Textination Newsline

from to
Zurücksetzen
Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks. Foto: © Fraunhofer IPMS. Ein kurzer Check mit dem Smartphone und der integrierten Spektralanalyse erkennt das Gewebe des Kleidungsstücks.
10.10.2023

Kleider-Check mit Smartphone, KI und Infrarot-Spektroskopie

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Fraunhofer-Forschende haben ein ultrakompaktes Nah-Infrarot-Spektrometer entwickelt, das sich für die Analyse und Bestimmung von Textilien eignet. Durch die Kombination von Bildgebung, speziellen KI-Algorithmen (KI, Künstliche Intelligenz) und Spektroskopie lassen sich auch Mischgewebe zuverlässig erkennen. Die Technologie könnte das Recycling von Altkleidern optimieren und eine sortenreine Trennung von Altkleidern ermöglichen. Eine miniaturisierte Variante des Systems passt sogar in Smartphones. Dadurch könnten sich für Konsumenten zahlreiche neue Anwendungen im Alltag ergeben – vom Kleider-Check beim Shopping bis zur Prüfung auf Plagiate.

Infrarot-Spektrometer sind leistungsstarke Messinstrumente, wenn es darum geht, organische Materialien zerstörungsfrei zu analysieren. Jetzt hat das Fraunhofer-Institut für Photonische Mikrosysteme IPMS in Dresden ein Spektralanalyse-System entwickelt, das Textilgewebe analysiert und erkennt. Auch Mischgewebe erkennt das System zuverlässig. Die Anwendungsmöglichkeiten reichen vom Materialcheck beim Kauf über das korrekte Reinigen der Kleidung bis hin zum nachhaltigen und sortenreinen Recycling. Das Spektrometer ist so klein, dass es sich in ein Smartphone integrieren lässt.

Um die nötige Zuverlässigkeit und Präzision bei der Bestimmung von Textilien zu erreichen, setzen die Fraunhofer-Forschenden auf die Nah-Infrarot-Spektroskopie (NIR). Das System arbeitet mit Wellenlängen zwischen 950 und 1900 Nanometer, also nah am sichtbaren Spektralbereich. Vorteile der Nah-Infrarot-Technik sind die einfache Handhabung und die vielfältigen Einsatzgebiete. »Wir kombinieren NIR-Spektroskopie mit Bildgebung und KI und erreichen so eine höhere Genauigkeit bei der Erkennung und Bewertung von Objekten«, erklärt Dr. Heinrich Grüger, wissenschaftlicher Mitarbeiter der Abteilung Sensorische Mikromodule am Fraunhofer IPMS.

So funktioniert die Textilanalyse
Im ersten Schritt wird ein Bild des Kleidungsstücks mit einem herkömmlichen Kameramodul aufgenommen. Die KI wählt aus den Bildinformationen des Textilgewebes einen prägnanten Punkt, der vom Spektralanalyse-Modul untersucht werden soll. Das vom Stoff reflektierte Licht wird vom Spektrometer-Modul erfasst. Dort dringt es durch einen Eintrittsspalt, wird mit einem Kollimations-Spiegel in parallele Lichtstrahlen gebracht und über einen Scanner-Spiegel auf ein Gitter gelenkt. Je nach Ein- und Austrittswinkel teilt das Gitter die Lichtstrahlen in verschiedene Wellenlängen auf. Das vom Gitter reflektierte Licht wird über den Scanner-Spiegel auf einen Detektor geleitet, der das Licht als elektrisches Signal erfasst. Dann digitalisiert ein A/D-Wandler (Analog-Digital) die Signale, die schließlich im Signalprozessor ausgewertet werden. Das so entstehende spektrometrische Profil des Textilgewebes verrät durch Abgleich mit einer Referenzdatenbank, um welche Fasern es sich handelt. »Das optische Auflösungsvermögen liegt bei 10 Nanometer. Durch die hohe Auflösung kann das NIR-Spektrometer mithilfe von KI auch Mischgewebe wie etwa Kleidungsstücke aus Polyester und Baumwolle bestimmen«, sagt Grüger. Mit einer Fläche von 10 mal 10 und einer Höhe von 6,5 Millimeter ist das System so kompakt, dass man es problemlos in ein handelsübliches Smartphone integrieren könnte.

