From the Sector

Reset
713 results
CARBIOS: Groundbreaking of PET biorecycling plant (c) CARBIOS
26.04.2024

CARBIOS: Groundbreaking of PET biorecycling plant

CARBIOS celebrated the groundbreaking ceremony for its PET biorecycling plant in the presence of representatives of local authorities, partner brands and industrial partners who all make up CARBIOS’ ecosystem. Located in Longlaville, in the Grand-Est region of France, CARBIOS' first commercial plant will play a key role in the fight against plastic pollution, offering an industrial-scale solution for the enzymatic depolymerization of PET waste in order to accelerate a circular economy for plastic and textiles. The plant will have a processing capacity of 50kt/year of prepared waste when operating at full capacity. Work is progressing on schedule with significant quantities delivered to customers in 2026.

CARBIOS celebrated the groundbreaking ceremony for its PET biorecycling plant in the presence of representatives of local authorities, partner brands and industrial partners who all make up CARBIOS’ ecosystem. Located in Longlaville, in the Grand-Est region of France, CARBIOS' first commercial plant will play a key role in the fight against plastic pollution, offering an industrial-scale solution for the enzymatic depolymerization of PET waste in order to accelerate a circular economy for plastic and textiles. The plant will have a processing capacity of 50kt/year of prepared waste when operating at full capacity. Work is progressing on schedule with significant quantities delivered to customers in 2026.

CARBIOS' technology enables PET circularity and provides an alternative raw material to fossil-based monomers, giving PET producers, waste management companies, public bodies and brands an effective solution to meet regulatory requirements and their own commitments to sustainable development. The plant will have the capacity to process 50,000 tons of prepared PET waste per year (equivalent to 2 billion colored bottles, 2.5 billion food trays or 300 million T-shirts). The plant will create 150 direct and indirect jobs in the region. In October 2023, CARBIOS obtained the building and operating permits for the site. The factory is currently under construction on land officially acquired from Indorama Ventures on 14 February 2024. In February 2024, CARBIOS and De Smet Engineers & Contractors (DSEC) announced their collaboration to manage construction. Several feedstock supply agreements, notably with CITEO and Landbell Group, will secure the vast majority of the raw materials required.  Close to the borders with Belgium, Germany and Luxembourg, the plant's location is strategic for access to nearby waste supplies

More information:
Carbios France PET recycling
Source:

CARBIOS

Nuevo Mundo continues sustainability journey with Archroma Photo: Archroma
26.04.2024

Nuevo Mundo continues sustainability journey with Archroma

Integrated textile mill Nuevo Mundo is partnering with Archroma to offer collections utilizing Archroma’s EarthColors® agricultural waste based dyes and produced with zero liquid discharge and substantial resource savings.

A strategic partner of apparel brands, Nuevo Mundo is a market leader in South America with a 75-year history. It helps brands expand into new markets with value-added products that capture growing consumer demand for quality and sustainability. The company is a pioneer in the adoption of water-saving processes and chemicals that have minimal impact on the environment.

Nuevo Mundo is now reinforcing its commitment to sustainability with the creation of new collections that utilize Archroma’s biowaste-based EarthColors® dyes. Based on patented Archroma technology, these high-performance dyes are from non-edible agricultural or herbal industry waste in a process that helps to reduce the negative impact on water footprint, natural resources and climate change compared to conventional synthetic dye production where toxic and non-renewable oil derivative products are used as raw material.*

Integrated textile mill Nuevo Mundo is partnering with Archroma to offer collections utilizing Archroma’s EarthColors® agricultural waste based dyes and produced with zero liquid discharge and substantial resource savings.

A strategic partner of apparel brands, Nuevo Mundo is a market leader in South America with a 75-year history. It helps brands expand into new markets with value-added products that capture growing consumer demand for quality and sustainability. The company is a pioneer in the adoption of water-saving processes and chemicals that have minimal impact on the environment.

