From the Sector

Reset
186 results
ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China (c) ANDRITZ
High-speed TT card combined with the JetlaceEssentiel hydroentanglement unit in operation at Kingsafe
18.05.2021

New Order for ANDRITZ

  • ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China

International technology Group ANDRITZ has received an order from Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd. in Hezhou, China, to supply a complete new neXline spunlace line. The line is scheduled for installation and start-up during the second quarter of 2022.

This high-capacity spunlace eXcelle line will process either 100% biodegradable fibers or blends of polyester and viscose. It is dedicated to the production of hygiene and medical fabrics. The final products will have fabric weights ranging from 30 to 100 gsm, and the annual production capacity will be up to 18,000 tons.

ANDRITZ will deliver a complete line, from web forming to drying, also integrating two high-speed TT cards, the well-known JetlaceEssentiel hydroentanglement unit and the neXdry through-air dryer equipped with a neXecodry S1 system for energy saving. This combination is becoming the market benchmark for the production of lightweight spunlace fabrics dedicated to the hygiene market.

  • ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China

International technology Group ANDRITZ has received an order from Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd. in Hezhou, China, to supply a complete new neXline spunlace line. The line is scheduled for installation and start-up during the second quarter of 2022.

This high-capacity spunlace eXcelle line will process either 100% biodegradable fibers or blends of polyester and viscose. It is dedicated to the production of hygiene and medical fabrics. The final products will have fabric weights ranging from 30 to 100 gsm, and the annual production capacity will be up to 18,000 tons.

ANDRITZ will deliver a complete line, from web forming to drying, also integrating two high-speed TT cards, the well-known JetlaceEssentiel hydroentanglement unit and the neXdry through-air dryer equipped with a neXecodry S1 system for energy saving. This combination is becoming the market benchmark for the production of lightweight spunlace fabrics dedicated to the hygiene market.

“We are proud to operate ANDRITZ nonwoven lines, which are very reliable and efficient. It helps us a lot in producing top-of-the-range, nonwoven roll goods, thus enabling us to be recognized as a key player among nonwovens producers worldwide,” says Kingsafe’s president, Mr. Huarong Yan.

Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd., founded in 1987, is one of the largest companies in China producing spunlace and spunbond nonwoven roll goods, with several spunlace lines already in operation. The final products are exported all over the world and used in many fields, such as the medical sector, health care, high-tech agriculture, and high-quality consumer and household products.

The new line is now the ninth spunlace line supplied by ANDRITZ and the third with high-speed TT cards, thus confirming the successful, long-term partnership between ANDRITZ and Zhejiang Kingsafe. The order also proves that the solution provided by ANDRITZ is recognized as the benchmark for production of premium spunlace roll goods and contains the perfect combination for wipes converting machines.

06.05.2021

PERFORMANCE DAYS Fair with Topic: Still Physical – Your Success Story of 2020

Contact restrictions, home office and altered daily lives – our lives in 2020 were radically changed. This was also the case for various sectors of the economy, including the textile and clothing industry. However, with crisis come opportunities and stimuli for change. Under the motto “Still Physical”, manufacturers recount their personal success stories in 2020 – the industry can look forward to a selection of sustainable materials curated exclusively by the PERFORMANCE FORUM Jury. Areas of focus: natural fibers that highlight wellbeing aspects, plant-based materials that make us strong and excite on an emotional level, bio-nylons and bio-based finishings that rethink function. “Still Physical – Your Success Story of 2020” will be on display online as the first of its kind within a trade fair week from 17 to 21 May 2020.

Contact restrictions, home office and altered daily lives – our lives in 2020 were radically changed. This was also the case for various sectors of the economy, including the textile and clothing industry. However, with crisis come opportunities and stimuli for change. Under the motto “Still Physical”, manufacturers recount their personal success stories in 2020 – the industry can look forward to a selection of sustainable materials curated exclusively by the PERFORMANCE FORUM Jury. Areas of focus: natural fibers that highlight wellbeing aspects, plant-based materials that make us strong and excite on an emotional level, bio-nylons and bio-based finishings that rethink function. “Still Physical – Your Success Story of 2020” will be on display online as the first of its kind within a trade fair week from 17 to 21 May 2020.

Transformation: Technology first?
The pandemic has forced us into new, primarily digital forms of living and working. Our daily lives are characterised by home offices, home schooling and online meetings. The desire for real, physically perceptible experiences has grown incessantly within the last year. In the same context, people nowadays are strongly driven by technological progress – yet how far can we allow technological change to go and how do we wish to live in the future? Long before the pandemic, the trend towards self-monitoring and control of important bodily functions developed. The sports industry developed tools to measure levels of performance and monitor bodily functions with the goal of enhancing performance. Self-optimisation, body shaping and health promotion have become standard nowadays. Staying healthy and keeping fit are now social imperatives in our performance-oriented society. The pandemic has made us rethink, made us pause – with sustainable function still in focus, yet function needs to be rethought for the future, distancing ourselves from mere performance enhancement, and embracing clothing that facilitates people in feeling good.

Touch & Feel
In a visual, digital world, one sense has been forgotten: the sense of touch. Materials trigger completely different reactions, consciously or unconsciously. Moreover, the surface texture is also decisive in the functionality of a fabric, lending it its unique characteristics. In times of contact restrictions and lockdown, there is a need for a space for emotions, for regeneration and physical wellbeing. This is also reflected in the desire for appropriate apparel that leaves a pleasant sensation on the skin. Lightweight, warm and of a softer nature, plant-based fibers fulfil the desire for comfort and promote wellbeing.

