explains Vincent Cholvy, Marine market Manager at Chomarat.

Chomarat Group, expert in composite reinforcements for the marine market developed a high performing C-PLYTM reinforcement for the hull and deck of Arcona 435 and 465. Both cruiser-racer are a unique combination of comfort onboard and performances, for fast family cruising and high-level races thanks to their specific design, and the use of C-PLY™. The carbon NCF reinforcement allows structural design benefits, premium surface quality and overall parts cost saving.

“With 45 years of expertise, Chomarat is a pioneer in developing solutions to achieve weight reduction, improved surface appearance and stronger structure.

C-PLY™ makes it possible to meet these specifications, while ensuring stable quality and cost-effectiveness” explains Vincent Cholvy, Marine market Manager at Chomarat.

THE CUTTING-EDGE TECHNOLOGY FOR SERIAL PRODUCTION OF CARBON BOATS
A study was led to determine the optimal construction to develop a high performing C-PLY™ range for a better permeability in infusion process. The result is a carbon NCF that achieves high mechanical performances, multi resins compatibility and cost efficiency. “Chomarat is the best choice for supplying the product our factory prefers to work with: stable quality and cost effectiveness are the key benefits” explains Nicolas Broberg, Managing Director Arcona Yacht.

Infusion technology for hull and deck with up to 70% level of carbon in the laminate gives the greatest possible strength.

More information:
CHOMARAT
Source:

Media Apoce

23.09.2019

Tape inserts offer big potential for injection molding parts

Market and technology analysis confirms big potential for tape inserts in the injection molding process. Following the finalization of a major consortial project led by the Aachen Center for Integrative Lightweight Production (AZL) and the Institute for Plastics Processing at RWTH Aachen University (IKV), the result is clear: tape inserts offer enormous potential for injection molding parts. For suitable components, product costs and component properties can be positively influenced.

In cooperation with 20 industrial partners, the two renowned Aachen research institutes AZL and IKV carried out a detailed analysis of tape inserts in injection molded components over a period of eight months. The tapes, which are a few tenths of a millimeter thick, are continuous fibers, typically made of glass or carbon, completely impregnated and embedded in a thermoplastic matrix. The tapes can be precisely aligned to the loads in a component and are used primarily in high-performance applications with the aim of weight reduction. The aim of the conducted analysis was the identification of potential applications and the estimation of a wider range of applications.

Market and technology analysis confirms big potential for tape inserts in the injection molding process. Following the finalization of a major consortial project led by the Aachen Center for Integrative Lightweight Production (AZL) and the Institute for Plastics Processing at RWTH Aachen University (IKV), the result is clear: tape inserts offer enormous potential for injection molding parts. For suitable components, product costs and component properties can be positively influenced.

In cooperation with 20 industrial partners, the two renowned Aachen research institutes AZL and IKV carried out a detailed analysis of tape inserts in injection molded components over a period of eight months. The tapes, which are a few tenths of a millimeter thick, are continuous fibers, typically made of glass or carbon, completely impregnated and embedded in a thermoplastic matrix. The tapes can be precisely aligned to the loads in a component and are used primarily in high-performance applications with the aim of weight reduction. The aim of the conducted analysis was the identification of potential applications and the estimation of a wider range of applications.

The project was divided into several phases: Phase I was used to identify the current status. In 20 interviews with representative companies of the injection molding industry, the researchers gathered why tape inserts have rarely been taken into account so far, when defining the material concepts to be analyzed. The lack of information about the material class, the procedure and tools for the development process and the necessary production technologies were cited as major challenges. This is where the consortium will take action and provide comprehensive information during the “Technology Information Day” on the extensively prepared state of the art and the high degree of maturity of the supply chain. Based on the status quo, they developed a methodology for analyzing the technological and economic potential of tape inserts in injection molding applications.