Nuevo Mundo is now reinforcing its commitment to sustainability with the creation of new collections that utilize Archroma’s biowaste-based EarthColors® dyes. Based on patented Archroma technology, these high-performance dyes are from non-edible agricultural or herbal industry waste in a process that helps to reduce the negative impact on water footprint, natural resources and climate change compared to conventional synthetic dye production where toxic and non-renewable oil derivative products are used as raw material.*

The organic raw materials used for the dyes created for Nuevo Mundo include residues from cotton plants, beets and saw palmetto. In addition to using these biowaste-based dyes, the EarthColors® collections will be produced in Nuevo Mundo’s zero liquid discharge facilities, providing savings in time, water and energy, as well as emissions.

Nuevo Mundo and Archroma intend their alliance to be a long-term collaboration, with plans to release new collections based on EarthColors® in the coming year and beyond.

*Based on internal LCA comparative screening

 

More information:
Archroma Nuevo Mundo EarthColors
Source:

Archroma

Baldwin Technology's TexCoat™ G4 system Photo Baldwin Technology
Baldwin Technology's TexCoat™ G4 system
25.04.2024

NC State’s Wilson College of Textiles: Transformative Digital Finishing Technology

North Carolina State University’s Wilson College of Textiles has been making inroads challenging the conventional pad finishing process and significantly reducing its environmental footprint in collaboration with Baldwin Technology Inc. Front and center in its finishing lab is Baldwin’s TexCoat G4™ digital finishing system.
 
For nearly 125 years, the Wilson College of Textiles has been a hub of innovation and learning, transforming students into experts in the world of textiles. As the textile industry grapples with sustainability challenges, the college has embraced new technologies and innovations to address the issue head-on.
 
At the forefront of this transformation is the Zeis Textiles Extension for Economic Development, an arm of Wilson College which serves the textile industry’s prototyping and pilot production needs in its five laboratories – spun yarn, knitting, weaving, dyeing and finishing, and physical testing. Collaborations with various textile companies have allowed the university to foster industry partnerships that bring forth groundbreaking ideas.
 

North Carolina State University’s Wilson College of Textiles has been making inroads challenging the conventional pad finishing process and significantly reducing its environmental footprint in collaboration with Baldwin Technology Inc. Front and center in its finishing lab is Baldwin’s TexCoat G4™ digital finishing system.
 
For nearly 125 years, the Wilson College of Textiles has been a hub of innovation and learning, transforming students into experts in the world of textiles. As the textile industry grapples with sustainability challenges, the college has embraced new technologies and innovations to address the issue head-on.
 
At the forefront of this transformation is the Zeis Textiles Extension for Economic Development, an arm of Wilson College which serves the textile industry’s prototyping and pilot production needs in its five laboratories – spun yarn, knitting, weaving, dyeing and finishing, and physical testing. Collaborations with various textile companies have allowed the university to foster industry partnerships that bring forth groundbreaking ideas.
 
The partnership with Baldwin Technology marks a major milestone for the Raleigh, North Carolina-based college’s efforts to contribute to a more sustainable tomorrow.
 
To tackle the longstanding challenges of unsustainable fashion, NC State has taken the lead in demonstrating to students and industry the transition from the traditional pad finishing process to Baldwin’s TexCoat™ G4 system. It offers an innovative “non-contact” precision spray that significantly reduces water consumption, energy usage and chemical waste.
 
“Instead of needing to take the fabric, dip it into a bath to saturate it, squeeze the excess, dry and cure it, you can now precisely add the exact amount of finish you need on the fabric,” explained Rick Stanford, Baldwin's VP Global Business Development of Textiles. “The TexCoat™ G4 system will reduce the amount of pick-up that’s required to carry the chemical onto the fabric. This will also take a lot less energy to dry the fabric, increasing production speeds.”
 
The adoption of the TexCoat™ G4 system signals a new era for the college, allowing students to actively participate in shaping a sustainable future for the textiles industry. In the global effort to protect the planet and its resources, NC State's Wilson College of Textiles is at the forefront, preparing the next generation of professionals to be the leaders of the sustainable textile movement.