Recycling von Altkleidern
Eine wichtige Anwendung für das KI-gesteuerte Spektrometer sieht Grüger vor allem im Recycling. Nach Angaben des Statistischen Bundesamts wurden 2021 bei den privaten Haushalten in Deutschland rund 176 200 Tonnen Textil- und Bekleidungsabfälle gesammelt. Durch die NIR-Spektroskopie könnte das Recycling optimiert und der Altkleiderberg reduziert werden. Altkleiderverwerter hätten dann die Möglichkeit, Kleidung besser und schneller zu sortieren. Textilien, die noch intakt sind, gehen beispielsweise in den Second-Hand-Handel. Beschädigte Textilien werden sortenrein recycelt und die darin enthaltenen Fasern wie Leinen, Seide, Baumwolle oder Lyocell wiederverwendet. Hoffnungslos verschmutzte Textilwaren würden thermisch verwertet oder beispielsweise zu Dämmmatten verarbeitet. Die Spektroskopie-Technik erledigt das Bestimmen und Sortieren der Textilien genauer und deutlich schneller als ein Mensch.

Wird die NIR-Spektroskopie in ein Smartphone integriert, könnten auch Konsumenten von der Technik des Fraunhofer-Instituts profitieren. Beim Kauf von Kleidern zeigt ein schneller Check mit dem Smartphone, ob der teure Seidenschal auch wirklich aus Seide ist und das exklusive Kleid des Modelabels nicht vielleicht doch ein Plagiat, das sich durch eine andere Gewebemischung verrät. Und sollte einmal das Etikett mit den Reinigungshinweisen nicht mehr lesbar sein, hilft das Smartphone via Textilscanner, das Gewebe zu identifizieren und damit den passenden Waschgang einzustellen.

Lebensmittel-Check und Dermatologie
Für die Forschenden aus dem Fraunhofer IPMS sind auch Anwendungen außerhalb des Textilbereichs denkbar. Mit Spektrometer ausgestattete Smartphones können beim Kauf von Lebensmitteln wie Gemüse und Obst Auskunft über die Qualität geben. Außerdem wäre es denkbar, die Technik für die Untersuchung der Haut einzusetzen. Ein schneller Scan mit dem Handy-Spektrometer könnte besonders trockene oder fettige Stellen identifizieren. Selbst Anwendungen in der medizinischen Diagnose etwa bei der Untersuchung von Stellen auf der Haut, bei denen der Verdacht auf ein Melanom besteht, ließen sich realisieren, hier allerdings mit fachärztlicher Unterstützung.

Bei der Entwicklung kommt dem Fraunhofer-Team jahrzehntelange Erfahrung mit dem Bau von NIR-Spektrometern in MEMS-Technik (Micro-Electro-Mechanical Systems) zugute. »Über die Jahre ist es uns gelungen, die großen Spektroskopie-Geräte aus dem Labor mit MEMS-Technologie so zu verkleinern, dass sie auch für den mobilen Einsatz geeignet sind«, sagt Grüger. Er hatte bereits im Jahr 2000 gemeinsam mit dem heutigen Institutsleiter Prof. Harald Schenk das Scanning-Grating-Spektrometer erfunden, das noch heute als Einstieg in die MEMS-Spektroskopie gilt.

Quelle:

Fraunhofer-Institut für Photonische Mikrosysteme

TiHive gewinnt RISE® Innovationspreis für seine SAPMonit Technologie Foto INDA
03.10.2023

TiHive gewinnt RISE® Innovationspreis für SAPMonit Technologie

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

  • Die Zukunft der Vliesstoffherstellung
  • Praktische Anwendungen und Fortschritte bei Filtermedien
  • rPolymere und Nachhaltigkeit
  • Innovative Strategien und Kreislauflösungen
  • Fortschritte bei nachhaltigen Vliesstoffanwendungen
  • Marktstatistiken und Datentrends

Ein Highlight war eine Posterpräsentation der grundlegenden Vliesstoff-Forschung durch die Studenten des Nonwovens Institute. Als zusätzliches Angebot offerierte das Nonwovens Institute den RISE-Teilnehmern eine Führung durch seine weltweit anerkannten Einrichtungen auf dem Centennial Campus der North Carolina State University, die über die umfangreichste Ausstattung im Labor- und Pilotmaßstab verfügen, einschließlich aller Vliesstoffplattformen und Testtechnologien.