We are physical – we are nature
How will we shape and adapt the post-pandemic textile and apparel industry? The Corona crisis once again reminds us of our existential bond with the natural world. While humanity fights against the spread of a deadly virus with social isolation, one thing is doing well: our planet. It is recovering from all the exhaust gases that are released into the air daily by cars and factories. There is a shift in focus towards taking time out in nature, whether in the form of a morning run, a mountain hike or a yoga session on the grass.

Your success story of 2020
What has touched them? Which experiences have shaped their latest innovations? Does the crisis also present opportunities? The chance for something new, for a rethink, on an even more sustainable, more ecological path? Which highlights, which stories are worth communicating and where did the focus lie in 2020? Various material manufacturers already started to focus on sustainability and the cautious use of resources some time ago. Innovations in the areas of materials and in processing methods are the driving forces of the development towards more sustainability. However, we need to realign all processes and structures in our supply and production chains and adapt them to the needs of a resource-conserving, responsible industry. A pioneering example of such alignment was the decision of PERFORMANCE DAYS to only present sustainable materials at the PERFORMANCE FORUM from the November 2019 trade fair event onwards. Additionally, the setting-up of the new digital sourcing platform “THE LOOP” shows how technology can be implemented aside from material and processing innovations in such a way that our procedures and structures can be adapted to difficult conditions.

Informative & up-to-date: the digital trade fair week from 17 to 21 May 2021
As usual, the highlighted fabrics from the Focus Topic “Still Physical”, which the exhibitors have defined as their personal success stories, will be available shortly on the PERFORMANCE DAYS website highlighting all details and facets.

DSM/MKU Ltd: High-performance, lightweight ballistic protection in Brazil (c) DSM Protective Materials: DSMPMPR007
26.04.2021

DSM/MKU Ltd: High-performance, lightweight ballistic protection in Brazil

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, announced that, together with armor manufacturing partner, MKU Ltd, has provided next generation armor technology with Dyneema® unidirectional (UD) material to support the Sao Paulo police.

The Sao Paulo police, which is comprised of more than 100,000 officers, is the first law enforcement agency in Brazil to initiate a tender for personal protective equipment based on the latest National Institute of Justice (NIJ) .06 standards for body armor, which provide comprehensive and rigorous compliance for the performance and testing of ballistic materials. In addition to NIJ .06 certification, the tender set extremely lightweight requirements for level IIIA soft armor vests.

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, announced that, together with armor manufacturing partner, MKU Ltd, has provided next generation armor technology with Dyneema® unidirectional (UD) material to support the Sao Paulo police.

The Sao Paulo police, which is comprised of more than 100,000 officers, is the first law enforcement agency in Brazil to initiate a tender for personal protective equipment based on the latest National Institute of Justice (NIJ) .06 standards for body armor, which provide comprehensive and rigorous compliance for the performance and testing of ballistic materials. In addition to NIJ .06 certification, the tender set extremely lightweight requirements for level IIIA soft armor vests.

The hybrid vest solution developed MKU, a global leader in defense and homeland security solutions, for the Sao Paulo police utilizes predominantly Dyneema® UD material to reach new levels of performance and protection while simultaneously enhancing user comfort and mobility. Dyneema®, a strong and light fiber, is the one of leading global brands for ultra-high molecular weight polyethylene (UHMwPE) fiber, UD and fabrics, offering ballistic solutions for personal and vehicle armor that combine maximum strength with minimum weight.

In soft armor applications, Dyneema® offers up to 35 percent weight reduction when compared to competitive materials, while still protecting against both legacy and emerging threats.

In addition to the lightweight armor requirement, the vests were also thoroughly tested to ensure performance with NIJ ballistic reports, NIJ certification and in-house ballistic testing both during the tender process and after the vests were received.

In line with DSM’s commitment to protect people and the environment they live in, one of the world’s first ever bio-based HMPE fibers was introduced in 2020.

Bunzl Distribution brings American antiviral technology to Mexico retailers
19.04.2021

Bunzl Distribution brings American antiviral technology to Mexico retailers

US-made Acteev Protect™ masks have embedded zinc ion technology which deactivates many viruses and eliminates bacteria

Bunzl Distribution, a leading supplier of packaging, disposable supplies, and cleaning and safety products, has signed on as the distributor in Mexico for Acteev Protect™ masks, made in the United States by polyamide manufacturer Ascend Performance Materials. A global distributor, Bunzl provides supplies to supermarkets, food processing plants, retailers and convenience stores in Mexico.

Bunzl will distribute the Acteev Protect Nonwoven Mask, a reusable general purpose mask that features powerful antiviral and antibacterial properties. Acteev technology embeds active zinc ions in a polymer matrix which destroys microbes, deactivates many viruses and eliminates bacteria and fungi.

US-made Acteev Protect™ masks have embedded zinc ion technology which deactivates many viruses and eliminates bacteria

Bunzl Distribution, a leading supplier of packaging, disposable supplies, and cleaning and safety products, has signed on as the distributor in Mexico for Acteev Protect™ masks, made in the United States by polyamide manufacturer Ascend Performance Materials. A global distributor, Bunzl provides supplies to supermarkets, food processing plants, retailers and convenience stores in Mexico.

Bunzl will distribute the Acteev Protect Nonwoven Mask, a reusable general purpose mask that features powerful antiviral and antibacterial properties. Acteev technology embeds active zinc ions in a polymer matrix which destroys microbes, deactivates many viruses and eliminates bacteria and fungi.

Recent testing on Acteev fabric completed at the University of Cambridge has demonstrated that Acteev technology deactivates the virus that causes COVID-19, SARS-CoV-2, with greater than 99.9% efficacy. Ascend has submitted several masks designs to the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration to obtain the appropriate regulatory clearances to make specific claims regarding the technology’s antiviral properties in the United States.

