From the Sector

Reset
174 results
Frau am Meer Photo Pixabay
17.04.2023

Kelheim Fibres, Sandler and pelzGROUP develop plastic-free panty liner

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

The partnership between the three companies was formed under the Open Innovation principle, which allowed for creative idea exchange and facilitated the development of an innovative product. According to Jessica Zeitler, R&D Specialist at Sandler, “Our collaboration with Kelheim Fibres and pelzGROUP is a great example of how companies can work together to create solutions that benefit both the environment and consumers. We are proud to be part of this project and the opportunities it offers.”

For hygiene product manufacturer pelzGROUP, it is important to combine sustainability and performance to achieve broad acceptance in the market. “Our panty liner meets the strict requirements of the European Single-Use Plastics Directive (SUPD) while also matching the performance of conventional synthetic products. At the same time, our new panty liner has a completely European supply chain. This means short distances and therefore low CO2 emissions, and – especially in times of global disruption – reliability for our customers,” emphasizes Dr. Henning Röttger, Head of Business Development at pelzGROUP.

"Our viscose speciality fibres are an environmentally friendly and high-performance alternative to synthetic materials," says Dominik Mayer, Project Manager Fibre & Application Development at Kelheim Fibres. "They are at the very beginning of the product value chain and yet have an enormous impact on the functionality of the end product. Open innovation allows us to bring all partners in the value chain to the table, to find the best solution together in a very short time and bring it to commercialisation - the collaboration with Sandler and pelzGROUP is an important milestone in our AHP journey."

Source:

Kelheim Fibres GmbH

(c) Groz-Beckert
Carding SiroLock Plus InLine
14.04.2023

Groz-Beckert at INDEX™23

Groz-Beckert will be presenting the latest innovations from its product area Carding to visitors at INDEX™23

The InLine card clothing series for the nonwovens industry will take center stage at the Groz-Beckert exhibition booth. A new and patented manufacturing process made the development of the innovative metallic card clothing series possible. It offers customers improved process reliability and increased uptime of the card. At the same time, the new process enables environmentally friendly and resource-saving production.

In addition to a controlled and precise hardening of the teeth, the wires are characterized by a reduced rib height and a completely scale-free surface. An exhibit at the booth will demonstrate what distinguishes the new process from the conventional production method and will highlight the differences between the new Groz-Beckert InLine card clothing series and its predecessor generation.

Groz-Beckert will be presenting the latest innovations from its product area Carding to visitors at INDEX™23

The InLine card clothing series for the nonwovens industry will take center stage at the Groz-Beckert exhibition booth. A new and patented manufacturing process made the development of the innovative metallic card clothing series possible. It offers customers improved process reliability and increased uptime of the card. At the same time, the new process enables environmentally friendly and resource-saving production.

In addition to a controlled and precise hardening of the teeth, the wires are characterized by a reduced rib height and a completely scale-free surface. An exhibit at the booth will demonstrate what distinguishes the new process from the conventional production method and will highlight the differences between the new Groz-Beckert InLine card clothing series and its predecessor generation.

The first special geometry of the Groz-Beckert InLine card clothing series to be developed was the SiroLock™ plus worker and doffer wire. It impresses with a more effective fiber take-up, control and transfer. Augmented reality will allow visitors to experience the functionality and operating principle behind SiroLock™ plus at INDEX™23.

Source:

Groz-Beckert

(c) Kelheim Fibres GmbH
14.04.2023

Kelheim Fibres to present bio-based hygiene solutions at INDEX™23

Absorbent hygiene products such as diapers, sanitary pads, and incontinence products are an integral part of our daily lives. However, most of these products contain synthetic components and contribute to the global plastic waste problem. The search for alternatives is becoming increasingly urgent. The catch is that only innovations that offer the same performance and reliability as conventional products can be successful in the market. After all, no one wants to compromise in such a sensitive area as personal hygiene.

Kelheim Fibres is currently working on various development projects to design fully biobased AHP (absorbent hygiene product) concepts that do not compromise on performance. In this area, the company continues to focus on its wood-based specialty fibres, which the tampon industry has trusted for decades. However, the requirements for AHP products differ, as each layer must fulfil a specific function.

Absorbent hygiene products such as diapers, sanitary pads, and incontinence products are an integral part of our daily lives. However, most of these products contain synthetic components and contribute to the global plastic waste problem. The search for alternatives is becoming increasingly urgent. The catch is that only innovations that offer the same performance and reliability as conventional products can be successful in the market. After all, no one wants to compromise in such a sensitive area as personal hygiene.