Gewinner des RISE®-Innovationspreises
TiHive hat den RISE Innovation Award 2023 für seine SAPMonit-Technologie gewonnen. Die Innovation von TiHive, SAPMonit - ein technologischer Durchbruch - prüft wöchentlich Millionen von Windeln. SAPMonit ermöglicht eine blitzschnelle Inline-Inspektion von Gewicht und Verteilung der Superabsorber, optimiert die Ressourcen, erkennt Fehler und beschleunigt Forschung und Entwicklung. SAPMonit nutzt fortschrittliche, intelligente Kameras, Hochgeschwindigkeits-Vision-Algorithmen und eine sichere Cloud-Integration und revolutioniert damit die Industrienormen. SAPMonit hat ein großes Potenzial für Nachhaltigkeit, Kostensenkung und verbesserte Kundenzufriedenheit, da pro Maschine Hunderte von Tonnen Kunststoffabfall pro Jahr vermieden werden.

Zu den Finalisten des RISE Innovation Award gehörten Curt. G. Joa, Inc. für ihren ESC-8 - The JOA® Electronic Size Change, Fiberpartner Aps für ihre BicoBio Fiber und Reifenhäuser REICOFIL GmbH & Co. KG für ihr Reifenhäuser Reicofil RF5 XHL.  Zusammen haben die Innovationen dieser Finalisten das Potenzial, den Kunststoffabfall um Millionen von Kilogramm zu reduzieren.

DiaperRecycle erhielt den RISE® Innovation Award 2022 für seine innovative Technologie zur Wiederverwertung gebrauchter Windeln zu saugfähigem und spülbarem Katzenstreu. Durch die Rücknahme gebrauchter Windeln aus Haushalten und Einrichtungen und die Trennung von Plastik und Fasern ist DiaperRecycle in der Lage, die klimaschädlichen Emissionen von Windeln aus Mülldeponien zu verringern.

2023 INDA Lifetime Technical Achievement Award
Ed Thomas, Präsident von Nonwoven Technology Associates, LLC, erhielt den INDA Lifetime Technical Achievement Award 2023 für seine jahrzehntelangen Beiträge zum Wachstum und Erfolg der Vliesstoffindustrie.

RISE 2024 findet vom 1. bis 2. Oktober 2024 in der James B. Hunt Jr. Library der North Carolina State University in Raleigh, NC, statt.

Weitere Informationen:
INDA RISE® Vliesstoffe
Quelle:

INDA

Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten. (c) : Muh Amdadul Hoque. Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten.
27.09.2023

Künstliche Muskelfasern als Zellgerüst

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

„Wir haben festgestellt, dass unser Faserrobot ein sehr geeignetes Gerüst für Zellen ist. Um eine geeignetere Umgebung für die Zellen zu schaffen, können wir die Frequenz und das Kontraktionsverhältnis verändern,“ sagte Muh Amdadul Hoque, Doktorand in Textiltechnik, Chemie und Wissenschaft an der NC State. „Dies waren Proof-of-Concept-Studien; letztendlich ist es unser Ziel, herauszufinden, ob wir diese Fasern als Gerüst für Stammzellen nutzen oder sie in zukünftigen Studien zur Entwicklung künstlicher Organe verwenden können.“
 
Die Forscher stellten die formverändernden Fasern her, indem sie einen ballonartigen Schlauch aus einem gummiähnlichen Material in eine geflochtene Textilhülle einkapselten. Wird der im Innern befindliche Ballon mit einer Luftpumpe aufgeblasen, dehnt sich der geflochtene Mantel aus, wodurch er sich verkürzt.