Both the previous results and the planned follow-up projects are the subject of the “Technology Information Day" at K 2019, to which the companies involved in the study, the AZL and IKV, invite all companies along the value chain, from raw material manufacturers to injection molders to OEMs. (Date: 18th October 2019, 10:00 am to 1:30 pm, Trade Fair Düsseldorf CCD South, Room 002).

The consortium, amongst others consisting of Asahi Kasei Europe GmbH, BASF SE, Borealis AG, BÜFA Thermoplastic Composites GmbH & Co. KG, ENGEL AUSTRIA GmbH, Huesker Synthetic GmbH, LG Hausys R&D Center, Mitsui Chemicals, Nippon Electric Glass, Polyscope Polymers BV, POLYTEC GROUP, Simcon kunststofftechnische Software GmbH, SABIC and Toray International Europe GmbH, is inviting to the “Technology Information Day” at K 2019. The goal is to inform about the technology and to identify topics for future collaboration.

Source:

AZL Aachen GmbH

18.09.2019

Hexcel to Exhibit at CAMX 2019

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

With 50 years of experience and the most qualified carbon fiber positions on aerospace programs in the industry with its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate and is introducing a new fiber to its portfolio. HexTow® HM54 combines high modulus and high tensile strength, which allows structural designers to achieve higher safety margins for both stiffness and strength-critical applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications, examples of golfing applications will be on display.

Additive manufacturing is on the forefront of innovation for composite technologies, and Hexcel is leading the way with its HexAM® additive manufacturing process. HexAM® additive manufacturing combines high performance PEKK thermoplastics with carbon fiber to produce flight-ready 3D printed HexPEKK® parts. HexPEKK® structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

HexPly® M77 snap-cure prepregs are yet another example of Hexcel technology leading the way. HexPly® M77HF, the latest member of this quick-curing prepreg family, is revolutionizing the world of composites for high-performance sporting goods with its faster production times and excellent surface quality. It will be featured in the Hexcel booth in two products – a carbon fiber Goode water ski which is setting records in the competitive world with its precision and durability, and in a HED cycling wheel noted for its aerodynamics and light weight.

Among Hexcel’s latest technologies are the RF Interference Control materials made by ARC Technologies, a Hexcel company. A selection of these industry-leading custom RF / EMI and microwave absorbing composite materials for military, aerospace and industrial applications will be on display at the Hexcel booth.

HexForce® bias weave woven reinforcements are a patented solution to optimize material usage. These bias weave reinforcements are continuous rolls of carbon fiber fabric in which the warp and weft yarns are oriented on the bias at +/- 45° which can reduce prepreg waste up to 60%. Visitors at CAMX will be able to see this new woven reinforcement and learn more.

Source:

AGENCE APOCOPE

The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK) (c) Reed Exhibitions, Oliver Wachenfeld
The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK)
17.09.2019

ITA is AVK innovation prize winner 2019 in the category "Research and Science”

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

Current process
In stamp forming, clamping grippers are usually used in industry to feed the stacked individual layers to the forming process and position them on the lower tool via a clamping frame or hold-down device. Due to the clamping grippers, the cutting proportion of cost-intensive reinforcing textiles is high, as additional material at the textile edge is necessary with clamping systems. Other approaches to feeding the reinforcing semi-finished product during forming and simultaneously improving the draping quality are also not economical: they are usually only designed for certain textile cuts, cannot be automated, are prone to errors or are expensive special solutions.

There is currently no system in the industry that can apply retention forces along a final contour with low waste and remains flexible in terms of geometry.

Innovative approach of Sven Schöfer
The innovative process developed by Sven Schöfer works with a detachable textile joint, a so-called tufting seam. It allows the single layers to slide off during the forming process under a retention force dependent on the seam design.

This reduces or completely eliminates draping errors in previously critical areas, even with complex preform geometries. This leads to a significant increase in preform quality and a reduction in scrap rates. The process is also highly efficient, as tensile forces can be applied to any component geometry on near-net-shape blanks. This reduces the material input by up to 50 percent.