Kelheim Fibres is currently working on various development projects to design fully biobased AHP (absorbent hygiene product) concepts that do not compromise on performance. In this area, the company continues to focus on its wood-based specialty fibres, which the tampon industry has trusted for decades. However, the requirements for AHP products differ, as each layer must fulfil a specific function.

To meet these requirements, Kelheim Fibres has developed a range of functionalized specialty fibres, including hydrophobic Olea, trilobal Galaxy®, and the hollow fibre Bramante. These specialty fibres ensure optimal results in every layer of the AHP product.

All of Kelheim's fibres are manufactured from 100% wood pulp derived from certified and sustainably managed forests. They are fully biodegradable - microorganisms in soil and seawater ensure that no residues remain.

A current example of such a partner project is the development of a completely bio-based panty liner with the nonwovens manufacturer Sandler and the hygiene products manufacturer pelzGROUP, which is due to be launched on the market shortly.

In addition to new projects in the field of biobased disposable and reusable solutions, Kelheim will also present its tried and tested fibres at INDEX™23, for example for tampons or flushable wipes.

Source:

Kelheim Fibres GmbH

Celliant -how it works (c) Hologenix
06.04.2023

Hologenix: Infrared technology with potentially positive impact on diabetic patients

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

According to statistics cited in the International Diabetes Federation Diabetes Atlas, 9th edition, globally, close to a half billion people are living with diabetes and that number is expected to increase by more than 50 percent in the next 25 years.
 
The introduction of the study in the Journal of Textile Science & Engineering also reports that diabetic patients frequently suffer from a combination of peripheral neuropathy and peripheral artery disease, which particularly affects their feet. It further states that it has been estimated that the lifetime risk for the development of foot ulcers in diabetic patients can be as high as 25 percent and that the risk of amputation is 10 to 20 times higher than in non-diabetic subjects.
 
The study was performed by Lawrence A. Lavery, D.P.M., M.P.H., a Professor in the Department of Plastic Surgery at UT Southwestern Medical Center. His clinic and research interests involve diabetic foot complications, infections and wound healing, and he participated in the conception, design, implementation and authorship of the Journal of Textile Science & Engineering study.  

CELLIANT technology is a patented process for adding micron-sized thermo-responsive mineral particles to fibers, in this case polyethylene terephthalate (PET) fibers. The resulting CELLIANT yarns were woven into stockings and gloves containing either 82% CELLIANT polyester, 13% nylon and 5% spandex or for the placebo, 82% polyester with no CELLIANT, 13% nylon and 5% spandex. CELLIANT products absorb body heat and re-emit the energy back to the body as infrared energy, which is non-invasive and increases temporary blood flow and cell oxygenation levels in the body.

The objective of the study was to “evaluate changes in transcutaneous oxygen (TcPO2) and peripheral blood flow (laser Doppler, LD) in the hands and feet of diabetic patients with vascular impairment when CELLIANT gloves and stockings are worn.” While there was not a statistically significant result across all subjects, the study did show that some patients wearing CELLIANT stockings for 60 minutes had an increase of as much as 20% in tissue oxygenation and 30% in localized blood flow. According to the study’s conclusion, “the trends that were observed in favor of CELLIANT stockings suggest that a larger well-designed clinical trial should be undertaken and may provide evidence of clinical efficacy in treatment of the diabetic foot.”
 
The study also notes that “There have been no documented or observed side effects of wearing CELLIANT stockings, and they are relatively inexpensive compared to conventional pharmaceutical interventions.”

Hologenix has embarked on a more comprehensive trial, “Study to Evaluate CELLIANT Diabetic Medical Socks to Increase Tissue Oxygenation and Incidence of Complete Wound Closure in Diabetic Foot Wounds” – NCT04709419, which focuses on the impact of CELLIANT technology to potentially improve tissue oxygenation and wound healing outcomes.
 
“We are excited to explore whether future studies of infrared, with its most common biological effects of increased localized blood flow and cellular oxygenation, could result in a breakthrough in diabetic patients with vascular impairment,” said Seth Casden, Hologenix Co-founder and CEO. “We see a huge potential opportunity with this research for helping to fulfill our core mission of improving people’s health and well-being by potentially reducing the impact of diabetes, and we are actively seeking partners to expand our research efforts.”

Source:

Hologenix

(c) Freudenberg Performance Materials
17.02.2023

Freudenberg: Packaging textile for automotive and industrial parts

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Freudenberg Performance Materials (Freudenberg) is widening its product range of technical packaging textiles. Evolon® ESD protects automotive and industrial parts with electronic components from electrostatic discharge. This includes trim lines, dashboards, mirrors, steering wheels, etc.