Source:

NC State’s Wilson College of Textiles

ANDRITZ: Start-up of production line for sustainable wipes Photo: Teknomelt
ANDRITZ neXline wetlace CCP at Teknomelt, Türkiye
24.04.2024

ANDRITZ: Start-up of production line for sustainable wipes

International technology group ANDRITZ has successfully started up a new nonwovens production line supplied to Teknomelt Teknik Mensucat San. ve Tic. A.S. in Kahramanmaras, Türkiye. The new neXline wetlace CCP (carded-carded-pulp) line produces nonwoven roll goods for biodegradable, plastic-free wet wipes

By combining the benefits of two technologies, spunlace and wetlaid, the line enables the use of bio-based fibers, like viscose and wood pulp, to produce a high-performance and sustainable wipe with the same technical product characteristics and performances as a conventional wipe made of synthetic fibers while protecting the environment.

Teknomelt is one of the leading manufacturers of nonwoven meltblown, spunbond, SMS and SMMS fabrics in Türkiye. The company serves a wide range of markets, exporting 45% of its production. With the new ANDRITZ Wetlace CCP line, the company is expanding its range of sustainable nonwovens production for wipes. 

International technology group ANDRITZ has successfully started up a new nonwovens production line supplied to Teknomelt Teknik Mensucat San. ve Tic. A.S. in Kahramanmaras, Türkiye. The new neXline wetlace CCP (carded-carded-pulp) line produces nonwoven roll goods for biodegradable, plastic-free wet wipes

By combining the benefits of two technologies, spunlace and wetlaid, the line enables the use of bio-based fibers, like viscose and wood pulp, to produce a high-performance and sustainable wipe with the same technical product characteristics and performances as a conventional wipe made of synthetic fibers while protecting the environment.

Teknomelt is one of the leading manufacturers of nonwoven meltblown, spunbond, SMS and SMMS fabrics in Türkiye. The company serves a wide range of markets, exporting 45% of its production. With the new ANDRITZ Wetlace CCP line, the company is expanding its range of sustainable nonwovens production for wipes. 

Source:

ANDRITZ AG

17.04.2024

Stahl: 2023 ESG Report

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Measuring – and reducing – the impact of products is an important step in the company’s scope 3 emissions. As such, 353 Stahl products now have either life cycle assessment (LCA) or product carbon footprint (PCF) data, far exceeding the 2023 target of 50.
 
New ratings and certifications
In 2023, 2,161 of Stahl's products were certified by Zero Discharge of Hazardous Chemicals (ZDHC), in line with ZDHC MRSL V3.1. These products represented 70% of the company’s sales revenue, demonstrating increased demand for coatings with a lower risk to health and the environment.

Stahl was also proud to achieve a Platinum rating from EcoVadis for the second year in a row, which places it in the top 1% of companies evaluated. Stahl also exceeded its 2023 target of an average EcoVadis rating of at least 60/100 for their top ten suppliers, with an average rating of 68/100 reported in December 2023.
Fostering a safe and welcoming work environment

A core pillar of Stahl’s ESG approach is how it supports its employees’ physical and mental well-being. The 2023 ESG Report outlines several examples of this commitment, such as improvement in its key safety KPIs for the third year in a row.

Besides keeping people safe, Stahl continues to make progress in fostering an open and inclusive workplace. For example, in support of diversity, equity and inclusion (DEI), Stahl appointed its first female leadership team member, trained 98% of its staff in DEI and established DEI committees at all Stahl sites. In addition, to strengthen communication, engagement and collaboration across the workforce, Stahl also established an internal workplace hub, MyStahl.

More information:
Stahl Coatings ESG
Source:

Stahl

CARBIOS wins "So French So Innovative" award Photo: CARBIOS
Dr. Bruno LANGLOIS, Technologies & Institutional Partnerships Director for CARBIOS (center), receiving the « So French So Innovative » Award on behalf of CARBIOS at InnoEX 2024, Hong Kong.
17.04.2024

CARBIOS wins "So French So Innovative" award

CARBIOS was awarded 1st prize in the "So French So Innovative" Award organized by Business France, the Hong Kong Committee of French Foreign Trade Advisors (CCEF), La French Tech and its partners at InnoEX 2024 (taking place in Hong Kong from 13 to 16 April). The award recognizes French innovation to promote and support French Tech in the Asia-Pacific region. The final awards ceremony was held on the French pavilion in the presence of members of the Hong Kong Government and Christile Drulhe, Consul General of France in Hong Kong.

