From the Sector

Reset
118 results
Barhocker aus Beton mit hybrider Carbon-Bewehrung zur schnellen, kosteneffizienten Positionierung der Textilbewehrung (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA auf der Composites Europe 2018 in Stuttgart

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Am ITA wurde gemeinsam mit den beiden Industriepartnern Albani Group GmbH & Co. KG und DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH eine neue Hybridbewehrung mit integriertem Ab-standshalter entwickelt. Diese Hybridbewehrung senkt die erforderliche Zeit zur Positionierung der Bewehrung um bis zu 60 Prozent und macht den Werkstoff damit deutlich wettbewerbsfähiger.

Die kostengünstige, hybride Bewehrung enthält einen integrierten Abstandshalter und ermöglicht damit die einfache Positionierung von trockenen und beschichteten Bewehrungen. Durch den integrierten Abstandhalter lassen sich schnell mehrere Bewehrungslagen stapeln, wodurch der gewünschte Bewehrungsgrad einstellbar ist. Die Hybridbewehrung besteht aus einem Carbon- oder Glasfasergitter, das mit einer durchlässigen Matte aus Polyamid gefügt ist und in naher Zukunft bei den Industriepartnern als Rollenware erhältlich ist.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University

© ITM/TU Dresden
Erste Ausführung eines multimodalen eGloves: Maßgeschneidertes Musikinstrument mit integrierter Sensorik zur Gestenerkennung und drahtlos angekoppeltem Tonwiedergabesystem sowie integrierter Leuchtfunktion für visuelles Feed-Back.
12.10.2018

ITM in einem Exzellenzcluster der TU Dresden maßgeblich involviert

Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden in einem der drei bewilligten Exzellenzcluster der TU Dresden maßgeblich involviert   
 
Ende September erfolgte die Bekanntgabe der Förderentscheidung über Exzellenzcluster durch die Deutschen Forschungsgemeinschaft (DFG) im Exzellenz-Wettbewerb. Drei der insgesamt sechs beantragten Exzellenzcluster der TUD wurden im Rahmen der Exzellenzstrategie des Bundes und der Länder bewilligt. Das ITM war im Vorfeld bei der Beantragung der Exzellenzcluster-Vollanträge mehrere Monate sehr stark eingebunden, so dass die Freude bei den Wissenschaftlern am ITM ausgesprochen groß ist, dass das Cluster „Centre for Tactile Internet with Human-in-the-Loop” (CeTI) bewilligt wurde.   
 

Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden in einem der drei bewilligten Exzellenzcluster der TU Dresden maßgeblich involviert   
 
Ende September erfolgte die Bekanntgabe der Förderentscheidung über Exzellenzcluster durch die Deutschen Forschungsgemeinschaft (DFG) im Exzellenz-Wettbewerb. Drei der insgesamt sechs beantragten Exzellenzcluster der TUD wurden im Rahmen der Exzellenzstrategie des Bundes und der Länder bewilligt. Das ITM war im Vorfeld bei der Beantragung der Exzellenzcluster-Vollanträge mehrere Monate sehr stark eingebunden, so dass die Freude bei den Wissenschaftlern am ITM ausgesprochen groß ist, dass das Cluster „Centre for Tactile Internet with Human-in-the-Loop” (CeTI) bewilligt wurde.   
 
Das „Zentrum für taktiles Internet mit Mensch-Maschine-Interaktion“ der TU Dresden will die Zusammenarbeit zwischen Mensch und Maschine auf eine neue Stufe heben. Menschen sollen künftig in der Lage sein, in Echtzeit mit vernetzten automatisierten Systemen in der realen oder virtuellen Welt zu interagieren. Ab Anfang 2019 arbeiten für dieses Ziel im Exzellenzcluster CeTI Wissenschaftler der TU Dresden aus den Fachgebieten Elektro- und Kommunikationstechnik, Informatik, Maschinenwesen, Psychologie, Neurowissenschaften und Medizin mit Forschern der TU München, des Deutschen Zentrums für Luft- und Raumfahrt und der Fraunhofer-Gesellschaft sowie internationalen Wissenschaftseinrichtungen zusammen. Interdisziplinär erforschen sie Schlüsselbereiche der menschlichen Kontrolle in der Mensch-Maschine-Kooperation, im Soft- und Hardware-Design, bei Sensor- und Aktuatortechnologien sowie bei den Kommunikationsnetzen. Die Forschungen sind Grundlage für neuartige Anwendungen in der Medizin, der Industrie (Industrie 4.0, Co-working) und dem ‘Internet der Kompetenzen‘ (Bildung, Rehabilitation).   
 
Sprecher von CeTI ist Herr Professor Frank Fitzek, Inhaber der Deutschen Telekom Professur für Kommunikationsnetze am Institut für Nachrichtentechnik der TU Dresden.
 
Das ITM wird innerhalb von CeTI seine umfassenden Expertisen auf dem Gebiet der Entwicklung maßgeschneiderter Funktionsmaterialien und -textilien einbringen. Hierbei werden sogenannte eGloves und eBodySuits, also elektronische Handschuhe und Anzüge, entwickelt, die strukturintegrierte faserbasierte Sensor-, Aktor- und Leitungssysteme sowie Verbindungselemente zu weiteren elektronischen Komponenten beinhalten. Derartige eGloves und eBodySuits bilden dabei eine neuartige multimodale Schnittstelle zwischen Mensch und Maschine, indem sie visuelle, akustische und haptische Informationen aufnehmen, interpretieren und zurückgegeben können.  

 

More information:
ITM
Source:

Technische Universität Dresden
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

Dissertation and Creativity Award of the German Textile Machinery Foundation 2018 to go to Aachen (c) VDMA. Eric Otto, Susanne Fischer, Dr. Benjamin Weise, Peter D. Dornier (Chairman Walter Reiners-Stiftung), Alon Tal, Jan Merlin Abram (left to right)
01.10.2018

Dissertation and Creativity Award of the German Textile Machinery Foundation 2018 to go to Aachen

The Mechanical Engineering Industry Association (VDMA) has awarded two prizes to graduates of the Institut für Textiltechnik (ITA) of RWTH Aachen University - the dissertation prize and the creativity prize of the Walter Reiners Foundation of German Textile Machinery 2018. ITA alumnus Dr Benjamin Weise was awarded the dissertation prize for the development of novel fibres for textile charge storage devices. For their work on a guide to 4D product design, Jan Merlin Abram and Aalon Tal (both ITA students) were honoured with the creativity prize. The dissertation prize is endowed with €5,000 whilst the creativity prize contains a one-year scholarship of €250 per month. Peter D. Dornier, President of the Walter Reiners Foundation and Chairman of the Management Board of Lindauer DORNIER, presented the awards on the 18 September 2018 at the 18th Textile Machinery Forum in the Digital Capability Center in Aachen, Germany.