The ESD (ElectroStatic Discharge) feature of the new Evolon® technical packing textile provides permanent electrostatic discharging protection and the fabric’s surface resistivity can be customized. This eliminates ESD damage to electronic components during transport because electrostatic charging due to movement and friction is safely prevented. As this kind of damage cannot be detected with the naked eye, Evolon® ESD helps to avoid failures which can occur after the final product is assembled and released. Manufacturers benefit from fewer complaints and warranty costs, as well as better end customer satisfaction.

Further protection feature
Unlike conventional ESD packaging solutions, Evolon® ESD also protects parts surfaces by avoiding micro-scratches or lint contamination. By using Evolon® reusable packaging to transport parts with highly-sensitive surfaces, customers reduce the number of damaged parts and the reject rate.

Additional benefits
Evolon® microfilament textiles are also extremely strong and are available in different weights to meet a wide range of requirements – from lightweight to heavy-duty. They can be used to pack and transport very heavy parts without damage. In addition, Evolon® fabrics are durable, and contain up to 85% recycled PET.

Source:

Freudenberg Performance Materials

(c) nova-Institut GmbH
24.01.2023

Six nominees for„Cellulose Fibre Innovation of the Year 2023“

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

Here are the six nominees
Vybrana – The new generation banana fibre – GenCrest Bioproducts (India)

Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the Banana Pseudo stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and Bio Fertilizers & organic manure.

HeiQ AeoniQ™ – technology for more sustainability of textiles – HeiQ (Austria)
HeiQ AeoniQ™ is the disruptive technology and key initiative from HeiQ with the potential to change the sustainability of textiles. It is the first climate-positive continuous cellulose filament yarn, made in a proprietary manufacturing process and the first to reproduce the properties of polyester and nylon yarns in a cellulosic, biodegradable, and endlessly recyclable fibre.
HeiQ AeoniQ™ can be manufactured from different cellulosic raw materials such as pre- and post-consumer textile waste, biotech cellulose, and non-valorized agricultural waste, such as ground coffee waste or banana peels. It naturally degrades after only 12 weeks in the soil. Each ton of HeiQ AeoniQ™ saves 5 tons of CO2 emissions. The first garments made with this innovative cellulosic filament fiber were commercially launched in January 2023.

TENCEL™ LUXE – lyocell filament yarn – Lenzing (Austria)
TENCEL™ LUXE is LENZING’s new versatile lyocell yarn that offers an urgently needed sustainable filament solution for the textile and fashion industry. A possible botanical alternative for silk, long-staple cotton, and petrol-based synthetic filaments, is derived from wood grown in renewable, sustainably managed forests, and produced in an environmentally sound, closed-loop process that recycles water and reuses more than 99 % of organic solvent. Certified by The Vegan Society, it is suitable for a wide range of applications and fabric developments, from finer high fashion propositions to denim constructions, seamless and activewear innovations, and even agricultural and technical solutions.

Nullarbor™ – Nanollose & Birla Cellulose (Australia/India)
In 2020, Nanollose & Birla Cellulose started a journey to develop and commercialize tree-free lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to a joint patent application with the patent “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose & Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.

Circulose® – makes fashion circular – Renewcell (Sweden)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant will eventually reach 120,000 tons of annual capacity.

Sparkle sustainable sanitary pads – Sparkle Innovations (United States)
Globally, around 300 billion period products are discarded every year, resulting in millions of tons of non-biodegradable waste. Since most conventional sanitary pads contain up to 90 % plastics, they do not biodegrade for around 600 years. Sparkle has designed sustainable, plastic-free, biodegradable and compostable Sparkle sanitary pads. From product to packaging, they are made up of around 90 % cellulose-based materials with top sheet, absorbent core, release paper, wrapping paper and packaging made of cellulose-based fibres. Whether Sparkle pads end up in a compost pit, are incinerated or end up in a landfill, they are a more sustainable alternative compared to conventional pads that contain large amounts of plastics, complex petro-chemical based ingredients and artificial fragrances. When tested according to ISO 14855-1 by a leading independent lab in Europe, Sparkle pads reached over 90 % absolute biodegradation within 90 days in commercial composting conditions.

(c) Fraunhofer ICT
06.01.2023

Fraunhofer CPM develop programmable material for ergonomic lying position

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Many people across the world are bedridden – be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties. For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

Materials and microstructuring
Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials? “Essentially, there are two key areas where adjustments can be made: the base material – thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys – and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes. “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable – but can be precisely defined, i.e., programmed. This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

Materials can also react to temperature or humidity
The change in shape that the material should exhibit and the stimuli to which it reacts - mechanical stress, heat, moisture or even an electric or magnetic field - can be determined by the choice of material and its microstructure.