Emmanuel Ladent, CEO of CARBIOS: "Asia-Pacific is a key market for our PET biorecycling solution, and the 'So French So Innovative' Award is a recognition that supports CARBIOS’ prospection and commercial deployment in the region. CARBIOS' technology is generating a lot of interest, leading to promising discussions and the exploration of commercial agreements to support the sustainability commitments and international operations of current and future partners."

CARBIOS was awarded 1st prize in the "So French So Innovative" Award organized by Business France, the Hong Kong Committee of French Foreign Trade Advisors (CCEF), La French Tech and its partners at InnoEX 2024 (taking place in Hong Kong from 13 to 16 April). The award recognizes French innovation to promote and support French Tech in the Asia-Pacific region. The final awards ceremony was held on the French pavilion in the presence of members of the Hong Kong Government and Christile Drulhe, Consul General of France in Hong Kong.

Emmanuel Ladent, CEO of CARBIOS: "Asia-Pacific is a key market for our PET biorecycling solution, and the 'So French So Innovative' Award is a recognition that supports CARBIOS’ prospection and commercial deployment in the region. CARBIOS' technology is generating a lot of interest, leading to promising discussions and the exploration of commercial agreements to support the sustainability commitments and international operations of current and future partners."

CARBIOS' global presence
In a dynamic global PET market, where the share of recycled PET will increase, CARBIOS' ambition is to become a leading r-PET player by 2035. CARBIOS has extended its international reach to boost its commercial deployment worldwide. Teams in place in key markets are dedicated to identifying business opportunities and establishing commercial partnerships for PET biorecycling technology, with first agreements expected in 2024. To date, CARBIOS is represented in three regions: Europe, North America (including Canada) and Asia (China, Japan, Korea, Singapore, Taiwan, and soon India).

More information:
Carbios Awards PET recycling
Source:

CARBIOS

16.04.2024

Stratasys published Second ESG and Sustainability Report

Stratasys Ltd. published its second Mindful Manufacturing™ ESG and Sustainability Report in accordance with the Global Reporting Initiative (GRI) standards, fulfilling its commitment to transparency. The report includes an extensive overview of activities and advancements in Stratasys’ environmental, social and governance (ESG) programs.

Some highlights of the Mindful Manufacturing ESG and Sustainability report, by category, include:

Environmental

  • Stratasys reduced water intensity by 32.5 percent across global operations, leading to an overall reduction in water usage by the company.
  • Solar panels installed at Israeli facilities generated 441,339 kWh of renewable energy, which contributed to 207 metric tons of reduced CO2 emissions, or the equivalent of planting 3,423 trees
  • Double digit (11.3 percent) increases in the number of spools, cartridges and canisters recycled through a new recycling program.

Social

Stratasys Ltd. published its second Mindful Manufacturing™ ESG and Sustainability Report in accordance with the Global Reporting Initiative (GRI) standards, fulfilling its commitment to transparency. The report includes an extensive overview of activities and advancements in Stratasys’ environmental, social and governance (ESG) programs.

Some highlights of the Mindful Manufacturing ESG and Sustainability report, by category, include:

Environmental

  • Stratasys reduced water intensity by 32.5 percent across global operations, leading to an overall reduction in water usage by the company.
  • Solar panels installed at Israeli facilities generated 441,339 kWh of renewable energy, which contributed to 207 metric tons of reduced CO2 emissions, or the equivalent of planting 3,423 trees
  • Double digit (11.3 percent) increases in the number of spools, cartridges and canisters recycled through a new recycling program.