Die Forschenden maßen die Kraft und die Kontraktionsraten von Fasern aus verschiedenen Materialien, um den Zusammenhang zwischen Material und Performance zu verstehen. Sie stellten fest, dass stärkere Garne mit größerem Querschnitt eine stärkere Kontraktionskraft erzeugen. Darüber hinaus fanden sie heraus, dass das für die Herstellung des Ballons verwendete Material einen Einfluss auf die Stärke der Kontraktion und die erzeugte Kraft ausübte.
 
„Wir haben nachgewiesen, dass wir die Materialeigenschaften an die erforderliche Leistung des Geräts anpassen können“, so Xiaomeng Fang, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State. "Wir haben auch gezeigt, dass wir dieses Gerät klein genug machen können, so dass wir es potenziell bei der Herstellung von Textilien und anderen Textilanwendungen einsetzen können, unter anderem in Wearables und Hilfsmitteln."
 
In einer Folgestudie untersuchten die Forschenden, ob sie die formverändernden Fasern als Gerüst für Fibroblasten verwenden könnten, eine Zellart, die in Bindegeweben vorkommt und andere Gewebe oder Organe stützt.

„Die Dehnung soll die dynamischen Bewegungen des Körpers imitieren“, sagt Jessica Gluck, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State University und Mitautorin der Studie.

Die Wissenschaftler untersuchten die Reaktion der Zellen auf die Bewegung der formverändernden Fasern sowie auf die verschiedenen Materialien, die bei der Faserstruktur verwendet wurden. Sie fanden heraus, dass die Zellen in der Lage waren, die Flechthülle des Faserrobots zu bedecken und sogar zu durchdringen, stellten jedoch eine Abnahme der Stoffwechselaktivität der Zellen fest, wenn die Kontraktion des Faserrobots über ein bestimmtes Maß hinaus anhielt, im Vergleich zu einer Einheit aus demselben Material, die sie stationär hielten.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
Die Ergebnisse sollen weiter ausgebaut werden, um zu sehen, ob die Fasern als biologisches 3D-Modell verwenden werden können, und weiter, um zu untersuchen, ob die Bewegung die Zellteilung beeinflussen würde. Ihr Modell wäre ein Fortschritt gegenüber anderen experimentellen Modellen, die entwickelt wurden, um die Reaktion von Zellen auf zweidimensionale Dehnung und andere Bewegungen zu zeigen.
 
„Wenn man Zellen dehnen oder belasten will, legt man sie normalerweise auf eine Kunststoffschale und dehnt sie in eine oder zwei Richtungen“, sagte Gluck. „In dieser Studie konnten wir zeigen, dass die Zellen in dieser dynamischen 3D-Kultur bis zu 72 Stunden überleben können.“

„Dies ist besonders nützlich für Stammzellen“, fügte Gluck hinzu. „In Zukunft könnten wir untersuchen, was auf zellulärer Ebene bei mechanischer Belastung passiert. Man könnte Muskelzellen betrachten und sehen, wie sie sich entwickeln, oder analysieren, wie die mechanische Einwirkung zur Zellteilung beitragen würde.“

Die Studie „Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” wurde am 18. März in Actuators veröffentlicht. Emily Petersen war Mitautorin. Die Studie wurde durch eine Anschubfinanzierung gefördert, die Fang vom Department of Textile Engineering, Chemistry and Science der NC State University erhielt.

Die Studie mit dem Titel „Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System“ (Entwicklung eines pneumatisch angetriebenen faserförmigen Robotgerüsts zur Verwendung als komplexes dynamisches 3D-Kultursystem) wurde am 21. April online in Biomimetics veröffentlicht. Neben Gluck, Hoque und Fang gehörten Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen und Shane Harrington zu den Co-Autoren. Die Studie wurde vom NC State Wilson College of Textiles, der Abteilung für Textiltechnik, -chemie und -wissenschaft sowie dem Wilson College of Textiles Research Opportunity Seed Fund Program finanziert.