The journey to application
A single piece of material can take the place of entire systems of sensors, regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere – from medicine and sporting goods to soft robotics and even space research.

Source:

Fraunhofer ITWM

Photo: LYCRA® naturalFX™ technology powered by HeiQ
LYCRA® naturalFX™ technology powered by HeiQ
15.11.2022

HeiQ and The LYCRA Company: Added-value technology for cotton knitwear

  • LYCRA® naturalFX™ technology offers durable comfort stretch and fit for 100% cotton knitwear.

HeiQ and The LYCRA Company created a new and durable solution for 100% cotton fabric, adding stretch and recovery properties while keeping it fully recyclable.

HeiQ, a leader in performance finish technologies, and The LYCRA Company, a leader in developing innovative and sustainable fiber and technology solutions for the apparel and personal care industries, announced the launch of LYCRA® naturalFX™ technology, a proprietary textile finishing process for 100% cotton knit garments designed for mass market applications.

LYCRA® naturalFX™ technology, powered by HeiQ, enhances cotton knitwear, addressing critical consumer pain points, and improving the consumer’s overall wearing experience. This technology provides durable comfort stretch, fit, and soft hand-feel to 100% cotton knitwear compared to conventional finishes. Even after repeated washing and wearing, LYCRA® naturalFX™ technology helps knitwear retain its shape, which helps extend the garment’s lifespan and potentially reduce its environmental impact.

Source:

HeiQ

Photo: Reifenhäuser
26.10.2022

Reifenhäuser Extrusion Systems and maku AG cooperate

  • Strategic partnership for automation system in the field of slot dies and coextrusion adapters

Reifenhäuser Extrusion Systems (RES) - the Reifenhäuser Group's business unit specializing in extrusion components - announces a strategic partnership with maku AG at K 2022, the world's largest plastics trade fair. The aim of the cooperation is the joint marketing and further development of the automation system designed by maku for coextrusion adapters and slot dies.

  • Strategic partnership for automation system in the field of slot dies and coextrusion adapters

Reifenhäuser Extrusion Systems (RES) - the Reifenhäuser Group's business unit specializing in extrusion components - announces a strategic partnership with maku AG at K 2022, the world's largest plastics trade fair. The aim of the cooperation is the joint marketing and further development of the automation system designed by maku for coextrusion adapters and slot dies.

The so-called PAM system (precise, autonomous, mechatronic) is available immediately and exclusively as an automation option for new Reifenhäuser dies and adapters, as well as for aftermarket dies across all manufacturers. PAM enables producers in the field of flat film and sheet production as well as extrusion coating to precisely control the entire hot part (coextrusion adapter and die) via the line's control panel. This is significantly faster and more accurate than conventional control by hand or expansion bolt automation. It enables faster start-up of good production, higher output with lower energy consumption, and thus significantly improved overall equipment efficiency (OEE). The decisive advantage lies in the use of motorized manual adjustment bolts that replace conventional thermal expansion bolts. Reifenhäuser presented the system for the first time at the K 2022.

Source:

Reifenhäuser GmbH & Co. KG Maschinenfabrik
 

Photo: FET
FET-103 Monofilament meltspinning system
10.10.2022

RHEON LABS: Fibre with unique strain-rate sensitive characteristics

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

For close-fitting activewear and sports bras, the ability to actively control muscle mass or soft tissue movement during exercise will be a game-changing advancement. It will allow brands to engineer garments that relax during everyday use but actively stiffen during exercise for improved support and performance.
The Innovate UK grant was awarded under the category of Hyper-Viscoelastic Fibre Extrusion for Textile Manufacture. Fibre Extrusion Technology Limited (FET) enabled the customer trials at its bespoke Fibre Development Centre in Leeds, England using its in-house FET-103 Monofilament meltspinning facilities, in harness with RHEON and FET technical operatives. The next phase will be to upscale the trials of preferred materials on RHEON’s own new FET-103 meltspinning line, with FET’s continued support and expertise on hand.
 
Creating a fibre with unique strain-rate sensitive characteristics could be as radical a change in the market as the initial introduction of stretch fibre with the launch of Lycra™. The textiles would have a multitude of beneficial properties and would provide significantly less compression in the garment than conventional materials, substantially improving user comfort, support and performance.