Source:

ITA – Institut für Textiltechnik

09.09.2019

Hexcel’s HexAM™ Additive Manufacturing Approved by Boeing

Hexcel Corporation has been approved by Boeing to produce HexPEKK™-100 aerospace structures for major commercial aircraft platforms.

After rigorous review of Hexcel’s proprietary poly-ether-ketone-ketone and carbon fiber material formulation, Hexcel’s superior HexPEKK™-100 end-use components – as well as its highly-controlled HexAM™ additive manufacturing process (which uses selective laser sintering) – are now obtainable through Boeing’s Qualified Provider List (QPL). These HexPEKK™ components will be manufactured-to-print for commercial aerospace applications where complexity, weight reduction, and strong mechanical performance are critical.

Hexcel provides high-rate serial part production with reduced lead-time and at a lower cost than traditional intricately machined aluminum or composite structures. HexPEKK™-100 parts meet interior aircraft smoke and toxicity requirements and are ideal for complex components such as optimized brackets, environmental control system ducts, and castings.

Hexcel Corporation has been approved by Boeing to produce HexPEKK™-100 aerospace structures for major commercial aircraft platforms.

After rigorous review of Hexcel’s proprietary poly-ether-ketone-ketone and carbon fiber material formulation, Hexcel’s superior HexPEKK™-100 end-use components – as well as its highly-controlled HexAM™ additive manufacturing process (which uses selective laser sintering) – are now obtainable through Boeing’s Qualified Provider List (QPL). These HexPEKK™ components will be manufactured-to-print for commercial aerospace applications where complexity, weight reduction, and strong mechanical performance are critical.

Hexcel provides high-rate serial part production with reduced lead-time and at a lower cost than traditional intricately machined aluminum or composite structures. HexPEKK™-100 parts meet interior aircraft smoke and toxicity requirements and are ideal for complex components such as optimized brackets, environmental control system ducts, and castings.

More information:
Hexcel, Airbus Hexcel HexPEKK
Source:

APOCOPE Agency

10.07.2019

New Consortium HAICoPAS targets innovative solutions for carbon thermoplastic composite structures

Hexcel, Arkema and their partners are pleased to announce that their joint collaborative project “HAICoPAS” has received approval from Bpifrance and the support (grant of 6 million euros) of France’s Investissements d’Avenir program.

HAICoPAS project is a collaborative project with a total amount of 13.5 million euros lead by Hexcel and Arkema and their industrial partners (Ingecal, Coriolis Composites, Pinette Emidecau Industries (PEI) et l'Institut de Soudure), and academia lead by CNRS (PIMM (CNRS - Arts et Métiers ParisTech - le Cnam), LTEN (CNRS - Université de Nantes). This project follows last year’s announcement of the strategic partnership between Hexcel and Arkema to develop high performance PEKK/carbon fiber UD tapes targeting composite parts for primary aerospace structures.

Hexcel, Arkema and their partners are pleased to announce that their joint collaborative project “HAICoPAS” has received approval from Bpifrance and the support (grant of 6 million euros) of France’s Investissements d’Avenir program.

HAICoPAS project is a collaborative project with a total amount of 13.5 million euros lead by Hexcel and Arkema and their industrial partners (Ingecal, Coriolis Composites, Pinette Emidecau Industries (PEI) et l'Institut de Soudure), and academia lead by CNRS (PIMM (CNRS - Arts et Métiers ParisTech - le Cnam), LTEN (CNRS - Université de Nantes). This project follows last year’s announcement of the strategic partnership between Hexcel and Arkema to develop high performance PEKK/carbon fiber UD tapes targeting composite parts for primary aerospace structures.