Quelle:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

„Ein Raumschiff wird ja nicht von der Stange gefertigt.“

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 
Wer auf Ihre Geschichte und damit bis in die Anfänge des 19. Jahrhunderts zurückschaut, sieht eine Bändermanufaktur und ab 1855 eine Fabrikation von Seiden- und Hutbändern. Heute produzieren Sie Filtra¬tionstextilien, Industrietextilien und Textilien für Verbundstoffe. Zwar fertigen Sie auch heute noch Schmaltextilien, aber das Motto „Transformation als Chance“ scheint bei vombaur gelebte Realität.
 
Carl Mrusek, Chief Sales Officer: Ja, vombaur hat sich in seiner fast 220-jährigen Unternehmensgeschichte einige Male verwandelt. Dabei ist sich das Unternehmen als Schmaltextiler immer treu geblieben. Das zeugt von der Veränderungsbereitschaft bei den Menschen im Unternehmen und von ihrer Neugier. Erfolgreiche Transformation ist eine gemeinsame Entwicklung, es liegt eine Chance in der Veränderung. Das hat vombaur in den vergangenen fast 220 Jahren schon häufig bewiesen: Wir haben unsere Produkt-Portfolio an neue Zeiten angepasst, wir haben neue Fabrikgebäude und neue Maschinenparks errichtet, haben neue Materialien eingeführt und neue Technologien entwickelt, wir sind neue Partnerschaften – wie zuletzt als Teil der Textation Group – eingegangen. Aktuell planen wir unsere neue Zentrale. Wir erfinden uns damit nicht neu, aber eine Art Transformationsprozess werden wir auch mit dem Umzug in die brandneuen, klimagerechten Hightech-Räume durchlaufen.

 

Können Sie die Herausforderungen dieses Transformationsprozesses beschreiben?
 
Johannes Kauschinger, Sales Manager für Composites und Industrietextilien: Eine Transformation vollzieht sich in der Regel technisch, fachlich, organisatorisch und nicht zuletzt – vielleicht sogar zuallererst – kulturell. Die technischen Herausforderungen liegen auf der Hand. Um die neuen Technologien zu managen und zu nutzen, braucht es zweitens entsprechendes Fachwissen im Unternehmen. Jede Transformation bringt drittens neue Prozesse mit sich, Teams und Abläufe müssen angepasst werden. Und schließlich verändert sich viertens auch die Unternehmenskultur. Technik, kann man sich beschaffen, Fachwissen erwerben, die Organisation anpassen. Zeit dagegen können wir nicht kaufen. Die größte Herausforderung sehe ich deshalb darin, die personellen Ressourcen bereitzustellen: Damit wir die Transformation aktiv gestalten und nicht durch die Entwicklung getrieben werden, brauchen wir ausreichend Fachkräfte.

 

Beim Besuch Ihrer Website fällt sofort der Claim „pioneering tech tex“ ins Auge. Weshalb sehen Sie Ihr Unternehmen als Pionier, und worin bestehen die bahnbrechenden oder wegbereitenden Innovationen von vombaur?

Carl Mrusek: Wir sind mit unserem einzigartigen Maschinenpark Pionier*innen für nahtlos rundgewebte Textilien. Und als Entwicklungspartner betreten wir mit jedem Auftrag ein kleines Stück weit Neuland. Wir nehmen immer neue projektspezifische Veränderungen vor: an den Endprodukten, an den Produkteigenschaften, an den Maschinen. Dass wir für ein spezielles nahtlos gewebtes Formtextil eine Webmaschine anpassen, bisweilen auch ganz neu entwickeln, kommt regelmäßig vor.
 
Mit unserem jungen, erstklassigen und wachsenden Team für Development and Innovation um Dr. Sven Schöfer, lösen wir unseren Anspruch „pioneering tech tex“ immer wieder ein, indem wir mit und für unsere Kunden spezielle textile Hightech-Lösungen entwickeln. Parallel erkunden wir aktiv neue Möglichkeiten. Zuletzt mit nachhaltigen Materialien für den Leichtbau und Forschungen zu neuartigen Sonderfiltrationslösungen etwa zur Filtration von Mikroplastik. Für dieses Team ist im Neubau ein hochmodernes textiltechnisches Labor vorgesehen.