Graphene revolutionizes all-in-one - supercaps, reduction of terahertz radiation and antistatics

The Mechanical Engineering Industry Association (VDMA) has awarded two prizes to graduates of the Institut für Textiltechnik (ITA) of RWTH Aachen University - the dissertation prize and the creativity prize of the Walter Reiners Foundation of German Textile Machinery 2018. ITA alumnus Dr Benjamin Weise was awarded the dissertation prize for the development of novel fibres for textile charge storage devices. For their work on a guide to 4D product design, Jan Merlin Abram and Aalon Tal (both ITA students) were honoured with the creativity prize. The dissertation prize is endowed with €5,000 whilst the creativity prize contains a one-year scholarship of €250 per month. Peter D. Dornier, President of the Walter Reiners Foundation and Chairman of the Management Board of Lindauer DORNIER, presented the awards on the 18 September 2018 at the 18th Textile Machinery Forum in the Digital Capability Center in Aachen, Germany.

Graphene revolutionizes all-in-one - supercaps, reduction of terahertz radiation and antistatics

In his dissertation "Development of graphene-modified multifilament yarns for the production of textile charge storage devices", laureate Dr Benjamin Weise developed novel fibres made of polyamide and graphene and further processed them into textile surfaces. The newly developed polyamide graphene fibres are featuring a multitude of advantages:

  • Due to their high performance in the charge storage area, they are predestined for use in double-layer capacitors, so-called super capacitors, or supercaps in short. Compared to lithium-ion batteries, supercaps offer significantly higher power density and a longer lifetime as no chemical reactions are taking place. towing to the graphene platelets in the filaments, it is now possible for the first time to integrate a charge storage device directly into a textile without having to sew in a rechargeable battery. This new fibre is therefore suitable for prospective use in smart textiles, for instance in a textile defibrillator.
  • The new graphene-modified polyamide fibres can attenuate inident terahertz radiation up to 25 % of their original intensity. Terahertz radiation, for example, offers transmission rates of 100 Mbit/sec and is therefore of high interest for high-performance wireless communication. However, the radiation could damage sensible electronics as in aircrafts if this technology will be used widespread. Consequently, the shielding of the radiation is of high importance, e.g. in the form of fibre composite components in the aircraft, which protect the on-board electronics.
  • As the fibres are showcasing a dissipative electrical conductivity, personal protective equipment is another prospective field of application.  

The development of a pilot process for graphene-modified fibres and the production of textile demonstrators are novel and disruptive attainments of Dr Weise’s PhD thesis and the reason for the award ceremony to him. Due to its outstanding properties, the European Union is funding research on graphene within the frame of the "Graphene Flagship" with an overall budget of one billion Euro (source: http://graphene-flagship.eu/project/Pages/About-Graphene-Flagship.aspx).

Modular product design of 4D products is now possible in simplified form

How can three-dimensional products change their shape over time and thus become "four-dimensional"? The students Jan Merlin Abram and Aalon Tal provide answers to this question in their project work "Leitfaden zur Auslegung hybrider morphender Textilien am Beispiel eines Scharniers" (Guidelines for the Design of Hybrid Morphing Textiles Using the Example of a Hinge), for which they were awarded the creativity prize. In their work, the students offer a guideline for the development of a four-dimensional textile from the idea to the demonstrator. Four-dimensional textiles, for example, consist of a hybrid material of elastic textile on which three-dimensional structures are printed. The fourth dimension describes the change in shape and/or a property over a defined period of time (= morphing).  This change is caused by external influences such as light and heat.

Every year, the Foundation of the German Textile Machinery awards prizes for the best dissertation, diploma or master's thesis and the creativity prize for the smartest student research project. Further prizes were awarded to Eric Otto, ITM Dresden, and Susanne Fischer, Reutlingen University.

Source:

Institut für Textiltechnik of RWTH Aachen University

ITA

Aachen Central Bus Station before the introduction of green.fACade (c) Institut für Textiltechnik
Aachen Central Bus Station before the introduction of green.fACade
03.08.2018

Aachen textile facade reduces nitrogen oxide pollution and urban heat

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

Aachen researchers have developed the adaptive textile facade green.fACade, which was presented on 2nd August 2018 in the Aachen Faculty of Architecture of RWTH Aachen University, Germany. green.fACade is installed in front of a building like a second skin and can permanently reduce nitrogen oxide pollution in cities.

The researchers achieve the reduction of harmful nitrogen oxides (NO and NO2) by coating the facade with titanium dioxide. Titanium dioxide acts as a photo catalyst and enables the oxidation of nitrogen oxides to form washable nitrate (NO3-). Since the facade is also greened, it contributes to the conversion of carbon dioxide into oxygen by photosynthesis. In addition, a green facade creates an optical resting point in the cityscape and reduces urban heat through evaporation cooling. The enclosed pictures demonstrate how the introduction of green.fACade can have an effect. Picture 1 shows the Aachen Central Bus Station after, picture 2 before the possible introduction of green.fACade.

green.fACade is part of the innovative research project "adaptive textile facades", which uses the special properties of textiles. Thanks to its design, textiles can let sunlight and air through, thus contributing to a modern, aesthetic building design. A new feature of the research project is that further elements such as the titanium oxide coating or sun protection elements are integrated into the textile facade and placed in front of the existing building facade. The adaptive textile facade acts independently and thus reduces energy consumption through the positive climatic effects on the building facade.

"Adaptive Textile Facade" is part of a current research series with the aim of developing innovative facade constructions that are climate-neutral and increase the comfort of local residents. The research team consists of the three RWTH fields of architecture (Faculty of Architecture, PhD student architect M.Sc. Jan Serode), medicine (University Hospital RWTH Aachen, Clinic for Ophthalmology, Prof. Dr Walter) and textile technology (Institut für Textiltechnik, Prof. Dr Gries) and was able to contribute its expertise in the best possible way.

This summer the research team was supported for the first time by the Munich architectural office Auer Weber, represented by managing director Philipp Auer: "For us architects, developments in the field of textile outer shells are a special challenge. Here, highly developed textile materials and processing methods are combined with the lightness and grace of fabrics. Adaptive textile facade elements will increasingly turn the "building shell" into a "building skin", a system that not only offers weather, heat and sun protection, but is in constant intelligent exchange with its environment".