Social

  • More than 38,000 hours of employee training were provided, equaling 18 hours of training per employee.
  • Approaching world-class status with employee engagement, with a 78 percent participation rate in the last all-employee survey, with an all-time high engagement score of 73.
  • 81 percent of managers participated in management training.
  • 4 diversity KPIs were set in 2022, focusing on hiring practices. Targets were:
  • 100 percent of candidate slates for manager and above will have a diverse slate
  • 35 percent of management hires will be women
  • 25 percent of tech hires will be women
  • 40 percent of intern/student hires to reflect a range of ethnicity and gender diversity.

Governance

  • 100 percent of new suppliers in 2021 and 2022 signed the Supplier Code of Conduct, which includes environmental, social and ethical standards.
  • More than 97% of all employees completed compliance training.
  • No product-related health and safety incidents of non-compliance occurred in 2021 or 2022.
Source:

Stratasys Ltd.

Photo: Manzi Gandhi, unsplash
11.04.2024

Active Apparel Group: OEKO-TEX 100 Certified Water-Based Inks for Apparel Printing

As part of a broader initiative to reduce environmental impacts and keep ahead of evolving global chemical regulations, Active Apparel Group (AAG), manufacturer of performance apparel for the leisure/lifestyle and active market, is embracing water-based OEKO-TEX 100 Class 1 Standard Printing Inks in their manufacturing process.

Common and inexpensive inks used in the global manufacture of apparel contain a wide range of toxic chemicals, including phthalates, petroleum-based co-solvents, PVC, and other volatile organic compounds. AAG’s initiative to use OEKO-TEX approved, water-based inks creates benefits for factory workers, people living local to these factories, consumers, and everyone downstream.

AAG offers a range of printing methods to address a variety of customer needs, including:  digital printing, screen printing, and heat transfers for on-garment logos and care instructions. OEKO-TEX certified water-based inks are used for all of its digital printing and for the majority of its screen printing. These non-toxic water-based inks offer a socially and environmentally better alternative to the more commonly used Plastisol inks.

As part of a broader initiative to reduce environmental impacts and keep ahead of evolving global chemical regulations, Active Apparel Group (AAG), manufacturer of performance apparel for the leisure/lifestyle and active market, is embracing water-based OEKO-TEX 100 Class 1 Standard Printing Inks in their manufacturing process.

Common and inexpensive inks used in the global manufacture of apparel contain a wide range of toxic chemicals, including phthalates, petroleum-based co-solvents, PVC, and other volatile organic compounds. AAG’s initiative to use OEKO-TEX approved, water-based inks creates benefits for factory workers, people living local to these factories, consumers, and everyone downstream.

AAG offers a range of printing methods to address a variety of customer needs, including:  digital printing, screen printing, and heat transfers for on-garment logos and care instructions. OEKO-TEX certified water-based inks are used for all of its digital printing and for the majority of its screen printing. These non-toxic water-based inks offer a socially and environmentally better alternative to the more commonly used Plastisol inks.

Making a sizable environmental impact, the printing service of AAG’s business is significant. Digital printing averages 25,000 meters per month with screen printing averaging 60,000 garments per month.

The use of water-based inks requires a skilled production team and training of employees is ongoing. AAG currently employs 30 people at its printing operations in Ningbo, China.

Source:

Active Apparel Group

rain forest Formidable Media
09.04.2024

“Designing for Circularity” Panel Discussion in Portland

Quickly becoming the benchmark for sustainability, circularity presents a simple solution for many of the world’s complex waste issues. However, in a quickly changing textile marketplace with increasing regulatory pressures, designing circular products can be anything but simple.

To help demystify this accelerating paradigm shift, the Designing for Circularity panel is coming to Portland’s Functional Fabric Fair, where expert panelists will inform and inspire the next generation of product designers and developers.

Scheduled for Wednesday, April 17th at 2:00pm and hosted by textile industry communications agency Formidable Media, the Designing for Circularity panel will bring together experts in materials sourcing, textile finishes, trims, sustainability, recycling, natural materials, and more, to help designers, product developers, and brand representatives make the choices needed to become leaders in the future of sustainable products.