Source:

DAVID STEAD PROJECT MARKETING LTD

Photo: Sellers Textile Engineers
Hybrid Shearing Cylinder
10.10.2022

The Hybrid Shear by Sellers Textile Engineers

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

“The Hybrid Shearing Cylinder has all the advantages of the ‘strap-on’ spiral blade to provide a sharper and cleaner cut, along with enhanced rigidity which significantly lengthens the intervals between the necessary regrinding of the blade,” explains Sellers Director Neil Miller. “We currently have six Hybrid Shearing Cylinders operating in the field and the earliest, which has been installed in both No1 Head position, where the majority of the shearing operation and heaviest cut is performed, and also in No3 Head, where the sharper cutting angle has resulted in a much improved surface quality.”

Sellers shearing machines have led the field in carpet finishing for many decades, enabling the leading manufacturers to stay competitive by enabling the highest quality of finish to be achieved economically and efficiently.

The latest advanced features of these machines include a load cell tension control drive system, an automated touchscreen for easy operator control and fault diagnosis, an enhanced cleaning system including cylinder and blade separation and fully controllable pivoting beds. Further options include thickness monitoring, seam detection and metal detection systems.

“The Hybrid Shearing Cylinder will become standard on our latest machines and also be made available for retrofitting, to provide significant benefits to our existing users,” says Miller. “All of our equipment is designed, manufactured, assembled and tested at our plant in the UK, and as one of the few remaining European engineering companies to make all of our components in-house – with now over a century of accumulated know-how – flexibility in design allows our finishing solutions to be targeted to specific customers and their product requirements. Aligned to this is a lead in process control systems which ensure the accurate control, reliability and repeatability of the processing parameters on all of our machines.”

Sellers remains committed to providing complete finishing solutions for all carpet, tile and artificial grass products. Its range includes machines for tufted secondary backing, both conventional, powder and extrusion lamination, Wilton and Axminster products, artificial grass and foam lines, coating lines for bitumen, PVC, PU and other polymers, as well as shearing for all carpet products.

Ongoing developments on the company’s coating and drying lines have resulted in improved guiding and product tension control as well as dryer efficiency, reducing heat loss and optimising energy use. These include a re-design of the fan pressure boxes and impingement nozzles to increase airflow efficiency, modulating gas burners and introducing easy clean, accessible filters.

In addition, the proven dual zone system has been enhanced, giving a temperature differential of up to 80°C between top and bottom zones. Dryers can be heated by either gas or steam and operation and access have been simplified with controls via touchscreen and PLC.

An extensive range of ancillary equipment is available to provide maximum flexibility to cover product requirements, for both new processing lines and as upgrades to existing equipment.

“Carpet manufacturing is now based on well-established, tried and trusted processes and it’s rare for new innovations to be introduced into this sector,” says Jason Kent, CEO of the British Textile Machinery Association. “The new Sellers Hybrid Shearing Cylinder can provide a competitive edge for manufacturers which is currently being proven in the field. It’s one of a number of new innovations the company is planning to showcase at next year’s ITMA exhibition in Milan.”

(c) adidas AG
08.09.2022

adidas introduces FW22 Made with Nature Capsule Collection

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

Christopher Wheat, Global Category Director Running Footwear said: “At adidas, we understand that change is not only possible, it’s an urgent necessity. With Made with Nature, we are on a journey to a world beyond plastic. We’re calling time on conventional materials and methods of make. Once depleted, there’s no coming back for fossil resources. But when we design in synergy with natural processes, when we make with nature, we can use materials that regrow or regenerate – and change the way products are made."

08.09.2022

Monforts at ITMA ASIA + CITME

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

“Many more applications are possible, such as the overdyeing of denim, the creation of double-face coated materials, fabrics awnings, tents and medical drapes and the pre-treatment of substrates for digital printing”, explains Gunnar Meyer, Monforts area sales manager for China. “A range of different doctor blades and their combinations can be supplied to meet individual requirements, including air knife, roller knife, foam, screen and magnetic roller coating. The latter option is recommended for lines with working widths of over 2.4 metres.”

In addition, Monforts can provide the necessary explosion-proof ranges for solvent-based coatings and high temperature processes up to 320°C, such as the PTFE coating of nonwoven filter material. These lines are equipped with special burners, stenter chains, and insulation.