Source:

AGENCE APOCOPE

(c) CHOMARAT
04.03.2019

Chomarat Carbon Reinforcements at JEC WORLD 2019

Composite reinforcement specialist Chomarat will exhibit its latest woven and multiaxial carbon fibre reinforcements at JEC World 2019. "Prepregs are used in the most demanding markets, such as aerospace or the automotive industry. Due to their high performance, Chomarat’s carbon fabrics are highly considered by prepreggers. Compared to standard solutions, the multiaxial reinforcements developed by the group offer Chomarat’s converter customers significant productivity gains. With its production sites in France, Asia and the United States, Chomarat is able to supply its customers and guarantee the same high level of quality in all countries," explains Group Managing Director Michel Cognet.

Composite reinforcement specialist Chomarat will exhibit its latest woven and multiaxial carbon fibre reinforcements at JEC World 2019. "Prepregs are used in the most demanding markets, such as aerospace or the automotive industry. Due to their high performance, Chomarat’s carbon fabrics are highly considered by prepreggers. Compared to standard solutions, the multiaxial reinforcements developed by the group offer Chomarat’s converter customers significant productivity gains. With its production sites in France, Asia and the United States, Chomarat is able to supply its customers and guarantee the same high level of quality in all countries," explains Group Managing Director Michel Cognet.

C-WEAVE™ - THE QUALITY AND RELIABILITY BENCHMARK
In just a few years, prepreggers have come to consider Chomarat's C-WEAVE™ carbon-fibre fabrics as a benchmark for surface-finish quality and processability.
The reinforcement contributes to productivity and reliability during the prepregging process. Helen Doughty, Director at SHD Composites, testifies: “The consistent high quality of C-WEAVE™ has been a key part of SHD Composite Materials continued success and growth.”
"Prepreg users often manufacture Class A surface parts for demanding applications, and they need excellence and reproducibility," explains Chomarat’s Prepreg Market Manager Ulrike Salmon.

C-PLY™: GOING FURTHER WITH CARBON MULTIAXIALS
The advantages of multi-axial reinforcements are now well established - oriented axes, absence of resin-rich areas allowing a high fibre content, and improved mechanical tensile and/or bending performance thanks to the non-crimp fibres.
By developing its C-PLY™ range, Chomarat further demonstrates that multiaxials are a real asset in terms of performance and appearance. "Chomarat strives to minimize marking on parts and to optimize surface quality through fibre spreading and the use of suitable stitches. C-PLY™ can also integrate aesthetic functions by using the assembly seam as a graphic design", continues Ulrike Salmon.
These new advantages are important for the automotive, sports-equipment and consumer-electronics markets, which seek to combine premium quality and productivity.

 

Source:

AGENCE APOCOPE

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

(c) JEC Group
21.11.2018

Celebration of Composite Materials at the 11th JEC Asia

The annual meeting for the Asia-Pacific professionals of the composites industry, organized for the second time in a row in Seoul, has met its high expectations attracting +12% participants and acting as a major showcase for the composites industry in the region.

KEY FIGURES

  • +230 companies
  • 45 speakers
  • +7,000 professional visits
  • 49 countries represented
  • 12 JEC Innovation Awards
  • +450 Business meetings
  • 3 Composites Tours
  • Top 3 visitors’ countries: Korea - China - Japan

 

The annual meeting for the Asia-Pacific professionals of the composites industry, organized for the second time in a row in Seoul, has met its high expectations attracting +12% participants and acting as a major showcase for the composites industry in the region.

KEY FIGURES

  • +230 companies
  • 45 speakers
  • +7,000 professional visits
  • 49 countries represented
  • 12 JEC Innovation Awards
  • +450 Business meetings
  • 3 Composites Tours
  • Top 3 visitors’ countries: Korea - China - Japan

 

Gauging from the attendance of more than 7,000 professional visits from 49 countries, Eric PIERREJEAN, CEO of JEC Group, has already announced during the opening ceremony that JEC Asia 2019 will return next year on November 13, 14, 15, 2019. This ceremony was attended by industrialists, academics and officials, reflecting the huge interest that composite materials generates. Thus, at this ceremony we could notice the participation of Mr. BANG Yun Hyuk, President of KCTECH, Mr. Song, Ha Jin Jeonbuk Provincial Governor, Mr. HAN Byung Do, Senior secretary to the South Korean President for political affairs, Mr. CHOI Jin Hyuk, Director at MOTIE, Mr. KIM Yang Won, Vice Mayor of Jeonju, demonstrating the whole support of the Korean community; and Mr. Fabien PENONE, French Ambassador, was also present to underline the strong links and industrial interactions between Korea and France.