Carlos Green, Director General of Bunzl de México, says the company is pleased to bring products featuring better safety and protection to the Mexico market. “Our customers are more focused than ever before on doing business safely, and Acteev masks offer an added level of protection in the workplace,” he said. “We’re excited to offer our customers this premium product that provides some of the best protection available.”

In addition to antiviral, antifungal and antibacterial protection, the washable, reusable masks are lightweight, breathable and odor-fighting, making them comfortable to wear during a long shift at work or for outdoor workout. “Workers in industrial settings, such as chemical and food processing plants, and convenience stores and other retail outlets deserve the right protection as they keep society and the economy moving in Mexico,” said Juan Toro, Ascend’s principal business development leader for Acteev in the Americas.

“We are proud to partner with Bunzl to help deliver a reusable mask that provides both antiviral properties as well as an opportunity reduce the number of masks consumed, saving the companies money.”
Acteev Protect shows promise for use beyond masks, according to Ascend. The technology was originally developed for workout wear, and now the company is working textile applications ranging from gloves to scrubs to high-end athleisure.

Swiss weaving machinery manufacturers are in the forefront of novel application development ©Stäubli
Multilayer Aramid
17.03.2021

Swiss weaving: Fabrics of the future

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

These glimpses of the outlook for modern weavers are among the highlights of developments now being pioneered by Swiss textile machinery companies. All weaving markets require innovation, as well as speed, efficiency, quality and sustainability. Member firms of the Swiss Textile Machinery Association respond to these needs at every point in the process – from tightening the first thread in the warp to winding the last inch for fabric delivery. They also share a common advantage, with a leading position in the traditional weaving industry as well as the expertise to foster new and exciting applications.

Technology and research cooperation
The concept of a ‘textile calculator’ was developed by Jakob Müller Group, in cooperation with the textile research institute Thuringen-Vogtland. Müller’s patented MDW® multi-directional weaving technology is able to create the meander fields which allow calculator functions to be accessed at a touch. A novel and useful facility, which suggests limitless expansion.

Today, the latest woven shoes are appreciated for their precise and comfortable fit. They score through their durability, strength and stability, meeting the requirements of individual athletes across many sports, as well as leisurewear. Stäubli is well known as a leading global specialist in weaving preparation, shedding systems and high-speed textile machinery. Its jacquard machines offer great flexibility across a wide range of formats, weaving all types of technical textiles, lightweight reinforcement fabrics – and shoes.

It’s possible to weave new materials such as ceramics, mix fibers such as aramid, carbon and other, and produce innovative multi-layers with variable thicknesses. Such applications put special demands on weaving machines which are fulfilled by Stäubli high-performance TF weaving systems.

Great weaving results are impossible without perfect warp tension, now available thanks to the world-leading electronic warp feeding systems of Crealet. Some market segments in weaving industry today demand warp let-off systems which meet individual customer requirements. For example, the company has recognized expertise to understand that geotextile products often need special treatment, as provided by its intelligent warp tension control system. Individual and connective solutions are designed to allow external support via remote link. Crealet’s warp let-off systems are widely used in both ribbon and broadloom weaving, for technical textiles applied on single or multiple warp beams and creels.

Functional, sustainable, automated
Trends in the field of woven narrow fabrics are clearly focused on functionality and sustainability. The Jakob Müller Group has already embraced these principles – for example using natural fibers for 100% recyclable labels with a soft-feel selvedge. It also focuses as much as possible on the processing of recycled, synthetic materials. Both PET bottles and polyester waste from production are recycled and processed into elastic and rigid tapes for the apparel industry.

For efficient fabric production environments, it is now recognized that automated quality solutions are essential. Quality standards are increasing everywhere and zero-defect levels are mandatory for sensitive applications such as airbags and protective apparel.

Uster’s latest generation of on-loom monitoring and inspection systems offers real operational improvements for weavers. The fabric quality monitoring prevents waste, while the quality assurance system significantly improves first-quality yield for all applications. Protecting fabric makers from costly claims and damaged reputations, automated fabric inspection also removes the need for slow, costly and unreliable manual inspection, freeing operators to focus on higher-skilled jobs.

Smart and collaborative robotics (cobots) offer many automation possibilities in weaving rooms. Stäubli’s future oriented robotics division is a driver in this segment with first effective installations in warp and creel preparation.

Control and productivity
Willy Grob’s specialized solutions for woven fabric winding focus on reliable control of tension, keeping it constant from the start of the process right through to the full cloth roll. Continuous digital control is especially important for sensitive fabrics, while performance and productivity are also critical advantages. In this regard, the company’s large-scale batching units can provide ten times the winding capacity of a regular winder integrated in the weaving machine.

The customized concept by Grob as well as design and implementation result in great flexibility and functionality of the fabric winding equipment – yet another example of Swiss ingenuity in textile machinery.  
There is even more innovation to come in weaving – and in other segments – from members of the Swiss Textile Machinery Association in future! This confident assertion is founded on an impressive statistic: the 4077 years of experience behind the creative power of the association’s member firms. It’s proof positive that their developments grow out of profound knowledge and continuous research.

15.02.2021

Hexcel’s HexPly® XF Surface Technology for Blade Surface Finishing Process

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Easy to handle and supplied in a ready to use roll form, HexPly XF can be quickly applied by hand or with semi-automated layup equipment. It features one self-adhesive, surface finishing side - indicated by a removable protective foil. This side of the prepreg is placed against a release agent treated mold surface. Once the material has been positioned, the lay-up of the blade shell structure can start immediately, and the laminate can be infused. After curing, the blade is de-molded with the manufacturer benefitting from a pinhole-free surface that needs minimal preparation before painting.