Source:

 A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

(c) Adient
As a symbol for a sustainable cooperation, Michel Berthelin (Executive Vice President EMEA, 2nd from left) and Henrik Henriksson (CEO H2 Green Steel, 1st from right) planted a ginkgo tree together with their teams in front of the Adient EMEA headquarters in Burscheid, Germany.
01.09.2022

Adient: Cooperation with H2 Green Steel to reduce carbon footprint

Adient, a supplier of seating systems for the automotive industry, has entered into a cooperation with Swedish steelmaker H2 Green Steel (H2GS) to reduce the carbon footprint in its value chain.
 
On 1st September Michel Berthelin, Executive Vice President Adient EMEA, and Henrik Henriksson, CEO of H2 Green Steel, have mutually signed an agreement to supply fossil-free steel with low carbon footprint from 2026 on and subsequently use it in Adient's metal products.

Adient, a supplier of seating systems for the automotive industry, has entered into a cooperation with Swedish steelmaker H2 Green Steel (H2GS) to reduce the carbon footprint in its value chain.
 
On 1st September Michel Berthelin, Executive Vice President Adient EMEA, and Henrik Henriksson, CEO of H2 Green Steel, have mutually signed an agreement to supply fossil-free steel with low carbon footprint from 2026 on and subsequently use it in Adient's metal products.

Michel Berthelin explains the background to the cooperation: “As a company, we are committed to the Science Based Targets Initiative, a collaboration between leading global institutions to set a science-based climate target. We also support the Carbon Disclosure Project, which helps companies and cities to understand and disclose their environmental impacts. The decision to shift parts of the steel volume sourced for our production to a steel with low carbon footprint is part of our sustainability strategy. It is our goal to reduce emissions at our production sites that are caused directly by our own sources or indirectly by our energy suppliers by 75% by 2030. In parallel, we aim to reduce emissions along our supply chains by 35% over the same period. In doing so, Adient actively fosters the industry's transformation towards a more responsible use of natural resources.”

Steel from H2 Green Steel is produced with up to 95% less CO2 emissions compared to conventional steel production. The company achieves this by replacing coal with green hydrogen in production and by the use of electricity from non-fossil sources. In this way, mainly water and heat are produced as waste products.

Source:

Adient

(c) Freudenberg Performance Materials
23.08.2022

Freudenberg at Lineapelle with sustainable materials for leather goods

Freudenberg Performance Materials (Freudenberg) will be presenting Evolon® eco-friendly microfiber reinforcement material for leather goods that is manufactured in Europe with no solvent and no chemical binder at the Lineapelle international trade show for the leather industry. Another sustainability highlight is binder-free strobel material made from 100% recycled PET for the shoe industry. The company will also be showing a nonwoven crimping material that meets the increasing demands of manufacturers and consumers alike in the footwear market.

Evolon® contains 80% recycled PET. It is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria. In addition, shorter transport routes help to secure supply chains for players in the European leather goods industry.

Freudenberg Performance Materials (Freudenberg) will be presenting Evolon® eco-friendly microfiber reinforcement material for leather goods that is manufactured in Europe with no solvent and no chemical binder at the Lineapelle international trade show for the leather industry. Another sustainability highlight is binder-free strobel material made from 100% recycled PET for the shoe industry. The company will also be showing a nonwoven crimping material that meets the increasing demands of manufacturers and consumers alike in the footwear market.

Evolon® contains 80% recycled PET. It is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria. In addition, shorter transport routes help to secure supply chains for players in the European leather goods industry.

The binder-free strobel material is made from 100% recycled PET. It is GRS-certified for reliable traceability. The GRS certification recognizes the share of recycled materials in the strobel material. This allows customers to calculate the total amount of recycled material in shoes. Moreover, the mono-component material itself is fully recyclable. In terms of performance, the material is lightweight and also demonstrates a high tensile strength.

Made from nonwoven fabric, the innovative crimping material optimally combines high permanent moldability and shape retention with flexibility and suppleness. This crimping material enables manufacturers to reduce their production costs, while consumers benefit from increased comfort. Compared to conventional knitted fabric-based crimping materials, the nonwoven crimping material offers multi-directional stretching properties, improved fitting, greater design freedom and reduced weight.

Source:

Freudenberg Performance Materials

(c) Shima Seiki
16.08.2022

SHIMA SEIKI exhibiting at FEBRATEX 2022

Japanese flat knitting machine manufacturer SHIMA SEIKI MFG., LTD. will exhibit at the Brazilian Textile Industry Fair (FEBRATEX 2022) this month. On display will be the cutting edge in computerized flat knitting technology, represented by the latest WHOLEGARMENT® machines and design system.