Hosting, this year again, the International Carbon Festival organized by KCTECH and the Jeonju region, JEC Asia also provided a comprehensive program dedicated to the Automotive professionals with a leadership circle attended by top stakeholders of the industry worldwide, top-notch conferences on automotive automated processes and composite applications for structural parts with speakers from Hyundai Motor Group, e-Xstream Engineering, L&L Products, Cobra International, Hanwha Advanced Materials, Daimler, Hankuk Carbon, Arkema, Cetim, Saertex & Co. KG to name a few.

“Aeronautics: 53% and beyond” conferences took place and attracted many attendees to discover new composites solutions and their wider use in this sector with Stratasys,IS Group, Cevotec… JEC Asia also offered its participants a chance to find out new business opportunities, highlighting the most relevant for the region and various application sectors.
All in all, the show floor was filled with innovations as JEC Asia 2018 showcased innovative parts and awarded 12 composites International champions among which 3 were about automotive, at the JEC Innovation Awards ceremony.

Also, to be noted at JEC Asia was the focus on networking with pre-arranged Business meetings that generated +450 qualified one-to-ones over the 3 days. Likewise, 3 composites tours opened exclusive doors to attendees when they visited Hanyang University, the composite architecture of the House of Dior, LG Hausys & Kolon and a day trip in Jeonju region and the Carbon Valley of the KCTECH.
For the first time, JEC Asia teamed up with MAI Carbon to offer a brand-new Student Program that keeps abreast of composite-industry needs to hire young, committed well-trained engineers. The two-part program included workshops with a focus on theoretical foundations and a guided tour through the JEC Asia trade show and the innovation planet.

More information:
JEC-Gruppe
Source:

JEC Group

(c) Babolat
12.11.2018

Chromarat expertise: At the hear of BABOLAT’s new tennis racket, “PURE AERO”

CHOMARAT, the expert in composites reinforcements, is the partner of BABOLAT with its multiaxial carbon, C-PLY™ Hexagonal. Indeed, the specialist racket sports goods manufacturer is launching the new version of the BABOLAT’s Pure Aero. A combination of ultra-modern design and high performance, this tennis racket for champions has made an appearance on the courts of the Rolex Paris Masters. “We are very proud to be chosen by BABOLAT. Our new carbon reinforcement, added to the heart of the racket, enables better control and makes each shot more precise and stable,” says Pascal JOUBERT DES OUCHES, Sports Equipment Market Director at CHOMARAT.

C-PLYTM HEXAGONAL, THE PERFECT ALLIANCE OF PERFORMANCE & DESIGN

CHOMARAT, the expert in composites reinforcements, is the partner of BABOLAT with its multiaxial carbon, C-PLY™ Hexagonal. Indeed, the specialist racket sports goods manufacturer is launching the new version of the BABOLAT’s Pure Aero. A combination of ultra-modern design and high performance, this tennis racket for champions has made an appearance on the courts of the Rolex Paris Masters. “We are very proud to be chosen by BABOLAT. Our new carbon reinforcement, added to the heart of the racket, enables better control and makes each shot more precise and stable,” says Pascal JOUBERT DES OUCHES, Sports Equipment Market Director at CHOMARAT.