HexPly XF material is less than half the weight of a typical gel coat per square meter, reducing the overall weight of the blade. Additionally, the consistent areal weight and thickness of the prepreg film provide a completely uniform surface coating, ensuring blade weight distribution and balance are maintained, which is critical as rotor diameters continue to increase. With no need to handle or mix liquid chemicals as in the gel coat process, HexPly® XF also improves the health and safety working conditions on the shop floor.

The material has a shelf life of six weeks at ambient temperature, which also minimizes cold storage requirements and helps to reduce scrap.

Source:

100% Marketing

08.02.2021

ISKO and HIGH collaborate to create Jacket and Pants

Intelligently designed clothes made with the latest manufacturing technology are the results of the partnership between on of the leading denim innovators ISKO and the Italian brand HIGH. A project, part of the SS2021 HIGH collection, is the start of collaboration in the pursuit of sustainable fashion.

Aimed at bringing a positive change both for the planet and its people, the project presents two pieces – jacket and pants – which embody HIGH’s approach to creativity and production: a wellbalanced mix of specialists’ expertise and a tireless investigation on the latest and most responsible fabric technologies. HIGH identified the R-TWO™ program as the right fabric ingredient, ideal to level up sustainability in its looks.

Intelligently designed clothes made with the latest manufacturing technology are the results of the partnership between on of the leading denim innovators ISKO and the Italian brand HIGH. A project, part of the SS2021 HIGH collection, is the start of collaboration in the pursuit of sustainable fashion.

Aimed at bringing a positive change both for the planet and its people, the project presents two pieces – jacket and pants – which embody HIGH’s approach to creativity and production: a wellbalanced mix of specialists’ expertise and a tireless investigation on the latest and most responsible fabric technologies. HIGH identified the R-TWO™ program as the right fabric ingredient, ideal to level up sustainability in its looks.

Relying on a blend of reused and recycled materials, this revolutionary platform works by embedding material circularity into the production process, designing waste out of the system and minimizing impact at scale. With fully traced reused cotton coming from ISKO’s production loss, which is prevented from becoming waste by adding it back into the spinning process, and an efficient use of polyester materials which are spun into newly recycled fibers, the program can provide certified to Textile Exchange environmental credentials. According to the percentage of material contained, these can be either the Content Claim Standard, Global Recycled Standard, Organic Content Standard or Recycled Claim Standard, ensuring better use of raw materials and resource efficiency while providing advanced concepts that don’t compromise on their look and performance.

Additionally, to meet HIGH’s performance needs, ISKO has brought to the table one of its most popular technologies, of course in its R-TWO™ version: Jeggings™, super-stretch denim technology. Soft and lightweight as leggings, it provides comfort with the look of authentic denim and provides the perfect, responsible solution to usher the partnership.

More information:
Isko Denim Sustainability
Source:

Menabò Group

Sorpol Ltd. brings American antiviral technology to Israel (c) Ascend Performance Materials, APMPR055
19.01.2021

Ascend Performance Materials: Sorpol Ltd. brings American antiviral technology to Israel

Sorpol Ltd., a leading importer and distributor of industrial raw materials in Israel, has launched a website to sell Acteev Protect™ masks, made in the USA by polyamide manufacturer Ascend Performance Materials. The two companies also plan to partner in the distribution of Acteev surgical masks, N95 respirators, nonwoven media and textile fabrics as they become available.

Laboratory tests have demonstrated Acteev fabric effective at deactivating 99.9% of the viruses SARS-CoV-2, the cause of COVID-19, and H1N1, a flu virus. Acteev technology also eliminates bacteria and fungi.

Ofer Soreq, Sorpol’s marketing director, said the Acteev Protect line fits in neatly with the mission of the company.

Sorpol Ltd., a leading importer and distributor of industrial raw materials in Israel, has launched a website to sell Acteev Protect™ masks, made in the USA by polyamide manufacturer Ascend Performance Materials. The two companies also plan to partner in the distribution of Acteev surgical masks, N95 respirators, nonwoven media and textile fabrics as they become available.

Laboratory tests have demonstrated Acteev fabric effective at deactivating 99.9% of the viruses SARS-CoV-2, the cause of COVID-19, and H1N1, a flu virus. Acteev technology also eliminates bacteria and fungi.

Ofer Soreq, Sorpol’s marketing director, said the Acteev Protect line fits in neatly with the mission of the company.

Recent testing on Acteev fabric completed at the University of Cambridge has demonstrated that Acteev technology deactivates the virus that causes COVID-19, SARS-CoV-2, with 99.9% efficacy on contact. Ascend has submitted several masks designs to the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration to obtain the appropriate regulatory clearances to make specific claims regarding the technology’s antiviral properties in the United States.

In addition to antiviral, antifungal and antibacterial protection, the washable, reusable masks are lightweight, breathable and odor-fighting, making them comfortable to wear during a long shift at work or for outdoor workouts.

Acteev Protect shows promise for use beyond masks, according to Ascend. The technology was originally developed for workout wear, and now the company is working on textile applications ranging from gloves to scrubs to high-end athleisure

Source:

EMG / Ascend Performance Materials

14.01.2021

Hologenix and Kelheim Fibres launch Celliant Viscose

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Celliant Viscose features natural, ethically sourced minerals embedded into plant-based fibers to create infrared products that capture and convert body heat into infrared, increasing local circulation and improved cellular oxygenation. This results in stronger performance, faster recovery and better sleep.