The flagship MACH2XS series features the company’s original SlideNeedle™ on four needle beds and spring-type sinker system supporting a wide range of high-quality WHOLEGARMENT® knitting in all needles. The versatile MACH2S is capable of both WHOLEGARMENT® knitting and shaping on a conventional V-bed. SVR123SP features a special loop presser bed and is capable of producing unique woven-like hybrid fabrics as well as technical textiles. At FEBRATEX it will demonstrate its capability by knitting shoe uppers. The SVR and N.SSR workhorse machines set the industry benchmark for shaping machines, with SVR202 featuring tandem knitting capability for flexible operation. The SFG and SFG-I glove knitting machines rounds out the comprehensive lineup.

Japanese flat knitting machine manufacturer SHIMA SEIKI MFG., LTD. will exhibit at the Brazilian Textile Industry Fair (FEBRATEX 2022) this month. On display will be the cutting edge in computerized flat knitting technology, represented by the latest WHOLEGARMENT® machines and design system.

The flagship MACH2XS series features the company’s original SlideNeedle™ on four needle beds and spring-type sinker system supporting a wide range of high-quality WHOLEGARMENT® knitting in all needles. The versatile MACH2S is capable of both WHOLEGARMENT® knitting and shaping on a conventional V-bed. SVR123SP features a special loop presser bed and is capable of producing unique woven-like hybrid fabrics as well as technical textiles. At FEBRATEX it will demonstrate its capability by knitting shoe uppers. The SVR and N.SSR workhorse machines set the industry benchmark for shaping machines, with SVR202 featuring tandem knitting capability for flexible operation. The SFG and SFG-I glove knitting machines rounds out the comprehensive lineup.

Demonstrations will also be performed on SHIMA SEIKI’s SDS-ONE APEX4 3D design system that is at the core of the company’s “Total Knitting System” concept. With comprehensive support of all aspects throughout the knit supply chain, SDS-ONE APEX4 integrates knit production into one efficient workflow from yarn development, product planning and design to machine programming, production and even sales promotion. Especially effective is SDS-ONE APEX4’s capability to improve on the planning process with virtual sampling. Photo-realistic simulation capability minimizes the need for sample-making, effectively reducing time, material and cost from the prototyping process.

07.07.2022

Carbios, On, Patagonia, PUMA and Salomon team up to advance circularity

Carbios has signed an agreement with On, Patagonia, PUMA, and Salomon, to develop solutions that will enhance the recyclability and circularity of their products.
 
An important element of the two-year deal will be to speed up the introduction of Carbios’ biorecycling technology, which constitutes a breakthrough for the textile industry. Carbios and the four companies will also research how products can be recycled, develop solutions to take-back worn polyester items, including sorting and dismantling technologies, and gather data on fiber-to-fiber recycling as well as circularity models.
 
The challenge the four brands share, is that their ambitious sustainable development goals can only partially be met by conventional recycling technologies which mostly target bottle-to-fiber recycling. Future regulations will require more circularity in packaging and textile. Yet the market consensus is that there will soon be a shortage of PET bottles, as they will be used for circular production methods in the Food & Beverage Industry.   
 

Carbios has signed an agreement with On, Patagonia, PUMA, and Salomon, to develop solutions that will enhance the recyclability and circularity of their products.
 
An important element of the two-year deal will be to speed up the introduction of Carbios’ biorecycling technology, which constitutes a breakthrough for the textile industry. Carbios and the four companies will also research how products can be recycled, develop solutions to take-back worn polyester items, including sorting and dismantling technologies, and gather data on fiber-to-fiber recycling as well as circularity models.
 
The challenge the four brands share, is that their ambitious sustainable development goals can only partially be met by conventional recycling technologies which mostly target bottle-to-fiber recycling. Future regulations will require more circularity in packaging and textile. Yet the market consensus is that there will soon be a shortage of PET bottles, as they will be used for circular production methods in the Food & Beverage Industry.   
 
Carbios’ innovative process constitutes a technological breakthrough for the recycling of polyester (PET) fibers, which are widely used in apparel, footwear and sportswear, on their own or together with other fibers. PET polyester is the most important fiber for the textile industry with 52 MT produced, even surpassing cotton at 23MT. The biorecycling process uses an enzyme capable of selectively extracting the polyester, recovering it to recreate a virgin fiber. This revolutionary technology makes it possible to recover the PET polyester present in all textile waste that cannot be recycled using traditional technologies.
 
PET plastics and fibers are used to make everyday consumer goods such as bottles, packaging and textiles. Today, most PET is produced from fossil resources, then used and discarded according to a wasteful linear model. By creating a circular economy from used plastics and fibers, Carbios’ biorecycling technology offers a sustainable and more responsible solution.