The great importance of these topics for the public was documented by the presence of Kirsten Roßels, representative of the Department of Economics, Science and Europe of the city of Aachen.  Ms Roßels explains: "As the city of Aachen, we are delighted with the innovative and future-oriented project ideas that are being developed at Aachen University, such as the adaptive textile facade. These developments underline the importance of Aachen as a city of science and I would appreciate it if these and other technologies could also become visible in Aachen in the future".

Prof. Dr Gries from the Institut für Textiltechnik sums up: "As textile researchers, we see a great opportunity to develop concrete solutions for our urban living spaces together with renowned experts from other disciplines. I'm sure we can make the urban climate more pleasant and reduce pollution."

Source:

Institut für Textiltechnik (ITA) at RWTH Aachen University

28.06.2018

COOPERATION BY BOREALIS AND HENKEL PRODUCES PLASTIC BOTTLE AND NOZZLE COMPOSED 100% OF POST-CONSUMER RECYCLED MATERIAL

Packaging solution made of 100% plastic recyclate delivers circular economy proof point
Borealis, a leading provider of innovative solutions in the fields of polyolefins, base chemicals and fertilizers, announces the successful launch of a new packaging solution produced entirely with post-consumer recycled (PCR) material. Developed in close collaboration with the German consumer and industrial goods company Henkel and two additional value chain partners, this truly sustainable packaging solution is further evidence of how mtm plastics GmbH, a member of the Borealis Group, is helping increase the circularity of plastics. The launch has significance for the consumer goods industry because the robustness of this new packaging solution provides further evidence that plastic recyclate is indeed suitable for a variety of demanding packaging applications, in this case a popular adhesive brand marketed by Henkel.

Value chain collaboration yields plastic bottle and nozzle composed of 100% PCR material

Packaging solution made of 100% plastic recyclate delivers circular economy proof point
Borealis, a leading provider of innovative solutions in the fields of polyolefins, base chemicals and fertilizers, announces the successful launch of a new packaging solution produced entirely with post-consumer recycled (PCR) material. Developed in close collaboration with the German consumer and industrial goods company Henkel and two additional value chain partners, this truly sustainable packaging solution is further evidence of how mtm plastics GmbH, a member of the Borealis Group, is helping increase the circularity of plastics. The launch has significance for the consumer goods industry because the robustness of this new packaging solution provides further evidence that plastic recyclate is indeed suitable for a variety of demanding packaging applications, in this case a popular adhesive brand marketed by Henkel.

Value chain collaboration yields plastic bottle and nozzle composed of 100% PCR material
In 2016, Borealis acquired leading German recycler mtm plastics GmbH, which is now a member of the Borealis Group. By leveraging their respective areas of expertise and decades of experience as a virgin polyolefins producer and “upcycler”, respectively, Borealis and mtm plastics are exploring new growth opportunities with joint forces.

A success story originating from this exploration is a recently completed pilot project with Henkel, the global leader for adhesives, sealants and functional coatings. The companies have worked to develop a new packaging solution based on recycled material for the Made-at-Home all-purpose glue bottle and cap, which Henkel is marketing under its well-known Pattex brand.  The aim was to replace the virgin plastic material traditionally used for this packaging with a recyclate-based resin. The resin, however, had to fulfil the diverse material demands for packaging of an adhesive product.

After extensive and joint application development, a new bottle was developed with the proprietary mtm product Purpolen® PE, a high-quality polyethylene regranulate produced by mtm at its facilities in Niedergebra, Germany. Value chain partner KKT Kaller Kunststoff Technik GmbH, a plastics processor also based in Germany, manufactured the bottles. For the three separate components of the adjustable applicator nozzle, which is used for both filigree and wide-area gluing, high-quality Purpolen® PP polypropylene regranulate produced by mtm was identified as the ideal solution. German plastic components manufacturer bomo trendline Technik GmbH produced the applicator nozzles.

The new Pattex Made-at-Home packaging solution successfully passed extensive application tests, including a three-month storage test and other tests of mechanical properties. It was launched on the European market in 2018.

“Our commitment to leadership in sustainability is deeply embedded in our companies´ values,” explained Matthias Schaefer, Project Manager for Global Packaging Engineering at Henkel Adhesive Technologies. “We are at the forefront of the industry when it comes to new sustainability strategies in packaging.  Thus, we identified Pattex Made-at-Home as a candidate for exploring the use of recyclate instead of virgin plastics. This constructive collaboration with our partners proves the viability of 100% PCR material for an adhesive product like Made-at Home. It also underscores our efforts at Henkel to drive leadership in sustainability in the consumer goods sector.”

“As a virgin polyolefins producer, Borealis is thrilled to be among the pioneers in using plastic recyclate in new applications,” says Günter Stephan, Head of Borealis Circular Economy Solutions. “Even though momentum is gaining in the drive to increase the circularity of plastics, we still need to prove without a doubt within the industry that using recyclates – and even 100% PCR – is a suitable and effective option, even for demanding applications. Thanks to this successful value chain cooperation with our partners Henkel, KKT and bomo, we are giving plastics a second life and are thus one step closer to the goal of a more circular economy of plastics.”
 

Source:

Borealis Group

19.06.2018

Dresdner Wissenschaftlerin mit Manfred-Hirschvogel-Preis 2018 geehrt

Frau Dr.-Ing. Iris Kruppke, wissenschaftliche Mitarbeiterin am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde am 16. Juni 2018 zum Tag der Fakultät Maschinenwesen der TU Dresden mit dem Manfred-Hirschvogel-Preis geehrt. Der Preis ist mit 5.000 EUR dotiert und wird seit 2013 jährlich an allen TU9-Universitäten - den neun führenden technischen Universitäten in Deutschland - für die beste Promotion des zurückliegenden Jahres im Bereich Maschinenbau vergeben.

Frau Dr.-Ing. Iris Kruppke, wissenschaftliche Mitarbeiterin am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde am 16. Juni 2018 zum Tag der Fakultät Maschinenwesen der TU Dresden mit dem Manfred-Hirschvogel-Preis geehrt. Der Preis ist mit 5.000 EUR dotiert und wird seit 2013 jährlich an allen TU9-Universitäten - den neun führenden technischen Universitäten in Deutschland - für die beste Promotion des zurückliegenden Jahres im Bereich Maschinenbau vergeben.