 

Die Entwicklung der technischen Textilien in Deutschland ist eine Erfolgsgeschichte. Mit Massenware können wir global betrachtet nur noch in Ausnahmefällen reüssieren. Wie schätzen Sie die Bedeutung technischer Textilien made in Germany für den Erfolg anderer, insbesondere hoch technologisierter Branchen ein?

Carl Mrusek: Wir sehen die Zukunft der Industrie in Europa in individuell entwickelten Hightech-Produkten. vombaur steht gerade für hochwertige, zuverlässige und langlebige Produkte und Spezialanfertigungen. Und gerade das – passgenau Produkte, statt Überschuss- und Wegwerfware – ist die Zukunft für nachhaltige Wirtschaft insgesamt.

 

Welchen Anteil hat das Projektgeschäft an Ihrer Produktion gegenüber einem Standardsortiment, und inwiefern fühlen Sie sich noch mit der Bezeichnung „Textilproduzent“ wohl?

Johannes Kauschinger: Unser Anteil an Speziallösungen liegt bei nahezu 90 Prozent. Wir entwickeln für aktuelle Projekte unserer Kunden textiltechnische Lösungen. Hierfür sind wir in engem Austausch mit den Kolleg*innen aus der Produktentwicklung unserer Kunden. Gerade bei den Composite Textiles sind vorwiegend Speziallösungen gefragt. Das kann ein Bauteil für die Raumfahrt sein – ein Raumschiff wird ja nicht von der Stange gefertigt. Wir bieten auch hochwertige Serienartikel, etwa im Bereich Industrial Textiles, wo wir rundgewebte Schläuche für Transportbänder bieten. So gesehen sind wir Textilproduzent, aber mehr als das: Wir sind dabei auch Textilentwickler.

 

Composites Germany hat im August die Ergebnisse seiner 21. Markterhebung vorgestellt. Dabei wird die aktuelle Geschäftslage sehr kritisch gesehen, das Investitionsklima trübt sich ein und Zukunftserwartungen drehen ins Negative. vombaur hat in seinem Portfolio ebenfalls hochfeste textile Verbundwerkstoffe aus Carbon, Aramid, Glas und Hybriden. Teilen Sie die Beurteilung der Wirtschaftslage, wie sie die Umfrage spiegelt?

Carl Mrusek: Wir sehen für vombaur eine durchaus positive Entwicklung voraus, da wir sehr lösungsorientiert entwickeln und unseren Kunden einen echten Mehrwert bieten. Denn gerade Zukunftstechnologien benötigen individuelle, zuverlässige und leichte Bauteile. Das reicht von Entwicklungen für das Lufttaxi bis zu Windrädern. Textilien sind ein prädestiniertes Material für die Zukunft. Die Herausforderung besteht auch darin, hier mit natürlichen Rohstoffen wie Flachs und recycelten und recycelbaren Kunststoffen und effektiven Trenntechniken nachhaltige und kreislauffähige Lösungen anzubieten.

 

Es gibt heutzutage fast kein Unternehmen, das nicht die aktuellen Buzzwords bedient wie Klimaneutralität, Kreislaufwirtschaft, Energieeffizienz und erneuerbare Energien. Was unternimmt Ihr Unternehmen in diesen Bereichen und wie definieren Sie die Bedeutung dieser Ansätze für einen wirtschaftlichen Erfolg?

Carl Mrusek: vombaur verfolgt eine umfassende Nachhaltigkeitsstrategie. Ausgehend von unserer Leitbildentwicklung arbeiten wir aktuell an einer Nachhaltigkeitserklärung. Unsere Verantwortung für die Natur wird sich sehr konkret und messbar in unserem Neubau mit Dachbegrünung und Solaranlage realisieren. In unserer Produktentwicklung fließen die hohen Nachhaltigkeitsansprüche – unsere eigenen und die unserer Kunden – schon jetzt in umwelt- und ressourcenschonende Produkte und in Produktentwicklungen für nachhaltige Projekte wie Windparks oder Filtrationsanlagen ein.