Quickly becoming the benchmark for sustainability, circularity presents a simple solution for many of the world’s complex waste issues. However, in a quickly changing textile marketplace with increasing regulatory pressures, designing circular products can be anything but simple.

To help demystify this accelerating paradigm shift, the Designing for Circularity panel is coming to Portland’s Functional Fabric Fair, where expert panelists will inform and inspire the next generation of product designers and developers.

Scheduled for Wednesday, April 17th at 2:00pm and hosted by textile industry communications agency Formidable Media, the Designing for Circularity panel will bring together experts in materials sourcing, textile finishes, trims, sustainability, recycling, natural materials, and more, to help designers, product developers, and brand representatives make the choices needed to become leaders in the future of sustainable products.

“Fashion is regularly listed among the top five largest polluting industries in the world and our panel of experts hope to  help shape future design and sustainability decisions to mitigate fashion’s outsized impact on the environment,” said Scott Kaier, Founder and President of Formidable Media. “Informed and innovative design is the first step in creating circular products, so today’s designers will be instrumental in creating a cleaner, more sustainable future.”

Hand-picked from across the outdoor, fashion, lifestyle, and footwear industries, the Designing for Circularity panelists include:

  • Daniel Uretsky, President, ALLIED Feather + Down
  • Martin Flora, VP of Business Development, Green Theme Technologies
  • Sarah Schlinger, R&D Commercialization Manager, Woolmark
  • Sharon Perez, Senior Business Development Manager, Lenzing Group
  • Brian La Plante, Senior Manager of Sustainability, YKK
  • Theresa McKenney Director of Sustainability, NEMO Equipment
Source:

Formidable Media

Archroma, G-Star RAW and Advance Denim promote cleaner denim production Photo: Advance Denim
03.04.2024

Archroma, G-Star RAW and Advance Denim promote cleaner denim production

With the aim to help the denim industry reduce the environmental impact of its wastewater and move towards circularity, Archroma, G-Star RAW and Advance Denim have renewed their joint commitment to the production of aniline-free denim apparel based on Archroma’s DENISOL® PURE INDIGO 30.

Their joint aim is to produce high-quality denim in authentic blue shades without the aniline impurity carried through from the synthesis of standard synthetic indigo. In traditional denim production, this aniline remains bound with the indigo pigment on the fabric; the remaining aniline is discharged during the dyeing and washing process. This can be a problem because aniline is toxic to aquatic life and two-thirds of aniline waste currently ends up in wastewater discharge where it could potentially pollute waterways and the ocean.

Archroma developed DENISOL® PURE INDIGO 30 to answer this key challenge. A 30% pre-reduced indigo solution, DENISOL® PURE INDIGO 30 makes it possible to produce indigo-dyed denim without aniline impurities throughout the process.

With the aim to help the denim industry reduce the environmental impact of its wastewater and move towards circularity, Archroma, G-Star RAW and Advance Denim have renewed their joint commitment to the production of aniline-free denim apparel based on Archroma’s DENISOL® PURE INDIGO 30.

Their joint aim is to produce high-quality denim in authentic blue shades without the aniline impurity carried through from the synthesis of standard synthetic indigo. In traditional denim production, this aniline remains bound with the indigo pigment on the fabric; the remaining aniline is discharged during the dyeing and washing process. This can be a problem because aniline is toxic to aquatic life and two-thirds of aniline waste currently ends up in wastewater discharge where it could potentially pollute waterways and the ocean.

Archroma developed DENISOL® PURE INDIGO 30 to answer this key challenge. A 30% pre-reduced indigo solution, DENISOL® PURE INDIGO 30 makes it possible to produce indigo-dyed denim without aniline impurities throughout the process.

Easy to use with automated dosing, DENISOL® PURE INDIGO 30 reduces the water needed for preparation, washing and wastewater treatment compared to indigo grains. It also reduces hazardous chemical consumption while allowing high reproducibility and creating the authentic and iconic deep indigo shades traditionally associated with denim.