Im Rahmen ihrer Dissertation zum Thema „Entwicklung von Methoden zur Realisierung von maßgeschneiderten Adhäsionseigenschaften von faserbasierten Hochleistungswerkstoffen für Composites“ setzte sich Frau Dr. Kruppke mit der Oxifluorierung als Oberflächenbehandlungs-methode auseinander. Dieses hocheffiziente Verfahren, das zur Oberflächenfunktionalisierung eingesetzt wird, soll zukünftig insbesondere bei der Entwicklung neuer maßgeschneideter Carbonfasern zum Einsatz kommen. Frau Dr. Kruppke gelang es, das Thema der Oxifluorierung zum maßgeschneiderten Grenzschichtdesign von Carbonfasern im Rahmen der großen Forschungsinitiative „C3 - Carbon Concrete Composites“ innerhalb des BMBF-Programms „Zwanzig20 - Partnerschaft für Innovation“ mit starker Industriebeteiligung sehr erfolgreich weiter voran zu treiben.

Die Ergebnisse ihrer Dissertation, die Frau Dr. Kruppke Ende März mit der Bestnote „summa cum laude“ verteidigte, sind von enormer Bedeutung für die Herstellung von Faserverbundwerkstoffen. Sie eröffnen die Möglichkeit, Hochleistungsfasern in Hochleistungsstrukturen umzuwandeln. Solche Entwicklungen erfordern eine Anpassung der vorliegenden Grenzflächen dieser Hochleistungsfasern an neue polymerbasierte, z. B. thermoplastische und anorganische Matrixsysteme. Die besonderen Publikationsleistungen lassen erwarten, dass die bisher erzielten Resultate weiterhin als fester Bestandteil in die zukünftige industrienahe Carbonfaserforschung eingehen und somit ein neues Forschungsgebiet erschließen.

Gerade im wissenschaftlichen Bereich des Maschinenbauwesens sind Frauen in leitender Position bedauerlicherweise immer noch selten zu finden. Mit der erneuten Auszeichnung beweisen die Wissenschaftlerinnen des ITM ihr enormes wissenschaftliches Know-how, welches sie am ITM dank der exzellenten Infrastruktur erlangen und deren Ergebnisse auf renommierten nationalen und internationalen Konferenzen regelmäßig offeriert werden. Bereits 2017 wurde eine weitere Wissenschaftlerin des ITM mit dem Bertha Benz-Preis für ihre herausragende Promotion zur Entwicklung eines neuartigen Verfahrens zur Herstellung metallischer 3D-Strukturen auf Webmaschinen ausgezeichnet.

Manfred Hirschvogel Preis
Die Frank Hirschvogel Stiftung hat 2013 zum ersten Mal den Manfred Hirschvogel Preis verliehen. Der Preis wird zu Ehren des Lebenswerks von Dr. Manfred Hirschvogel vergeben.
Der Preis ist mit 5.000 EUR dotiert und wird seit 2013 jährlich an allen TU9-Universitäten - den neun führenden technischen Universitäten in Deutschland - für die beste Promotion des zurückliegenden Jahres im Bereich Maschinenbau vergeben.

More information:
TU Dresden
Source:

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

Schaffung einer neuen Werkstoffklasse „Interaktive Faser-Elastomer-Verbunde“ © ITM/TUD
08.05.2018

Bewilligung des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 11 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 11 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.
Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für sogenannte autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. So werden die Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos. Zu diesem Themenbereich wird an der TU Dresden und insbesondere auch am ITM seit Jahren intensiv geforscht.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Der innovative Ansatz besteht darin, die heute nicht verfügbare Werkstoffklasse der interaktiven Faser-Elastomer-Verbunde (I-FEV) mit strukturintegrierter Aktorik und Sensorik zu schaffen und wissenschaftlich zu durchdringen. Die Entwicklung von I-FEV erlaubt beispielsweise die geometrischen Verformungsfreiheitsgrade von mechanischen Bauteilen reversibel und berührungslos einzustellen und so sehr schnell und präzise auf variable Anforderungen der Umwelt zu reagieren.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

More information:
TU Dresden Graduiertenkolleg ITM
Source:

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

RWTH doctoral candidates Marcin Kopaczka (LfB) und Marco Saggiomo (ITA) with the award-winning image processing system RWTH doctoral candidates Marcin Kopaczka (LfB) und Marco Saggiomo (ITA) with the award-winning image processing system (c) ITA
RWTH doctoral candidates Marcin Kopaczka (LfB) und Marco Saggiomo (ITA) with the award-winning image processing system
09.02.2018

Researcher of ITA and LfB win ICPRAM-Best Student Paper Award

Image processing system allows cost savings of more than 2,000 euros per year and weaving machine

MSc Marco Saggiomo from the Institut für Textiltechnik (ITA) and graduate engineer Marcin Kopaczka from the Institute of Imaging & Computer Vision of RWTH Aachen University (LfB) developed an image processing system for weaving machines that provides comprehensive benefits for woven fabric producers. The image processing system enables the weaving machine to detect faulty pickings autonomously. The application of the image processing system leads to cost savings of at least 2,210 euros per year for each weaving machine in comparison to manual faulty picking repairs.

The researchers won the “Best Student Paper Award” within the framework of the 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM) for their joint paper on “Fully Automatic Faulty Weft Thread Detection using a Camera System and Feature-based Pattern Recognition”. The award confirms the success of the co-operation of both institutes, ITA and LfB, which will be continued in future research projects.

Image processing system allows cost savings of more than 2,000 euros per year and weaving machine

MSc Marco Saggiomo from the Institut für Textiltechnik (ITA) and graduate engineer Marcin Kopaczka from the Institute of Imaging & Computer Vision of RWTH Aachen University (LfB) developed an image processing system for weaving machines that provides comprehensive benefits for woven fabric producers. The image processing system enables the weaving machine to detect faulty pickings autonomously. The application of the image processing system leads to cost savings of at least 2,210 euros per year for each weaving machine in comparison to manual faulty picking repairs.

The researchers won the “Best Student Paper Award” within the framework of the 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM) for their joint paper on “Fully Automatic Faulty Weft Thread Detection using a Camera System and Feature-based Pattern Recognition”. The award confirms the success of the co-operation of both institutes, ITA and LfB, which will be continued in future research projects.

The image processing system is part of the doctoral thesis of Marco Saggiomo. Marcin Kopaczka supported ITA with the development of the image processing algorithm.
The joint paper is based on the successfully concluded project WeftAlert within the framework of the German Federation of Industrial Research Associations. Further results of the WeftAlert project include the extension of the state of the art of image-based process optimisation of air-jet weaving, excellent outcomes in image processing as well as the validation of image processing systems in laboratory and industrial environments.