Celliant Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as fiber enhancements from Celliant infrared technology. Celliant’s proprietary blend of natural minerals allows textiles to capture and convert body heat into full-spectrum infrared energy, resulting in stronger performance, faster recovery and better sleep. In addition, Celliant is durable and will not wash out, lasting the useful life of the product it powers.

An Affordable, Long-lasting Solution with Diverse Applications
As opposed to other IR viscose products which are coatings based, Celliant Viscose’s in-fiber solution increases wearability and longevity with a soft feel, durability from washing and longer life. The combination of Kelheim’s distinctive technology and the Celliant additives creates this unique fiber that provides full functionality without the need for any additional processing step — a new standard in the field of sustainable IR viscose fibers. This single processing also makes Celliant Viscose more cost-effective and time-efficient than coatings.

In addition, Kelheim’s flexible technology allows targeted interventions in the viscose fiber process. By modifying the fiber’s dimensions or cross sections or by incorporating additives into the fiber matrix, Kelheim can precisely define the fiber’s properties according to the specific needs of the end product.

Highly Sustainable
Celliant Viscose is a plant and mineral-based solution for brands seeking an alternative to synthetic fibers. It contains natural raw materials that are from the earth and can return safely to the earth.

Nature-based Celliant Viscose is certified by FSC® or PEFC™, which guarantees the origin in sustainably managed plantations, and is part of the CanopyStyle initiative to protect ancient and endangered forests. The production of Celliant Viscose takes place exclusively at the Kelheim facilities in Germany, complying with the country’s strict environmental laws and guaranteeing an overall eco-friendly product.

Backed by Science
Celliant is rigorously tested by a Science Advisory Board composed of experts in the fields of physics, biology, chemistry and medicine. The Science Advisory Board has overseen 10 clinical, technical and physical trials, and seven published studies that demonstrate Celliant’s effectiveness and the benefits of infrared energy.

For more information, visit www.celliant.com/celliant-viscose/

Source:

Kelheim Fibres GmbH

Video Material Stories are presented by the PERFORMANCE DAYS Exhibitors (c) PERFORMANCE DAYS
Midlayers of the Season
13.01.2021

Video Material Stories are presented by the PERFORMANCE DAYS Exhibitors

Video Material Stories focus on the highlight products of the PERFORMANCE FORUM which were rewarded with a 100% Jury Like and include detailed explanations by the exhibitors. You can watch the videos here, check out the details, ask any question to the exhibitors and request samples!

  • Lightweight, Downproof & Insulation Trends of the Season

The selected insulations are all produced ecologically responsibly, at the same time they are lightweight, breathable and insulate well. The lightweight and downproof fabrics of winter 22/23 are ultra-light, breathable and heat-insulating. It is astonishing that lightweights can now be processed from Econyl and other recycled fibres without losing any of their lightness. Almost all fibres – from nylon, Econyl, polyamide to polyester – are over 90 per cent recycled, and often dyed with vegetable variants or dyed in a dope dyed process.

Video Material Stories focus on the highlight products of the PERFORMANCE FORUM which were rewarded with a 100% Jury Like and include detailed explanations by the exhibitors. You can watch the videos here, check out the details, ask any question to the exhibitors and request samples!

  • Lightweight, Downproof & Insulation Trends of the Season

The selected insulations are all produced ecologically responsibly, at the same time they are lightweight, breathable and insulate well. The lightweight and downproof fabrics of winter 22/23 are ultra-light, breathable and heat-insulating. It is astonishing that lightweights can now be processed from Econyl and other recycled fibres without losing any of their lightness. Almost all fibres – from nylon, Econyl, polyamide to polyester – are over 90 per cent recycled, and often dyed with vegetable variants or dyed in a dope dyed process.

  • Softshells & Outer Midlayers of the Season

Warming, windproof and water-repellent jackets worn outdoors as an outer layer during sports or leisure activities typify the Softshell/Outer Midlayer category. Polyamide and polyester fibres remain dominant in winter 22/23. But anyone on the lookout for natural fibres will find various blends of organic cotton, Tencel or wool.

  • Midlayers of the Season

Midlayers are primarily intended to provide warmth when layering garments. The focus is on newer constructions to generate heat, yet at the same time, manufacturers are attempting to reduce or completely avoid the use of micro-plastics in the development process.

Flax for Composites: Woven tapes made of natural fibres by vombaur (c) Elke Wetzig, Wikimedia
Lightweight, firm, sustainable: Flax tape by vombaur
02.12.2020

Flax for Composites: Woven tapes made of natural fibres by vombaur

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Circular Economy
Circular Economy – this also works in lightweight design. The number of recycling cycles without loss of quality is higher for natural fibre reinforced plastics than for glass or carbon fibre reinforced plastics: the thermoplastic matrix of the composite can be melted and recycled after a product life cycle. The natural fibres can "live on" in other products – injection moulded products for example.

Versatile applications
"Composites from our flax tapes are used to reinforce high-tech skis as well as for extruding state-of-the-art window sections – the applications are countless," explains Tomislav Josipovic, Sales Manager with vombaur. "As a development partner, we support applications for the automotive, wind energy, construction, sports and many other industries with our composite textiles."

More information:
vombaur Naturfasern Composites
Source:

stotz-design.com

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

vombaur: Composites for Aviation and Automotive (c) vombaur
Pioneering tech tex
04.11.2020

vombaur: Composites for Aviation and Automotive

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

Challenging applications
"From snowboards to aerospace – the applications for our composite textiles are demanding; the mechanical, chemical and thermal requirements are extreme," explains COO Christoph Schliefer. "As a development partner, we at vombaur are therefore often involved in product development at an early stage. We specify our woven tapes and tubulars individually for each project to suit the specific task at hand."