 

Stichwort Digitalisierung: Der Mittelstand, zu dem vombaur mit seinen 85 Mitarbeitenden gehört, wird oft dafür gescholten, in diesem Bereich zu zögerlich zu sein. Was würden Sie auf diesen Vorwurf antworten?

Johannes Kauschinger: Wir hören derzeit oft von der Stapelkrise. Angelehnt daran ließe sich von der Stapeltransformation sprechen. Wir, die mittelständischen Unternehmen, transformieren uns gleichzeitig in einer Reihe von unterschiedlichen Dimensionen: Digitale Transformation, Klimaneutralität, Fachkräftemarkt und Bevölkerungsentwicklung, Unabhängigkeit von den vorherrschenden Lieferketten. Wir sind veränderungsfähig und veränderungswillig. Politik und Verwaltung könnten es uns an einigen Stellen etwas leichter machen. Stichwort Verkehrs-Infrastruktur, Genehmigungszeiten, Energiepreise. Wir tun alles, was auf unserer Seite des Feldes zu ist, damit mittelständische Unternehmen die treibende Wirtschaftskraft bleiben, die sie sind.

 

Was empfinden Sie bei dem Begriff Fachkräftemangel? Beschreiten Sie auch unkonventionelle Wege, um Talente und Fachkräfte in einer so spezialisierten Branche zu finden und zu halten? Oder stellt sich das Problem nicht?

Carl Mrusek: Klar, auch wir bekommen den Fachkräftemangel zu spüren, gerade im gewerblichen Bereich. Die Entwicklung war aber abzusehen. Das Thema spielte eine gewichtige Rolle bei der Entscheidung mit unserem Schwesterunternehmen JUMBO-Textil zusammen unter das Dach der Textation Group zu ziehen. Die Nachwuchsgewinnung und -förderung lässt sich gemeinsam – zum Beispiel mit gruppenübergreifenden Kampagnen und Kooperationen – besser meistern.

 

Wenn Sie ein persönliches Schlüsselerlebnis beschreiben müssten, das Ihre Einstellung zur Textilindustrie und deren Zukunft geprägt hat, was wäre das?

Johannes Kauschinger: Ein sehr guter Freund meiner Familie hat mich darauf angesprochen, dass wir in einer Gegend mit sehr aktiver Textilindustrie leben, die gleichzeitig Probleme hat, Nachwuchskräfte zu finden. Ich besuchte zwei Betriebe zur Vorstellung und schon auf dem Betriebsrundgang in jeder der beiden Firmen war das Zusammenwirken von Menschen, Maschinen und Textil bis zum tragbaren Endprodukt beeindruckend. Dazu kam, dass ich einen Beruf mit sehr großem Bezug zum täglichen Leben erlernen konnte. Bis heute bin ich über die Breite der Einsatzmöglichkeiten von Textilien, speziell in technischen Anwendungen, fasziniert und bereue die damalige Entscheidung keinesfalls.

Carl Mrusek: Bereits in jungen Jahren kam ich mit der Textil- und Modewelt in Berührung. Ich erinnere mich noch gut daran, wie ich mit meinem Vater Rolf Mrusek das erste Mal durch die vollstufige Textil-Produktion eines Unternehmens in Nordhorn ging. Das Thema hat mich seitdem nicht mehr losgelassen. Schon vor Beginn meiner Studienzeit hatte ich mich bewusst für eine Karriere in dieser Industrie entschieden und habe es bis heute nicht bereut, im Gegenteil. Die Vielfältigkeit der in der Textation Group entwickelten Speziallösungen fasziniert mich immer wieder aufs Neue.
 

vombaur ist Spezialist für nahtlos rund- und in Form gewebte Schmaltextilien und branchenweit als Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles aus Hochleistungsfasern bekannt. Die technischen Schmaltextilien von vombaur dienen zum einen zur Filtration – u. a. in der Lebensmittel- und Chemieindustrie. Als hochleistungsfähige Verbundwerkstoffe kommen sie beispielsweise im Flugzeugbau oder in der Medizintechnik zum Einsatz. Für technische Anwendungen entwickelt vombaur speziell beschichtete Industrietextilien zur Isolierung, Verstärkung oder für den Transport in ganz unterschiedlichen industriellen Prozessen – von der Feinmechanik bis zur Bauindustrie. Das Wuppertaler Unternehmen wurde 1805 gegründet. Aktuell arbeiten 85 Beschäftigte im Unternehmen.
 