More information:
RWTH Aachen ITA
Source:

ITA

Bundespräsident Frank-Walter Steinmeier und Ehefrau Elke Büdenbender überzeugen sich vom innovativen Carbonbeton bei ihrem Besuch an der TU Dresden © Sven Hofmann
Bundespräsident Steinmeier zu Gast an der TU Dresden
17.11.2017

Bundespräsident Steinmeier zu Gast an der TU Dresden

Dresden - Bundespräsident Frank-Walter Steinmeier besuchte die Preisträger des Zukunftspreises 2016 und den Standort des Carbonbeton in Dresden

Im Rahmen seines zweitägigen Antrittsbesuchs in Sachsen war Bundespräsident Frank-Walter Steinmeier am 14. November 2017 an der TU Dresden zu Gast. Gemeinsam mit seiner Frau Elke Büdenbender informierte er sich vor Ort über den prämierten Zukunftswerkstoff Carbonbeton.

In einer anschaulichen Präsentation informierten die Preisträger des Zukunftspreises 2016 – der Preis des Bundespräsidenten für Technik und Innovation, Professor Chokri Cherif, Direktor des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden, der emeritierte Professor Peter Offermann, Vorstandsvorsitzender des Verbandes Tudalit und Beirat im Deutschen Zentrum Textilbeton und Professor Manfred Curbach, Direktor des Institutes für Massivbau der TU Dresden, über das zukunftsträchtige Material Carbonbeton und das dazugehörige Großforschungsprojekt C³ – Carbon Concrete Composite.

Dresden - Bundespräsident Frank-Walter Steinmeier besuchte die Preisträger des Zukunftspreises 2016 und den Standort des Carbonbeton in Dresden

Im Rahmen seines zweitägigen Antrittsbesuchs in Sachsen war Bundespräsident Frank-Walter Steinmeier am 14. November 2017 an der TU Dresden zu Gast. Gemeinsam mit seiner Frau Elke Büdenbender informierte er sich vor Ort über den prämierten Zukunftswerkstoff Carbonbeton.

In einer anschaulichen Präsentation informierten die Preisträger des Zukunftspreises 2016 – der Preis des Bundespräsidenten für Technik und Innovation, Professor Chokri Cherif, Direktor des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden, der emeritierte Professor Peter Offermann, Vorstandsvorsitzender des Verbandes Tudalit und Beirat im Deutschen Zentrum Textilbeton und Professor Manfred Curbach, Direktor des Institutes für Massivbau der TU Dresden, über das zukunftsträchtige Material Carbonbeton und das dazugehörige Großforschungsprojekt C³ – Carbon Concrete Composite.

Dabei überzeugte sich das Bundespräsidentenpaar in vertiefenden Gesprächen mit Dresdner Wissenschaftlern von den ökologischen, ökonomischen und gesellschaftlichen Vorteilen des innovativen Verbundwerkstoffes. Mithilfe der zahlreichen Demonstratoren, die das Material von der Entstehung bis zum fertigen Produkt darstellen, konnten die besondere Leichtigkeit und Formbarkeit von Carbonbeton eindrucksvoll veranschaulicht werden.

Die Weichen für den Erfolg des Carbonbetons wurden bereits 1993 von Professor Offermann an der TU Dresden als Erfinder des Textilbetons gestellt. Aus dieser Vision entstand der erste Sonderforschungsbereich, welcher maßgeblich von der Innovation des ITM geprägt war. Gemeinsam haben die drei prämierten Carbonbetonforscher Cherif, Offermann und Curbach die Forschungsaktivitäten zum Einsatz von Carbon als textile Bewehrung im Beton in zahlreichen weiteren interdisziplinären Forschungsprojekten stetig vorangetrieben. Schon seit 2006 werden deutschland- sowie weltweit alte Bauwerke, oder auch riesige Silos mit Carbonbeton verstärkt.

Der Baustoff Carbonbeton stellt also nicht nur eine Innovation für den Standort Dresden dar, sondern wird weltweit immer wichtiger. Darüber hinaus fördert seit 2014 das Bundeministerium für Bildung und Forschung den gegründeten Verein C³ – Carbon Concrete Composite e. V. mit einem Gesamtprojektvolumen von ca. 80 Millionen Euro. Der C³ e. V. ist ein interdisziplinäres Netzwerk aus mehr als 150 Partnern aus den Bereichen Wirtschaft, Wissenschaft und Verbänden, die gemeinsam die Einführung des Materials auf dem Markt vorantreiben. Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden bearbeiten mehrere Teilvorhaben federführend und sind in weiteren Teilvorhaben maßgeblich als Projektpartner integriert.

Source:

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden

KlimaExpo.NRW Institut für Textiltechnik of RWTH Aachen University
KlimaExpo.NRW
18.07.2017

Projekte der RWTH Aachen University werden Teil der KlimaExpo.NRW

Die Herstellung von Werkstoffen wie Beton oder Kunststoff ist mit erheblichen CO2-Emissionen verbunden. Das Institut für Textiltechnik (ITA) der RWTH Aachen University forscht in seinen Projekten BasFlair und GreenBraid am Einsatz klimafreundlicher Alternativen aus Naturstoffen. Dafür wurden die Projekte nun von der KlimaExpo.NRW geehrt. Dr. Heinrich Dornbusch, Vorsitzender Geschäftsführer der Landesinitiative, überreichte den Projektleitern am Dienstag die offizielle Urkunde zur Aufnahme in die landesweite Leistungsschau für den Klimaschutz. Das Projekt BasFlair setzt für die Herstellung eines klimafreundlichen Betons Basaltfasern aus vulkanischem Gestein ein. Im Projekt GreenBraid verwenden die Aachener Forscherinnen und Forscher Flachs für die Produktion naturfaserverstärkter Kunststoffe. „Die beiden vorbildlichen und innovativen Projekte zeigen eindrucksvoll die Möglichkeiten, Werkstoffe energieeffizient und CO2-arm zu produzieren. Damit sind sie zwei gelungene Beispiele für den Fortschrittsmotor Klimaschutz“, sagte KlimaExpo.NRW-Geschäftsführer Dr.