High quality raw materials, wide variety of geometries
The variety of shapes is virtually unlimited. vombaur manufactures 3D fabrics for composites in individual special shapes from carbon, aramid, glass or hybrids. Curves, edges, tubulars, spiral fabrics – the shape of the 3D fabrics, like the material itself, depends entirely on the task at hand. Powder or non-woven coatings create additional important properties.

Pioneering tech tex
"Developments in the field of modern mobility are happening at a rapid pace," emphasizes Schliefer. "With our composite textiles for extremely lightweight and high tenacity components, we at vombaur are also pushing these developments forward."

Warden Schijve joins the AZL team (c) AZL
Dr. Michael Emonts, Warden Schijve, Philipp Fröhlig und Dr. Kai Fischer (von links nach rechts) im AZL Tech Center
02.11.2020

Warden Schijve joins the AZL team

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

From his 35 years in the composites industry with Fokker, DSM and SABIC, Warden Schijve brings a broad and deep expertise in structural design, plastics and composites, as well as processing technology.
Warden Schijve: “In my career I’ve always seen that it pays off to evaluate various different design concepts, which may use different materials or material combinations, to finally come to the most cost-competitive lightweight applications. Taking into account different manufacturing technologies right from the beginning can save a lot in later stages of component development. And this is what fascinates me about AZL and its eco-system: the available knowledge on a wide variation of process and production technologies, including cutting edge equipment, at both the AZL Tech Center, and the various institutes present in the total RWTH Aachen Campus.”

Dr. Michael Emonts, Managing Partner of AZL Aachen GmbH: "We are delighted that Warden Schijve, as a well-known face from the AZL community, will enrich us in developing lightweight applications, production systems and processes, identifying competitive technology optimizations through the analysis of markets and applications, and supporting our customers in the industrial implementation of the developed technologies."

Warden Schijve will also lead the project for a concept study for future battery casings based on composite-based multi-material systems. The AZL started the project in October together with 30 participating companies from the entire value chain to get an overview of existing component solutions, evaluate the advantages of a multi-material approach and develop a multi-material component design including a production concept for battery casings.

Bandagenband (c) JUMBO Textil
20.10.2020

JUMBO-Textil: Narrow textiles with a function

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Applications
Development teams in numerous industries leverage these properties for their products. For example, for flexible machine parts in mechanical engineering, for switch contacts in electrical engineering, for oscillation-capable locking systems in the construction industry, for noise- and vibration-free seating systems in the automotive sector or for grip rings in the toys industry.

Tasks
Particularly en vogue today, when we are spending more time than usual in our own homes: applications for narrow textiles in the furniture industry. They go far beyond the area of legacy home textiles: as tensioning elements in armchairs, sofas and chairs, as hinge solutions in cupboards, as fixation elements in extendable or folding tables. Narrow textiles are used for gripping tasks almost everywhere in the living room.

"JUMBO-Textil specialises in precisely implementing the individual requirements for defined force-elongation values of elasticated narrow textiles: we adapt the technical properties of our products precisely to the specific task and the respective raw materials," explains Werner Thiex, Sales Director Automotive. "Precise technical specification plus sustainable raw materials – this is a crucial combination in the 21st century".

Source:

stotz-design.com

Bio Composites Procedure (c) AZL Aachen GmbH
24.09.2020

Starting market and technology study on the Potential for bio-based composite materials

Sustainability and environmental responsibility are important developments for the current design of productions and products. In order to obtain a comprehensive evaluation of the potential of bio-based composites, the AZL, together with an industry consortium, is investigating the market potential, future applications and relevant technologies for bio-based composite materials. The 5-month market and technology study will start on October 22nd, 2020 and is open to interested companies. Companies such as REHAU, an Automotive Tier 1, Asahi Kasei, Johns Manville, Mahr Metering Systems and several material manufacturers are participating in the study.

Bio-plastics are well established in industry, especially in packaging applications. The market for biopolymers is expected to grow from USD 10.5 billion in 2020 to USD 27.9 billion in 2025. At the same time, bio-based raw materials, such as natural fibers, are available on the market in a cost-effective manner. Composites with wood or natural fiber content are also increasingly used in products.

Sustainability and environmental responsibility are important developments for the current design of productions and products. In order to obtain a comprehensive evaluation of the potential of bio-based composites, the AZL, together with an industry consortium, is investigating the market potential, future applications and relevant technologies for bio-based composite materials. The 5-month market and technology study will start on October 22nd, 2020 and is open to interested companies. Companies such as REHAU, an Automotive Tier 1, Asahi Kasei, Johns Manville, Mahr Metering Systems and several material manufacturers are participating in the study.

Bio-plastics are well established in industry, especially in packaging applications. The market for biopolymers is expected to grow from USD 10.5 billion in 2020 to USD 27.9 billion in 2025. At the same time, bio-based raw materials, such as natural fibers, are available on the market in a cost-effective manner. Composites with wood or natural fiber content are also increasingly used in products.

Dr. Michael Emonts, Managing Partner of AZL: "Together with our partner companies we want to identify hidden business potential for composites with bio-based materials. To do so, we will reapply our established approach for market and technology studies: Based on a detailed market analysis, we will dive deep into the technological evaluation of technologies, applications and business cases.”

Based on a detailed market segmentation, AZL's technology experts analyze the various market segments in terms of their size, growth potential, relevant players and existing and future applications. For the identified applications, the participants in the study will receive detailed insight into the respective technical and legal requirements as well as an overview of value chains, processes and materials. In the following, the strengths and challenges of bio-composites compared to conventional materials are elaborated. The consortium will select the components with the highest potential, for which suitable production scenarios will be developed and analyzed in terms of costs in a business case analysis.