C-PLYTM HEXAGONAL, THE PERFECT ALLIANCE OF PERFORMANCE & DESIGN
The addition of C-PLY™, CHOMARAT’s multiaxial carbon reinforcement, to the core of the BABOLAT’s Pure Aero has increased the racket’s stability while enhancing its performance. The specificity of the reinforcement lies in its stitching thread. “This unique thread brings out the color of the resin pigments because it has been designed to remain visible after its impregnation. It also contributes to extra reinforcement and an exceptional design!” concludes Pascal JOUBERT DES OUCHES.

More information:
CHOMARAT Babolat
Source:

APOCOPE agency

Concrete bar stool with hybrid carbon reinforcement for fast, cost-efficient part production (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA at the Composites Europe 2018 in Stuttgart

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the ITA, the two industrial partners Albani Group GmbH & Co. KG and DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH developed a new hybrid reinforcement with integrated spacer. This hybrid reinforcement reduces the time required to position the reinforcement by up to 60 percent and thus makes the material significantly more

The new, cost-effective hybrid reinforcement contains an integrated spacer and thus faciliates the positioning of dry and coated reinforcements. The integrated spacer allows several layers of reinforcement to be stacked quickly, allowing the desired degree of reinforcement to be set. The hybrid reinforcement consists of a carbon or glass fibre grid joined with a permeable polyamide mat and will be available in roll form from industrial partners in the near future.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University

(c) AGENCE APOCOPE
22.10.2018

12 Composites Innovators to receive a JEC Innovation Award in Seoul next November 15, 2018

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Twelve companies from eight different countries will receive a JEC Innovation Award at JEC Asia 2018. Asia-Pacific is an innovative region that sets the tone for all other regions of the globe. Once again, the JEC Innovation Awards highlight how composites bring solutions considering the new challenges in terms of efficiency, sustainability and life-cycle analysis.

This year, JEC Group awards innovations in the following categories: aerospace (structural and tooling), automotive, commercial vehicles, e-mobility, marine, railway, sports & leisure, infrastructure & civil engineering, industrial equipment, sustainability and additive manufacturing.

The ceremony will take place on Thursday November 15, 2018 at the COEX Center of Seoul (South Korea). Ida DAUSSY (Seo Hye-na), will host the ceremony in front of officials, manufacturers, scientists and composites professionals.

Category: AEROSPACE – STRUCTURAL
Winner: CSIR National Aerospace Laboratories (India)

Most of the composite structures for aircraft are made of carbon-epoxy composites, which can withstand a maximum service temperature of 130°C. As a consequence, carbon-epoxy materials cannot be used in hot zones like engine vicinity areas. The Aeronautical Development Agency (ADA) and CSIR-NAL took up the challenge of developing high temperature resistant composites for use in hot zones of light combat aircraft, which would result in significant weight and cost savings, as well as a considerable reduction in the meantime between failures (MTBF) due to thermal ageing.

The first task was to choose a material system with a service temperature of about ~ 200°C. During the material selection process, it was found that BMI resins are a relatively young class of thermosetting polymers. Hence, a carbon-BMI prepreg was selected due to a number of unique features including excellent physical property retention at elevated temperatures and in wet environments.

It was realized that weight savings and performance can be maximized using co-curing technology. This results in a large reduction of fabrication cycle times, costs and weight. Co-cured structures have fewer fasteners, which results in shorter assembly cycle times and also reduces sealing issues.

A prototype engine bay door assembly was built and tested at 180°C for flight certification. The engine bay door consists of an inner skin and co-cured outer skin assembly with eight transverse stiffeners. The stiffeners were designed with ‘J’ sections. The door size was 1.5 m length, 1 m width and 0.4 m overall depth. The co-cured door was developed using autoclave moulding. Two doors were installed in prototype aircraft and successfully flown.