Die Herstellung von Werkstoffen wie Beton oder Kunststoff ist mit erheblichen CO2-Emissionen verbunden. Das Institut für Textiltechnik (ITA) der RWTH Aachen University forscht in seinen Projekten BasFlair und GreenBraid am Einsatz klimafreundlicher Alternativen aus Naturstoffen. Dafür wurden die Projekte nun von der KlimaExpo.NRW geehrt. Dr. Heinrich Dornbusch, Vorsitzender Geschäftsführer der Landesinitiative, überreichte den Projektleitern am Dienstag die offizielle Urkunde zur Aufnahme in die landesweite Leistungsschau für den Klimaschutz. Das Projekt BasFlair setzt für die Herstellung eines klimafreundlichen Betons Basaltfasern aus vulkanischem Gestein ein. Im Projekt GreenBraid verwenden die Aachener Forscherinnen und Forscher Flachs für die Produktion naturfaserverstärkter Kunststoffe. „Die beiden vorbildlichen und innovativen Projekte zeigen eindrucksvoll die Möglichkeiten, Werkstoffe energieeffizient und CO2-arm zu produzieren. Damit sind sie zwei gelungene Beispiele für den Fortschrittsmotor Klimaschutz“, sagte KlimaExpo.NRW-Geschäftsführer Dr. Heinrich Dornbusch, während er die Urkunden an Andreas Koch, Projektleiter von BasFlair, sowie an Viktor Reimer und Marie-Isabel Popzyk, Projektleiter von GreenBraid, überreichte.

Source:

Institut für Textiltechnik of RWTH Aachen University

Prof. Dr. Konstantin Kornev Prof. Dr. Konstantin Kornev
Prof. Dr. Konstantin Kornev
30.06.2017

Kármán-Fellow Prof. Dr. Kornev, Clemson University, USA, am ITA

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Source:

Institut für Textiltechnik of RWTH Aachen University

RWTH Aachen Institut für Textiltechnik of RWTH Aachen University
RWTH Aachen
02.06.2017

Erneut VDMA-Auszeichnungen für Absolventen des ITA der RWTH Aachen University

Karsten Neuwerk und Lukas Völkel vom Institut für Textiltechnik (ITA) der RWTH Aachen University wurden während der Techtextil 2017 für ihre herausragenden studentischen Abschlussarbeiten prämiert. Die Kreativpreise erhielten die beiden Absolventen für die Entwicklung lichtleitender Fasern auf Basis nachwachsender Polymerwerkstoffe (Karsten Neuwerk) und die Entwicklung textiler Ladungsspeichersysteme durch graphenmodifizierte Polyamid-Fasern (Lukas Völkel). Die Preise sind mit einem einjährigen Förderstipendium über 250 Euro pro Monat dotiert. Peter D. Dornier, der Stiftungspräsident der Walter-Reiners-Stiftung des VDMA Verband Deutscher Maschinen- und Anlagenbauer und Vorsitzende der Geschäftsführung der Lindauer DORNIER, überreichte die Auszeichnungen auf dem Stand des VDMA anlässlich der Messe Techtextil in Frankfurt am Main.

Karsten Neuwerk und Lukas Völkel vom Institut für Textiltechnik (ITA) der RWTH Aachen University wurden während der Techtextil 2017 für ihre herausragenden studentischen Abschlussarbeiten prämiert. Die Kreativpreise erhielten die beiden Absolventen für die Entwicklung lichtleitender Fasern auf Basis nachwachsender Polymerwerkstoffe (Karsten Neuwerk) und die Entwicklung textiler Ladungsspeichersysteme durch graphenmodifizierte Polyamid-Fasern (Lukas Völkel). Die Preise sind mit einem einjährigen Förderstipendium über 250 Euro pro Monat dotiert. Peter D. Dornier, der Stiftungspräsident der Walter-Reiners-Stiftung des VDMA Verband Deutscher Maschinen- und Anlagenbauer und Vorsitzende der Geschäftsführung der Lindauer DORNIER, überreichte die Auszeichnungen auf dem Stand des VDMA anlässlich der Messe Techtextil in Frankfurt am Main.


Polymer-lichtleitende Fasern - eine echte Alternative
Doktorand Pavan Kumar Manvi betreut Karsten Neuwerk am ITA und erläutert: „Polymer-lichtleitende Fasern sind eine echte Alternative zu Glasfasern, weil sie ein geringes Gewicht haben und sehr flexibel sind. Dazu sind sie kostengünstig herzustellen und einfach und nahezu universell einsetzbar bei kurzen Lichtleitungsstrecken. Wir konnten erstmalig elastische Polymer-lichtleitende Fasern aus Kohlendioxid-basiertem Polymer entwickeln und eröffnen damit vielseitige neue Anwendungsfelder, die bisher mit den weit weniger elastischen Glasfasern nicht gefüllt werden konnten. Die neuen Anwendungsfelder liegen z. B. in der Automobilindustrie, beispielsweise in der Umrandung des Armaturenbretts oder anderen wesentlichen Teilen innerhalb des Autos mit Polymer-lichtleitenden Fasern. So kann man wichtige Bereiche im Auto aus Sicherheitsaspekten hervorheben und stilistisch neue Gestaltungselemente schaffen. Sollektoren, die Tageslicht in Räume ohne Fenster transportieren, sind ein weiteres Anwendungsbeispiel. Da die Polymer-lichtleitenden Fasern elastisch sind, ist es möglich, alle Arten von Räumen mit Tageslicht auszustatten. Eine weitere Anwendung der Polymer-lichtleitenden Fasern findet sich bei leuchtenden Textilien, z. B. für spezielle Effekte bei festlicher Kleidung. Ein wesentlicher Vorteil ist, dass wir zur Verbesserung der Umweltbilanz beitragen, weil bei der Polymer-Herstellung das Treibhausgas Kohlendioxid chemisch in das Polymer eingebaut und somit verbraucht wird.“

Source:

 Institut für Textiltechnik of RWTH Aachen University

ITM TU Dresden Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden
ITM TU Dresden
31.05.2017

Leichtbau leicht gemacht – Neuartiges Verfahren ermöglicht die Herstellung superstabiler Metallzellen auf Webmaschinen