G-Star RAW is working towards making 20% of its entire collection from Cradle to Cradle Certified® fabrics by 2025. Its partnership with Archroma and Advance Denim contributes to this goal, since the aniline-free DENISOL® holds a Gold Level Material Health Certificate from the Cradle to Cradle Products Innovation Institute. DENISOL® PURE INDIGO 30 is also compliant with other eco-standards and the requirements of leading retailers and brands.

Advance Denim, G-Star RAW and Archroma have previously collaborated to launch collections based on Archroma’s EarthColors® technology, which upcycles plant waste from the herbal industry to create sustainable colorways.

Source:

Archroma

Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

Green Theme Technologies
27.03.2024

Green Theme Technologies partners with Hwasung International

Green Theme Technologies, suppliers of the EMPEL® water-free and PFAS-free textile finishing platform, continues a trajectory of exponential growth by partnering with Korean-based global textile innovator Hwasung International. Hwasung is the first Korean mill to offer the EMPEL® high performance technology to global footwear brands and regional Korean mill customers.
      
Known globally for providing high performance textiles that incorporate functional yarns such as Dyneema, Kevlar and Cordura, Hwasung will now broaden their high performance and sustainable offerings by scaling EMPEL into their global supply chain.
      
Green Theme’s EMPEL® platform can be applied successfully to a wide range of synthetic knit, woven, non-woven and novel fabrics that are traditionally hard to treat. The diverse list of EMPEL® markets include: Outdoor, High Fashion, Footwear, Automotive, Furniture, Workwear, Athleisure Wear and Military. Because no water is used during the treatment application, EMPEL® can remove pollution and waste from any textile manufacturing process.

Green Theme Technologies, suppliers of the EMPEL® water-free and PFAS-free textile finishing platform, continues a trajectory of exponential growth by partnering with Korean-based global textile innovator Hwasung International. Hwasung is the first Korean mill to offer the EMPEL® high performance technology to global footwear brands and regional Korean mill customers.
      
Known globally for providing high performance textiles that incorporate functional yarns such as Dyneema, Kevlar and Cordura, Hwasung will now broaden their high performance and sustainable offerings by scaling EMPEL into their global supply chain.
      
Green Theme’s EMPEL® platform can be applied successfully to a wide range of synthetic knit, woven, non-woven and novel fabrics that are traditionally hard to treat. The diverse list of EMPEL® markets include: Outdoor, High Fashion, Footwear, Automotive, Furniture, Workwear, Athleisure Wear and Military. Because no water is used during the treatment application, EMPEL® can remove pollution and waste from any textile manufacturing process.

Source:

Green Theme Technologies

26.03.2024

CARBIOS joins Paris Good Fashion

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS will be particularly involved in the association's project to set up a working group dedicated to the development of a "fiber-to-fiber" industry, one of Paris Good Fashion's top priorities over the next five years. While only 1% of textiles are currently recycled fiber-to-fiber (circular), this working group will identify levers for significantly increasing the share of recycled fibers in the industry.  Polyester currently follows a linear model from which we need to break out: virgin polyester is made from petroleum, and recycled polyester from PET bottles. After use, most of these products end their lives in landfill or incineration. A circular, "fiber-to-fiber" industry will give new life to textiles and reduce the environmental impact associated to their end-of-life management.

Source:

Carbios

22.03.2024

Forschungsvorhaben "Nachhaltigkeit im Bereich der Textilbranche"

An der Technischen Universität Chemnitz wird ein Forschungsvorhaben zum Thema "Nachhaltigkeit im Bereich der Textilbranche" durchgeführt. Für die dazugehörigen Umfrage werden Textilunternehmen gesucht, die sich daran beteiligen möchten.

Das Management von Nachhaltigkeit und die entsprechende Berichtpflicht betrifft die gesamte Textilwirtschaft. Aus wissenschaftlicher Sicht fehle, so die Verantwortlichen, jedoch über die Textilbranche, insbesondere über die Bekleidungsindustrie hinaus, noch Wissen zum Thema Nachhaltigkeit. Mit Hilfe der Umfrage soll festgehalten werden, in welchem Umfang Textilunternehmer:in die Themen Nachhaltigkeit und Ökobilanzierung bereits berücksichtigen.