CHOMARAT Reinforcements, 3 Examples Offered in Live Demos at CAMX 2018 EXPO
Travis IRVIN, in live demos at CAMX 2017
17.10.2018

CHOMARAT Reinforcements, 3 Examples Offered in Live Demos at CAMX 2018 EXPO

  • 16-18 October 2018, Kay Bailey Hutchinson Convention Center, Dallas, TX

A skateboard, architectural panels and a rigid roof for boats – all three products rely on CHOMARAT composite reinforcements. The three designs will be on display at CAMX Expo in the demonstration area of COMPOSITES ONE, partner of CHOMARAT and leader in composites distribution in North America. CHOMARAT’s reinforcements enable to give unique properties to these three applications.

Proof positive: reinforcements offer design flexibility & improved mechanical performance

These three applications give CHOMARAT the opportunity to demonstrate the performance of its uniquely designed reinforcements in real time. “The skateboard combines Rovicore™, the multi-function closed-mold reinforcement developed by CHOMARAT, with C-Weave™, its woven carbon fabric that offers both structural performance and aesthetics to the design. Rovicore™ provides the permeability, while C-Weave™ provides the carbon aspect,” explains Brian Laufenberg, president, CHOMARAT North America.

  • 16-18 October 2018, Kay Bailey Hutchinson Convention Center, Dallas, TX

A skateboard, architectural panels and a rigid roof for boats – all three products rely on CHOMARAT composite reinforcements. The three designs will be on display at CAMX Expo in the demonstration area of COMPOSITES ONE, partner of CHOMARAT and leader in composites distribution in North America. CHOMARAT’s reinforcements enable to give unique properties to these three applications.

Proof positive: reinforcements offer design flexibility & improved mechanical performance

These three applications give CHOMARAT the opportunity to demonstrate the performance of its uniquely designed reinforcements in real time. “The skateboard combines Rovicore™, the multi-function closed-mold reinforcement developed by CHOMARAT, with C-Weave™, its woven carbon fabric that offers both structural performance and aesthetics to the design. Rovicore™ provides the permeability, while C-Weave™ provides the carbon aspect,” explains Brian Laufenberg, president, CHOMARAT North America.

During the live demos, architectural panels using Rovicore™ and a rigid boat roof in RTM will also be made. “With 60 years of expertise in designing composite reinforcements, CHOMARAT demonstrates that its reinforcements offer excellent mechanical performance and design for a large number of projects in sectors as diverse as sport and leisure, marine and building,” adds Travis IRVIN, Sales Manager and Closed Mould Process Expert at CHOMARAT.

Meet CHOMARAT teams at BOOTH V39 and see Live demos in the COMPOSITES ONE demonstration area at CAMX 2018 EXPO

More information:
CHOMARAT Composites CAMX 2018 EXPO
Source:

AGENCE APOCOPE

JEC Asia returns to COEX, Seoul (c) JEC Group
04.09.2018

JEC Asia returns to COEX, Seoul

  • Back to Seoul: JEC Asia gathers the composites industry in Korea for its 11th edition
  • JEC Asia, November 14-16, 2018 – COEX Center, Seoul, South Korea

Paris - After the record-breaking figures of the 2017 edition, that marked the move of JEC Asia from Singapore to Seoul, the event is returning to the capital city of the Republic of Korea with a strong program, not only on the exhibition floor, but also in the conference sessions and all services at the disposal of every attendee.

“We are very grateful for the support of the industry, government bodies, and academics, regarding the evolution of JEC Asia, that has led to the success of the platform. Indeed, 90% of the show floor is already booked which bodes well for the preparation of the event.” Commented Christian STRASSBURGER, Events Director Asia for JEC Group.

“On top of that, the event is truly international, as 45% of the exhibitors are coming from outside Asia. JEC Asia will welcome pavilions from Germany, France, Italy, Japan, China and Singapore, as well as the major composite clusters in Korea.” He added.

  • Back to Seoul: JEC Asia gathers the composites industry in Korea for its 11th edition
  • JEC Asia, November 14-16, 2018 – COEX Center, Seoul, South Korea

Paris - After the record-breaking figures of the 2017 edition, that marked the move of JEC Asia from Singapore to Seoul, the event is returning to the capital city of the Republic of Korea with a strong program, not only on the exhibition floor, but also in the conference sessions and all services at the disposal of every attendee.