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“


Die noch junge Werkstoffklasse der sogenannten zellularen metallischen Materialien besitzt außerordentliches Potenzial – wobei bislang das Problem bestand, diese Zellen kostengünstig und in industriellem Maßstab zu produzieren. Sennewald gelang es im Rahmen ihrer Doktorarbeit an der Technischen Universität Dresden, ein neuartiges Verfahren zu entwickeln und diese komplexen 3D-Strukturen auf handelsüblichen Webmaschinen herzustellen. „Dank des neuen Verfahrens konnte ich Metallfäden und -drähte statt in den üblichen 2D-Strukturen auch zu 3D-Strukturen verbinden, und zwar in ganz unterschiedlichen Größen und Formen“, erläutert Sennewald. „Außerdem gelang es mir – das war ein zweiter großer Schritt nach vorn –, andere Leichtbaustoffe wie Carbon-Fasern mit zu verweben, was ganz neue Einsatzmöglichkeiten eröffnet.“ Die hybride Verbindung von Metallen und Kunststoffen bietet ein weiteres breites Spektrum ableitbarer Anwendungen. „Wir denken an Crash-Elemente, die eine extrem hohe Steifigkeit besitzen und zudem hohe Temperaturen aushalten. Wir könnten auf diese Weise beispielsweise die Betonstrukturen von Gebäuden verstärken, um sie widerstandsfähiger gegen Erdbeben zu machen. Oder sie besser gegen Explosionen schützen. Bei bestehenden Gebäuden könnte hier ein entsprechender Materialauftrag infrage kommen, bei Neubauten könnten die von uns entwickelten zellularen Webstrukturen gleich mit in den Bau einbezogen werden.“

Source:

 Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden

Oerlikon presents take up winder Source: www.ita.rwth-aachen.de
Oerlikon presents take up winder
30.05.2017

Oerlikon presents new take-up winder to ITA as partial gift

In May 2017, Jochen Adler, Vice-President and Chief Technology Officer at Oerlikon Textile GmbH & Co. KG, presented a Oerlikon Barmag take-up winder as a partial gift to Prof. Dr Thomas Gries, head of the Institut für Textiltechnik (ITA) at RWTH Aachen University. The new Type ASW602 winder, which is equipped with modern control software and user interface, replaces the former institute’s Barmag take-up winder.

In May 2017, Jochen Adler, Vice-President and Chief Technology Officer at Oerlikon Textile GmbH & Co. KG, presented a Oerlikon Barmag take-up winder as a partial gift to Prof. Dr Thomas Gries, head of the Institut für Textiltechnik (ITA) at RWTH Aachen University. The new Type ASW602 winder, which is equipped with modern control software and user interface, replaces the former institute’s Barmag take-up winder.


Due to this modernisation, ITA has access to a latest generation take-up winder which is used for various research projects. The new winder is applied at ITA’s two pilot melt spinning plants and ensures the transfer of new research and development insights into the pilot scale. Furthermore, this winder has two winding positions and operates with winding speeds between 2500 m/min and 5500 m/min. The new winder is suitable for all kinds of polymers, from polypropylene to polyethylene, polyester, polyamide etc. as well as for the production of several types of yarn, such as industrial yarn, pre-oriented yarn and fully-drawn yarn.
“We thank Oerlikon Barmag for the generous partial gifting and the support during the set-up of the new take-up winder”, says Prof. Dr Thomas Gries. “The new equipment will keep the institute’s machine park on a high and powerful level.” The head of ITA’s chemical fibre department Dr Thorsten Anders adds: “This winder is designed for the needs of chemical yarn research. It allows state of the art technology research and development and pilot-scale production. We will use it for the melt spinning plants in the single- and bi-component spinning process. This way, we can access a wide variety of producible yarn types.“

More information:
Oerlikon, ITA
Source:

Institut für Textiltechnik of RWTH Aachen University

Oerlikon Barmag Institut für Textiltechnik of RWTH Aachen University
Oerlikon Barmag
30.05.2017

Oerlikon überreicht neuen Wickler als Teilschenkung ans ITA

Jochen Adler, Vice-President und Chief Technology Officer der Oerlikon Textile GmbH & Co. KG, überreichte im Mai Prof. Dr. Thomas Gries, Leiter des Instituts für Textiltechnik (ITA) der RWTH Aachen University, einen Oerlikon Barmag Take-Up Wickler als Teilschenkung. Der neue Wickler vom Typ ASW602 ersetzt den vorherigen Barmag Take-Up Wickler des Institutes und ist mit moderner Steuerungssoftware und Bedienoberfläche ausgestattet. Durch diese Modernisierung steht dem Institut für Textiltechnik ein Take-Up Wickler der neusten Generation für die vielfältigen Forschungsprojekte zur Verfügung. Der neue Wickler wird an den beiden Pilotschmelzspinnanlagen des ITA verwendet und gewährleistet die Übertragung neuer Erkenntnisse aus der Forschung und Entwicklung vom Labor- in den Pilotmaßstab. Dazu verfügt er über zwei Wickelpositionen und läuft mit Wickelgeschwindigkeiten von 2500 m/min bis 5500 m/min. Geeignet ist der neue Wickler für unterschiedliche Polymere von Polypropylen über Polyethylen, Polyester, Polyamid etc. und Garntypen wie z. B. Industriegarn, vorverstrecktes und vollverstreckte Garne.

Jochen Adler, Vice-President und Chief Technology Officer der Oerlikon Textile GmbH & Co. KG, überreichte im Mai Prof. Dr. Thomas Gries, Leiter des Instituts für Textiltechnik (ITA) der RWTH Aachen University, einen Oerlikon Barmag Take-Up Wickler als Teilschenkung. Der neue Wickler vom Typ ASW602 ersetzt den vorherigen Barmag Take-Up Wickler des Institutes und ist mit moderner Steuerungssoftware und Bedienoberfläche ausgestattet. Durch diese Modernisierung steht dem Institut für Textiltechnik ein Take-Up Wickler der neusten Generation für die vielfältigen Forschungsprojekte zur Verfügung. Der neue Wickler wird an den beiden Pilotschmelzspinnanlagen des ITA verwendet und gewährleistet die Übertragung neuer Erkenntnisse aus der Forschung und Entwicklung vom Labor- in den Pilotmaßstab. Dazu verfügt er über zwei Wickelpositionen und läuft mit Wickelgeschwindigkeiten von 2500 m/min bis 5500 m/min. Geeignet ist der neue Wickler für unterschiedliche Polymere von Polypropylen über Polyethylen, Polyester, Polyamid etc. und Garntypen wie z. B. Industriegarn, vorverstrecktes und vollverstreckte Garne.


„Wir bedanken uns herzlich für die großzügige Teilschenkung durch Oerlikon Barmag und die Unterstützung während der Inbetriebnahme des neuen Take-Up Wicklers“, freut sich Prof. Dr. Thomas Gries. „Durch die neue Ausstattung wird der Maschinenpark des Institutes auf einem modernen und leistungsfähigen Niveau gehalten.“ Und Chemiefasertechnik-Bereichsleiter Dr. Thorsten Anders ergänzt: „Dieser Wickler ist speziell auf die Anforderungen in der Chemiefaserforschung zugeschnitten. Er ermöglicht Forschung und Entwicklung auf dem Stand der Technik und die Produktion im Pilotmaßstab. Wir werden ihn für die Schmelzspinnanlagen im Einkomponenten- und Zweikomponenten-Spinnprozess verwenden. So können wir auf eine große Spanne an produzierbaren Garneigenschaften zurückgreifen.“

Source:

Institut für Textiltechnik of RWTH Aachen University

Mezzo forte´s double bass Institut für Textiltechnik of RWTH Aachen University
Mezzo forte´s double bass
16.05.2017

ITA und mezzo-forte treffen den richtigen Ton mit einem zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.


Die eigentliche Innovation liegt darin, dass sowohl Verbindungsstelle als auch das Instrument aus CFK gefertigt sind und so keine klanglichen Einbußen durch einen Werkstoffwechsel in der Verbindungsstelle entstehen. Warum? Eine Verbindungstelle muss gleichzeitig sehr steif und robust sein. Hier stellt carbonfaserverstärkten Kunststoff das ideale Baumaterial für einen Kontrabass dar, da er eine hohe Steifigkeit und gute mechanische Eigenschaften besitzt. Wenn Instrument und Verbindungsstelle aus unterschiedlichen Werkstoffen sind, kann dies zu einer klanglich inaktiven Region im Instrument und damit zu einem schlechten Klang und einem instabilen Instrument führen.

Source:

Institut für Textiltechnik of RWTH Aachen University

ITA auf der Techtextil 2017 Institut für Textiltechnik of RWTH Aachen University
ITA auf der Techtextil 2017
28.04.2017

ITA auf der Techtextil 2017

Das ITA zeigt auf dem Elmatex-Stand D05 in Halle 3.0 die Exponate „PolyTube“, „ScaffBag“, „Tailored Non-crimp Fabrics (T-NCF)“ und „Hybridvliesverstärktes Polyamid-Blech“. Diese Exponate demonstrieren, wie textile Gelegestrukturen maßgeschneidert ausgelegt, Stapelfaservliese aus Carbon mit einer 3D-Struktur erstmalig als Verstärkungsstruktur eingesetzt, wie die elektronischen Leitfähigkeit von Carbonfasern genutzt und recycelte Carbonfasern verwendet und wie ein Airbag für eine persönliche Schutzausrüstung im Baugewerbe gegen Absturz sichern kann.

Das ITA zeigt auf dem Elmatex-Stand D05 in Halle 3.0 die Exponate „PolyTube“, „ScaffBag“, „Tailored Non-crimp Fabrics (T-NCF)“ und „Hybridvliesverstärktes Polyamid-Blech“. Diese Exponate demonstrieren, wie textile Gelegestrukturen maßgeschneidert ausgelegt, Stapelfaservliese aus Carbon mit einer 3D-Struktur erstmalig als Verstärkungsstruktur eingesetzt, wie die elektronischen Leitfähigkeit von Carbonfasern genutzt und recycelte Carbonfasern verwendet und wie ein Airbag für eine persönliche Schutzausrüstung im Baugewerbe gegen Absturz sichern kann.

More information:
ITA, Techtextil 2017
Source:

 Institut für Textiltechnik of RWTH Aachen University

Steuerung eines Industrieroboters per Datenhandschuh Institut für Textiltechnik der RWTH Aachen University
Steuerung eines Industrieroboters per Datenhandschuh
04.04.2017

Wirtschaftlicher Erfolg durch Industrie 4.0: Digital Capability Center in Aachen eröffnet

Der Forschungsstandort Aachen ist um ein einmaliges Angebot reicher: Am Freitag eröffnete mit dem Digital Capability Center (DCC) eine neuartige Lernfabrik mit dem Schwerpunkt Industrie 4.0. In einer realitätsgetreuen Fabrikumgebung erhalten Fach- und Führungskräfte produzierender Unternehmen sowie angehende Ingenieure das Handwerkszeug, um die digitale Transformation im eigenen Unternehmen voranzutreiben. Das Motto: erkunden, ausprobieren, anwenden. Das DCC ist eine Kooperation der Unternehmensberatung McKinsey & Company, des Instituts für Textiltechnik (ITA) der RWTH Aachen University und führenden Technologieunternehmen wie dem Softwareanbieter PTC. Das DCC ist das erste seiner Art weltweit – weitere DCCs werden von McKinsey in diesem Jahr noch in Singapur, Chicago, Peking und Venedig eröffnet.

Der Forschungsstandort Aachen ist um ein einmaliges Angebot reicher: Am Freitag eröffnete mit dem Digital Capability Center (DCC) eine neuartige Lernfabrik mit dem Schwerpunkt Industrie 4.0. In einer realitätsgetreuen Fabrikumgebung erhalten Fach- und Führungskräfte produzierender Unternehmen sowie angehende Ingenieure das Handwerkszeug, um die digitale Transformation im eigenen Unternehmen voranzutreiben. Das Motto: erkunden, ausprobieren, anwenden. Das DCC ist eine Kooperation der Unternehmensberatung McKinsey & Company, des Instituts für Textiltechnik (ITA) der RWTH Aachen University und führenden Technologieunternehmen wie dem Softwareanbieter PTC. Das DCC ist das erste seiner Art weltweit – weitere DCCs werden von McKinsey in diesem Jahr noch in Singapur, Chicago, Peking und Venedig eröffnet.

Die praxisnahen Workshops im DCC helfen Unternehmen, sich dem Thema Industrie 4.0 systematisch und zielgerichtet zu nähern. Sie lernen, wo und wie neueste Technologien entlang der gesamten Wertschöpfungskette eingesetzt werden können – von der ersten Kundenanfrage über die Entwicklung, Produktion und Auslieferung bis zum Servicegeschäft. Aber auch die Anforderungen an das Management sowie die Befähigung der Mitarbeiter und die allgemeine Akzeptanz der mit der Transformation einhergehenden Veränderungen werden thematisiert. Workshop-Teilnehmer erarbeiten konkrete Lösungen für ihre individuelle Problemstellung und erhalten Einblick in zentrale digitale Lösungen und Technologien wie Echtzeit-Diagnosewerkzeuge, Big Data Analytics, prädiktive Instandhaltung, digitales Performancemanagement, 3D-Druck oder kollaborative Roboter.

Source:

Institut für Textiltechnik der RWTH Aachen University