Die Umfrage hat eine geschätzte Bearbeitungsdauer von 15 Minuten und ist unter folgendem Link aufrufbar. Datenschutzrechtlich sind die Angaben anonymisiert, ein Rückschluss auf Unternehmen oder Personen ist nicht möglich.

An der Technischen Universität Chemnitz wird ein Forschungsvorhaben zum Thema "Nachhaltigkeit im Bereich der Textilbranche" durchgeführt. Für die dazugehörigen Umfrage werden Textilunternehmen gesucht, die sich daran beteiligen möchten.

Das Management von Nachhaltigkeit und die entsprechende Berichtpflicht betrifft die gesamte Textilwirtschaft. Aus wissenschaftlicher Sicht fehle, so die Verantwortlichen, jedoch über die Textilbranche, insbesondere über die Bekleidungsindustrie hinaus, noch Wissen zum Thema Nachhaltigkeit. Mit Hilfe der Umfrage soll festgehalten werden, in welchem Umfang Textilunternehmer:in die Themen Nachhaltigkeit und Ökobilanzierung bereits berücksichtigen.

Die Umfrage hat eine geschätzte Bearbeitungsdauer von 15 Minuten und ist unter folgendem Link aufrufbar. Datenschutzrechtlich sind die Angaben anonymisiert, ein Rückschluss auf Unternehmen oder Personen ist nicht möglich.

Source:

Professur Fabrikplanung und Intralogistik
Fakultät für Maschinenbau
Technische Universität Chemnitz

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

22.03.2024

GOTS applauds European Parliament’s vote on Green Claims Directive

The Global Organic Textile Standard (GOTS) applauds the European Parliament's vote to ban unverified 'green' product labels by enforcing stricter rules to back green claims and labels. By obligating companies to submit evidence about environmental marketing claims – including advertising and labelling products as ‘biodegradable’, ‘less polluting’, ‘water saving’, or having ‘bio-based content’ – consumers will be able to make better informed decisions about the sustainability of their purchases.

Consumers need protection from greenwashing and false claims about a product’s environmental impact. GOTS provides rules and tools for fostering responsible business practices and to support businesses to comply with domestic and international laws and beyond. The current GOTS Version 7.0 includes rigorous criteria for the protection of human, employment and social rights, as well as the environment and climate. By being certified to GOTS 7.0 and selling GOTS-labelled goods, companies are demonstrating their commitment to sustainability and human rights.

The Global Organic Textile Standard (GOTS) applauds the European Parliament's vote to ban unverified 'green' product labels by enforcing stricter rules to back green claims and labels. By obligating companies to submit evidence about environmental marketing claims – including advertising and labelling products as ‘biodegradable’, ‘less polluting’, ‘water saving’, or having ‘bio-based content’ – consumers will be able to make better informed decisions about the sustainability of their purchases.

Consumers need protection from greenwashing and false claims about a product’s environmental impact. GOTS provides rules and tools for fostering responsible business practices and to support businesses to comply with domestic and international laws and beyond. The current GOTS Version 7.0 includes rigorous criteria for the protection of human, employment and social rights, as well as the environment and climate. By being certified to GOTS 7.0 and selling GOTS-labelled goods, companies are demonstrating their commitment to sustainability and human rights.

Source:

GOTS (Global Organic Textile Standard)

DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

Polartec: New High-Performance fabric with recycled materials (c) Polartec
20.03.2024

Polartec: New High-Performance fabric with recycled materials

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® Micro™ Series is engineered to provide long-lasting comfort in a vast range of conditions and activity levels. This recycled fleece with Polartec® Shed Less™ technology is made from a lofted structure with thermal air pockets to retain warmth without inhibiting breathability. Polartec® Micro™ Series is both hydrophobic and fast drying.

Polartec® 200 Series is the modern version of the original PolarFleece®, which in 1993 became the first performance fleece knit from yarn made from recycled plastic bottles. It has a great resiliency, lightweight warmth and a fast drying time.

More information:
Polartec Shed Less Fleece polyester
Source:

Polartec

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung