From the Sector

Reset
4 results
DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern. Foto: DITF
Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern.
13.03.2023

Neues Verfahren: Carbonfasern aus Lignin

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, an den DITF entwickeltes Verfahren ermöglicht hohe Energieeinsparungen in all diesen Prozessschritten. Lignin ersetzt dabei das Polyacrylnitril für die Herstellung der Präkursorfasern, die in einem zweiten Prozessschritt zu Carbonfasern umgewandelt werden. Lignin als Ausgangsmaterial für die Herstellung von Carbonfasern hat bisher kaum Beachtung in der industriellen Fertigung gefunden. Lignin ist ein günstiger und in großen Mengen verfügbarer Rohstoff, der als Abfallprodukt in der Papierproduktion anfällt.

Im neuen Verfahren zur Herstellung von Ligninfasern wird zuerst Holz in seine Bestandteile Lignin und Cellulose getrennt. Ein Sulfit-Aufschluss ermöglicht die Erzeugung von Lignosulfonat, das in Wasser gelöst wird. Die wässrige Lösung von Lignin ist das Ausgangsmaterial für das Spinnen der Fasern.
Der Spinnprozess selbst erfolgt im sogenannten Trockenspinnverfahren. Dabei presst ein Extruder die Spinnmasse durch eine Düse in einen beheizten Spinnschacht. Die entstehenden Endlosfasern trocknen im Spinnschacht schnell und gleichmäßig. Das Verfahren benötigt weder Lösungsmittel noch giftige Additiven.

Die anschließenden Schritte zur Herstellung von Carbonfasern - die Stabilisierung in Heißluft und die anschließende Carbonisierung im Hochtemperaturofen - ähneln denen des üblichen Prozesses bei Verwendung von PAN als Präkursorfaser. Allerdings lassen sich die Ligninfasern im Ofen besonders schnell mit Heißluft stabilisieren und benötigen nur relativ niedrige Temperaturen in der Carbonisierung. Die Energieersparnis in diesen Prozessschritten gegenüber PAN liegt bei rund 50% und bedeutet einen echten Wettbewerbsvorteil.

Aus Wasser gesponnene Ligninfasern bieten Vorteile
Neben der umweltfreundlichen, da lösemittelfreien Herstellung, und der Energieeffizienz bietet das neue Verfahren weitere Vorteile gegenüber PAN: Lignin ist ein überaus günstiger und leicht verfügbarer Rohstoff, der aus Holz gewonnen wird. Die Verwendung eines natürlichen Rohstoffes für die Erzeugung von hochfesten Carbonfasern folgt dem Nachhaltigkeitsgedanken in der Produktion.

Der Trockenspinnprozess erlaubt hohe Spinngeschwindigkeiten. Hierdurch wird in kürzerer Zeit deutlich mehr Material produziert, als es mit PAN-Fasern möglich ist. Das ist ein weiterer Wettbewerbsvorteil, der dennoch keine Kompromisse an die Qualität der Lignin-Präkursorfasern zulässt: Diese sind äußerst homogen, haben glatte Oberflächen und keine Verklebungen. Solche strukturellen Merkmale erleichtern die Weiterverarbeitung zu Carbonfasern und letztlich auch zu Faserverbundwerkstoffen.

Zusammenfassend lässt sich sagen, dass die in dem neuen Spinnverfahren gewonnenen Präkursorfasern aus Lignin gegenüber PAN deutliche Vorteile in der Kosteneffizienz und in ihrer Umweltverträglichkeit zeigen. Die mechanischen Eigenschaften der aus ihnen hergestellten Carbonfasern sind hingegen nahezu vergleichbar – sie sind ebenso zugfest, widerstandsfähig und leicht, wie es von marktgängigen Produkten bekannt ist.

Besonders interessant dürften Carbonfasern aus Wasser gesponnenen Ligninfasern für Anwendungen in der Bau- und Automobilbranche sein, die von Kostensenkungen im Produktionsprozess in hohem Maße profitieren.

Source:

DITF

(c) nova-Institut GmbH
24.01.2023

Six nominees for„Cellulose Fibre Innovation of the Year 2023“

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

Here are the six nominees
Vybrana – The new generation banana fibre – GenCrest Bioproducts (India)

Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the Banana Pseudo stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and Bio Fertilizers & organic manure.

HeiQ AeoniQ™ – technology for more sustainability of textiles – HeiQ (Austria)
HeiQ AeoniQ™ is the disruptive technology and key initiative from HeiQ with the potential to change the sustainability of textiles. It is the first climate-positive continuous cellulose filament yarn, made in a proprietary manufacturing process and the first to reproduce the properties of polyester and nylon yarns in a cellulosic, biodegradable, and endlessly recyclable fibre.
HeiQ AeoniQ™ can be manufactured from different cellulosic raw materials such as pre- and post-consumer textile waste, biotech cellulose, and non-valorized agricultural waste, such as ground coffee waste or banana peels. It naturally degrades after only 12 weeks in the soil. Each ton of HeiQ AeoniQ™ saves 5 tons of CO2 emissions. The first garments made with this innovative cellulosic filament fiber were commercially launched in January 2023.

TENCEL™ LUXE – lyocell filament yarn – Lenzing (Austria)
TENCEL™ LUXE is LENZING’s new versatile lyocell yarn that offers an urgently needed sustainable filament solution for the textile and fashion industry. A possible botanical alternative for silk, long-staple cotton, and petrol-based synthetic filaments, is derived from wood grown in renewable, sustainably managed forests, and produced in an environmentally sound, closed-loop process that recycles water and reuses more than 99 % of organic solvent. Certified by The Vegan Society, it is suitable for a wide range of applications and fabric developments, from finer high fashion propositions to denim constructions, seamless and activewear innovations, and even agricultural and technical solutions.

Nullarbor™ – Nanollose & Birla Cellulose (Australia/India)
In 2020, Nanollose & Birla Cellulose started a journey to develop and commercialize tree-free lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to a joint patent application with the patent “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose & Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.

Circulose® – makes fashion circular – Renewcell (Sweden)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant will eventually reach 120,000 tons of annual capacity.

Sparkle sustainable sanitary pads – Sparkle Innovations (United States)
Globally, around 300 billion period products are discarded every year, resulting in millions of tons of non-biodegradable waste. Since most conventional sanitary pads contain up to 90 % plastics, they do not biodegrade for around 600 years. Sparkle has designed sustainable, plastic-free, biodegradable and compostable Sparkle sanitary pads. From product to packaging, they are made up of around 90 % cellulose-based materials with top sheet, absorbent core, release paper, wrapping paper and packaging made of cellulose-based fibres. Whether Sparkle pads end up in a compost pit, are incinerated or end up in a landfill, they are a more sustainable alternative compared to conventional pads that contain large amounts of plastics, complex petro-chemical based ingredients and artificial fragrances. When tested according to ISO 14855-1 by a leading independent lab in Europe, Sparkle pads reached over 90 % absolute biodegradation within 90 days in commercial composting conditions.