“We are very grateful for the support of the industry, government bodies, and academics, regarding the evolution of JEC Asia, that has led to the success of the platform. Indeed, 90% of the show floor is already booked which bodes well for the preparation of the event.” Commented Christian STRASSBURGER, Events Director Asia for JEC Group.

“On top of that, the event is truly international, as 45% of the exhibitors are coming from outside Asia. JEC Asia will welcome pavilions from Germany, France, Italy, Japan, China and Singapore, as well as the major composite clusters in Korea.” He added.

FOCUS ON THE AUTOMOTIVE INDUSTRY

The future of mobility is a hot topic for composite materials and JEC Asia will represent, promote and provide information about the increasing integration of composites in automotive developments.
Numerous programs will be offered, such as a whole day conference on Composites in Automotive, a Leadership Composites Circle, an Auto Planet, showcasing parts, a B2B meetings program, a JEC Innovation´Award category and Composites tours (site visits of composite-related facilities).

Finally, for the second time, JEC Asia will host the International Carbon Festival, organized by KCTECH and the Jeonju region, with top-notch conferences and international speakers.

Key Figures 2017

  • +230 companies
  • 6,271 professional visits
  • 43 speakers
  • 42 countries represented
  • 12 JEC Innovation Awards
  • 400 B2B meetings
  • 2 Composites Tour
Source:

AGENCE APOCOPE

Aachen Central Bus Station before the introduction of green.fACade (c) Institut für Textiltechnik
Aachen Central Bus Station before the introduction of green.fACade
03.08.2018

Aachen textile facade reduces nitrogen oxide pollution and urban heat

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

green.fACade is part of the innovative research project "adaptive textile facades", which uses the special properties of textiles. Thanks to its design, textiles can let sunlight and air through, thus contributing to a modern, aesthetic building design. A new feature of the research project is that further elements such as the titanium oxide coating or sun protection elements are integrated into the textile facade and placed in front of the existing building facade. The adaptive textile facade acts independently and thus reduces energy consumption through the positive climatic effects on the building facade.

"Adaptive Textile Facade" is part of a current research series with the aim of developing innovative facade constructions that are climate-neutral and increase the comfort of local residents. The research team consists of the three RWTH fields of architecture (Faculty of Architecture, PhD student architect M.Sc. Jan Serode), medicine (University Hospital RWTH Aachen, Clinic for Ophthalmology, Prof. Dr Walter) and textile technology (Institut für Textiltechnik, Prof. Dr Gries) and was able to contribute its expertise in the best possible way.

This summer the research team was supported for the first time by the Munich architectural office Auer Weber, represented by managing director Philipp Auer: "For us architects, developments in the field of textile outer shells are a special challenge. Here, highly developed textile materials and processing methods are combined with the lightness and grace of fabrics. Adaptive textile facade elements will increasingly turn the "building shell" into a "building skin", a system that not only offers weather, heat and sun protection, but is in constant intelligent exchange with its environment".

The great importance of these topics for the public was documented by the presence of Kirsten Roßels, representative of the Department of Economics, Science and Europe of the city of Aachen.  Ms Roßels explains: "As the city of Aachen, we are delighted with the innovative and future-oriented project ideas that are being developed at Aachen University, such as the adaptive textile facade. These developments underline the importance of Aachen as a city of science and I would appreciate it if these and other technologies could also become visible in Aachen in the future".

Prof. Dr Gries from the Institut für Textiltechnik sums up: "As textile researchers, we see a great opportunity to develop concrete solutions for our urban living spaces together with renowned experts from other disciplines. I'm sure we can make the urban climate more pleasant and reduce pollution."

Source:

Institut für Textiltechnik (ITA) at RWTH Aachen University