More information:
Carbios PET circularity
Source:

Carbios

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG

22.06.2022

Avgol® wins Innovation Award at the RIGHT Hygiene conference

  • Biotransformation technology for nonwovens

Avgol® has received the prestigious Innovation Award at the RIGHT Hygiene conference in recognition of its collaboration with Polymateria in development of pioneering biotransformation technology for nonwovens.
 
Biotransformation is a unique functionality wherein a conventional nonwoven fabric can be modified to react to certain triggers to then begin a cascade, and importantly a fundamental chemical transformation of the polymer resin into a wax that is readily degraded by natural bacteria, microbes and fungi normally found in the environment.
 
“The transformation is triggered through the combined effects of the natural elements of decay - air, moisture, heat and sunlight,” said Mr. Sanjay Bhayani, Director of India Operations with Avgol. “Once triggered, the material will transform into a low molecular weight wax structure leaving no microplastics or toxic residue behind. Moreover, if the product comprising the biotransformation technology is disposed of in the normal way and facilities are available, then it can be recycled by readily available means.”

  • Biotransformation technology for nonwovens

Avgol® has received the prestigious Innovation Award at the RIGHT Hygiene conference in recognition of its collaboration with Polymateria in development of pioneering biotransformation technology for nonwovens.
 
Biotransformation is a unique functionality wherein a conventional nonwoven fabric can be modified to react to certain triggers to then begin a cascade, and importantly a fundamental chemical transformation of the polymer resin into a wax that is readily degraded by natural bacteria, microbes and fungi normally found in the environment.
 
“The transformation is triggered through the combined effects of the natural elements of decay - air, moisture, heat and sunlight,” said Mr. Sanjay Bhayani, Director of India Operations with Avgol. “Once triggered, the material will transform into a low molecular weight wax structure leaving no microplastics or toxic residue behind. Moreover, if the product comprising the biotransformation technology is disposed of in the normal way and facilities are available, then it can be recycled by readily available means.”

“By bringing the Biotransformation technology to the various potential markets in India, we hope to offer a real-world solution to waste management,” he said. “We particularly hope to address aspects of the creation of fugitive waste and remove this from the environment without causing additional, and potentially more dangerous, problems.”

Source:

Avgol

© Natalie Wunder
From left: Patrick Engel (STFI), Caspar Böhme (Sumo), Ilka Kaczmarek (KF), Dr. Marina Crnoja-Cosic (KF)
22.06.2022

Kelheim Fibres wins Techtextil Innovation Award

The viscose specialities manufacturer Kelheim Fibres has won the Techtextil Award in the "New Concept" category for their project "Cellulose-based nonwovens for highly absorbent reusable products".
This award is intended to make cutting-edge developments visible, promote unconventional thinking and intensify the dialogue between researchers, manufacturers.

The starting point for the innovation was the search for a washable and thus reusable absorbent pad made of completely bio-based materials for the cloth diaper of the Berlin-based start-up Sumo.
Two main requirements of the application are obvious: A fast and efficient liquid distribution and high absorbency should minimise rewetting and leakage. Both are ensured by speciality viscose fibres from Kelheim, which have been making this essential contribution to absorbent hygiene products such as tampons for many years. The obvious solution was therefore to optimally utilise the synergies between knitted and woven structures with nonwovens.

The viscose specialities manufacturer Kelheim Fibres has won the Techtextil Award in the "New Concept" category for their project "Cellulose-based nonwovens for highly absorbent reusable products".
This award is intended to make cutting-edge developments visible, promote unconventional thinking and intensify the dialogue between researchers, manufacturers.

The starting point for the innovation was the search for a washable and thus reusable absorbent pad made of completely bio-based materials for the cloth diaper of the Berlin-based start-up Sumo.
Two main requirements of the application are obvious: A fast and efficient liquid distribution and high absorbency should minimise rewetting and leakage. Both are ensured by speciality viscose fibres from Kelheim, which have been making this essential contribution to absorbent hygiene products such as tampons for many years. The obvious solution was therefore to optimally utilise the synergies between knitted and woven structures with nonwovens.

In doing so, the advantages of nonwovens in combination with speciality viscose fibres in terms of absorbency (through e.g. more open-pored structures) have been perfectly transferred from the field of disposable to the world of reusable products. For reusable products, however, there is another challenge to overcome: they must remain stable during washing and over several cycles of use. To ensure this, an innovative nonwoven construction was developed in close cooperation with the STFI. These nonwovens can be used as a stand-alone solution or integrated into a textile structure.

Source:

Kelheim Fibres