"We are participating in the AZL study to identify and evaluate new product areas with bio-materials. The technological analyses of the AZL studies have already helped us in the past to initiate new developments," says Dr. Steven Schmidt, Director Technology Platforms Materials at REHAU, explaining the motivation for working with the AZL and the industry consortium. "As one of the 50 Sustainability & Climate Leaders, we at REHAU are incorporating environmentally friendly materials into more and more products. Wherever the company is active - from the furniture and construction industries to the automotive industry - REHAU is already developing and manufacturing high-quality products from recycled raw materials. By 2025, REHAU plans to increase its recycling rate across the Group to significantly more than 15 percent and at the same time reduce CO2 emissions by at least 30 percent," adds Dr. Steven Schmidt.

Bio-composites will also be the topic of the upcoming Lightweight TechTalk by AZL on September 29, 2020. Experts from industry and academia will give technology and market insights on sustainability and recycling of composites in 6 presentations. Registration is free of charge at: https://azl-aachen-gmbh.de/termine/recycling-of-composites/.

The kick-off of the project will take place on October 22nd, 2020 in the form of a video conference. Further background information on the project can be found under the following link: https://azl-aachen-gmbh.de/wp-content/uploads/2020/09/2020-251_OP_Bio-Bases_Composites.pdf

DSM enables ground-breaking protective cycling jersey with Dyneema® fabric for Tour de France (c) DSM Protective Materials
Sportswear Dyneema® fabric
27.08.2020

DSM enables ground-breaking protective cycling jersey with Dyneema® fabric for Tour de France

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announces that Dyneema® is driving the performance of Team Sunweb’s protective cycling jerseys in the 2020 Tour de France. Together with its partners, Team Sunweb and Craft Sportswear, DSM has helped to deliver a jersey that, when combined with a protective baselayer, offers cyclists effective abrasion protection at speeds up to 60km/h, while also reducing the severity of open wounds at even higher speeds. In this way, DSM underlines its commitment to protect people and the environment they live in.

Professional cycling places its participants in considerable danger; in recent years, the Tour de France has averaged 1.5 crashes per stage, while crashes in one-day classics are even more frequent. Cycling jerseys can support riders by enabling protection for a large portion of the body, while allowing for moisture transport to the surface and offering low thermal resistance. However, cycling jerseys made with conventional materials offer limited protective performance.

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announces that Dyneema® is driving the performance of Team Sunweb’s protective cycling jerseys in the 2020 Tour de France. Together with its partners, Team Sunweb and Craft Sportswear, DSM has helped to deliver a jersey that, when combined with a protective baselayer, offers cyclists effective abrasion protection at speeds up to 60km/h, while also reducing the severity of open wounds at even higher speeds. In this way, DSM underlines its commitment to protect people and the environment they live in.

Professional cycling places its participants in considerable danger; in recent years, the Tour de France has averaged 1.5 crashes per stage, while crashes in one-day classics are even more frequent. Cycling jerseys can support riders by enabling protection for a large portion of the body, while allowing for moisture transport to the surface and offering low thermal resistance. However, cycling jerseys made with conventional materials offer limited protective performance.

To address these needs and enable a safer riding experience, DSM has teamed up with Craft Sportswear and Team Sunweb to develop a cycling jersey that offers much-needed increases in abrasion resistance without compromising the comfort or low weight that cyclists demand. The new jersey is the latest protective cycling apparel solution, following the launch of the protective bib shorts (2015) and the protective baselayer (2019). The jersey will be worn for the first time by Team Sunweb in this year’s Tour de France. When combined with the protective baselayer, the new jersey offers complete protection against abrasions up to 60km/h, a speed below which professional cyclists spend 95% of race time in a typical stage.

Dyneema® has been used to protect workers in high-stake industries for more than 30 years – and the expansion into fabrics means both professional and recreational cyclists can enjoy the intrinsic performance capabilities of Dyneema® in their protective garments without sacrificing wearer comfort.

“Being 15 times stronger than steel on a weight for weight basis, Dyneema® fiber offers an excellent solution to increasing the abrasion resistance of a fabric, reducing the severity of road rash in case of a crash, without compromising the rider weight or comfort,” states Piet Rooijakkers, Head of R&D Team Sunweb “What’s more, the new jersey can form part of a modular protection solution, where riders can easily take off or put on layers according to race and weather conditions. In this way, the new jersey will support our riders significantly in the Tour de France and beyond.”

“The new cycling jersey with Dyneema® will make a real difference to cyclists facing the dangers of professional competition, and help ensure the health of both people and the environment,” states Wilfrid Gambade, President DSM Protective Materials. “The jersey is physical proof of the great achievements collaboration with expert partners can deliver. Moving forward, we will work with Craft and Team Sunweb to integrate bio-based Dyneema® fibers into protective cycling jerseys – contributing even further to a safe and healthy world!”

In line with its commitment to protect people and the environment they live in, DSM introduced the world’s first-ever bio-based HMPE fiber in May 2020. Bio-based Dyneema® fiber offers the same exact performance as conventional Dyneema® with a carbon footprint that is 90% lower than generic HMPE. The continued partnership between DSM, Craft and Team Sunweb will not only provide innovative, lightweight solutions for cyclists, but also environmentally sustainable alternatives that contribute to a circular economy.

10.06.2020

“Autoneum Pure.”: new sustainability label for products

Technologies with an excellent environmental performance throughout the entire product life cycle – that is what “Autoneum Pure.” stands for. In future, components that meet the highest standards in terms of sustainability and eco-friendliness can be identified at a glance under this label. This also includes the innovation “Mono-Liner” for wheelhouse outer liners.

As innovation leader in acoustic and thermal management, Autoneum continuously invests in the development and production of resource-saving components that make cars lighter and thus more climate-friendly. In view of an increasing sustainability awareness and the correspondingly greater information needs on environmentally-friendly vehicle components, the Company has now launched Autoneum Pure. The label determines particularly sustainable technologies, thereby guiding car manufacturers in product selection for future models.

Technologies with an excellent environmental performance throughout the entire product life cycle – that is what “Autoneum Pure.” stands for. In future, components that meet the highest standards in terms of sustainability and eco-friendliness can be identified at a glance under this label. This also includes the innovation “Mono-Liner” for wheelhouse outer liners.

As innovation leader in acoustic and thermal management, Autoneum continuously invests in the development and production of resource-saving components that make cars lighter and thus more climate-friendly. In view of an increasing sustainability awareness and the correspondingly greater information needs on environmentally-friendly vehicle components, the Company has now launched Autoneum Pure. The label determines particularly sustainable technologies, thereby guiding car manufacturers in product selection for future models.

Autoneum Pure is based on a comprehensive set of criteria assessing the sustainability performance of a product in all four phases of its life cycle: material procurement, production, use and end of life. For example, components with a high content of recyclable materials or those that achieve significant weight savings compared to comparable standard components qualify for the “Autoneum Pure.” label. Autoneum already offers various multifunctional technologies that meet the high standards for Autoneum Pure products: Ultra-Silent for underbody systems or battery undercovers, Di-Light for carpet systems, Prime-Light and IFP-R2 for inner dashes and floor insulators as well as Hybrid-Acoustics PET for e-motor encapsulations and engine-mounted parts, which was launched in fall 2019.

With Mono-Liner, the latest innovation for wheelhouse outer liners is also included in the Autoneum Pure portfolio. Among other things, the Mono-Liner-based components convince thanks to their lightweight construction, thereby contributing to lower vehicle weight with correspondingly less fuel consumption and emissions. The excellent life cycle assessment is also based on their particularly resource-saving manufacturing: Production cut offs of the components, which consist to a large extent of recycled PET fibers, can be processed into pellets and completely returned to the manufacturing process as fibers. An SUV and a crossover model from a US vehicle manufacturer already benefit from Mono-Liner wheelhouse outer liners.

Anahid Rickmann, Head of Corporate Communications & Responsibility, explains: “With Autoneum Pure we are the first automotive supplier to establish a sustainability label in the field of acoustic and thermal management. Autoneum Pure is part of the Company's Advance Sustainability  Strategy 2025 and sets industry standards in product communication.”

Source:

Autoneum Holding AG

19.05.2020

Starlinger: New circular loom RX 8.1

The RX circular loom series is produced at the Starlinger plant in Taicang/China specifically for the Southeast Asian market. This series is now extended with the RX 8.1, a circular loom that is particularly suited to the production of lightweight fabrics for 1-loop FIBCs, tarpaulins as well as geo- and agrotextiles made of PP, HDPE, and PET. In combination with the RX 6.0, RX 6.1, and RX 8.2, Starlinger Taicang now offers the ideal circular loom for every fabric width.
The new Starlinger circular loom RX 8.1 produces fabric with a width of 1,200 – 1,700 mm, which is an ideal match for 1-loop FIBCs, tarpaulin fabrics as well as geo- and agrotextiles. The model completes the RX series, which now covers every working width between 300 and 2,250 mm.

The RX circular loom series is produced at the Starlinger plant in Taicang/China specifically for the Southeast Asian market. This series is now extended with the RX 8.1, a circular loom that is particularly suited to the production of lightweight fabrics for 1-loop FIBCs, tarpaulins as well as geo- and agrotextiles made of PP, HDPE, and PET. In combination with the RX 6.0, RX 6.1, and RX 8.2, Starlinger Taicang now offers the ideal circular loom for every fabric width.
The new Starlinger circular loom RX 8.1 produces fabric with a width of 1,200 – 1,700 mm, which is an ideal match for 1-loop FIBCs, tarpaulin fabrics as well as geo- and agrotextiles. The model completes the RX series, which now covers every working width between 300 and 2,250 mm.

Like all models of the RX series, the RX 8.1 is equipped with numerous technological advantages. Due to its special reed and shuttle design, the machine does not have any sliding parts that would require lubrication, and thus leaves no traces of oil on the fabric. This property allows for the optimal adherence of the coating to the fabric and eliminates concerns regarding the use of the fabric in food applications. Moreover, the RX 8.1 produces fabric of highest quality at lowest production cost per square meter, as the production speed of 800 picks/minute is high while the number of warp breaks is low.
Other advantages are the machine’s user-friendliness, the energy-saving motors as well as a low noise level.

The machine will give its official debut at the plastics exhibition Chinaplas in 2021, as this year’s event has been cancelled due to COVID-19. In the meantime, the RX. 8.1, can bes visited in the Starlinger factory in Taicang. The standard execution of the machine with single inlet will show the production of tarpaulin fabric with a double flat width of 1,500 mm and a weight of 70 g/m².
A second machine will be equipped with double inlet and a gusseting device, which are available as options, and will produce fabric for 1-loop FIBCs with the same width, but twice the fabric weight (140 g). Another machine in Taicang, which can be visited is the RX 6.0 L: On this 6-shuttle circular loom, a PE liner is inserted into the woven fabric tube and attached to the plastic fabric. This process is performed fully automatically in the production process and allows the use of the fabric in sensitive applications such as food packaging.

Source:

Starlinger und Co GmbH