Branchen

  • Aviation & Automotive
  • Sports & Outdoor    
  • Bau- & Wasserwirtschaft
  • Sicherheit & Protection    
  • Chemie & Lebensmittel
  • Anlagenbau & Elektronik    
  • Medizin & Orthopädie

 

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.
Unter dem Titel „New Sensitivity“ stehen neben ästhetischen Aspekten Innovationen und Veränderungen in der Zusammensetzung von Textilien im Mittelpunkt. „In diesem Zusammenhang bedeutet Sensibilität, dass bei Entscheidungen oder der Entwicklung eines Produkts Auswirkungen auf die Umwelt von Anfang an berücksichtigt werden. Zu verstehen, wie natürliche Ökosysteme funktionieren, und dem Gleichgewicht den Vorrang zu geben, ist der Schlüssel,“ so Anja Bisgaard Gaede von SPOTT trends & business.

Wie lässt sich die neue Sensibilität in der Lifestyle-Branche konkret umsetzen und was bedeutet eine sensible Herangehensweise für Design und Produkte? Auch der Einsatz von Artificial General Intelligence (AGI) hat das Potenzial, innovative Lösungen in der Textilindustrie zu bieten, birgt aber auch gesellschaftliche Herausforderungen. AGI erfordert eine sensible Herangehensweise, um Komplexität zu reduzieren, Kreativität zu fördern und bisher unentdeckte Lösungen in der Textilwelt und darüber hinaus zu finden.
     
„Mit den Heimtextil Trends 24/25: New Sensitivity ermutigen wir die Textilbranche, sich der Zukunft mit Bedacht und rücksichtsvoll zu nähern. Konkret sehen wir diesen Wandel in drei verschiedenen Strömungen für eine sensiblere Welt der Textilien: biotechnisch, pflanzenbasiert und technologisch,“ so Bisgaard Gaede weiter.

Plant-based: Textilien aus Pflanzen und pflanzlichen Nebenerzeugnissen
Die Fasern von Textilien auf Pflanzenbasis stammen von etwas Gewachsenem und werden nicht synthetisch hergestellt. Der nachhaltige Vorteil von Textilien auf pflanzlicher Basis ist, dass sie natürlichen Ursprungs sind und daher eher für die Rückführung in existierende Ökosysteme wiederverwendet werden können. Sie können in zwei Aspekte unterteilt werden. Der erste ist die Herstellung von Textilien aus Pflanzenkulturen. Neue widerstandsfähige Pflanzen wie Kaktus, Hanf, Abaka (Manilahanf), Seegras und Kautschuk bieten hier neue, nachhaltige Textillösungen. Aufgrund der mechanischen Extraktion können sie trotz Klimaveränderungen wachsen und benötigen bei der Entwicklung weniger Chemikalien. Die zweite Gruppe sind Textilien, die aus pflanzlichen Nebenprodukten hergestellt werden, d. h. aus Rohstoffen wie Bananen, Oliven, Kakis und Hanf, die bei der Produktion übrigbleiben.

Technological: Technologie und technische Lösungen, die Textilien verändern
Technologie kann die Umwandlung von Textilien durch verschiedene Methoden unterstützen: Upcycling und Recycling von Textilien, Textilkonstruktion und Textildesign. Aufgrund der jahrzehntelangen Produktion sind Textilien heute Materialien, die im Überfluss vorhanden sind. Die Entwicklung von Technologien zur Wiederverwertung von Textilabfällen und zum textilen Upcycling erhöht die zirkuläre Nutzung bereits hergestellter Textilien. Darüber hinaus sind auch alte Textilkonstruktionstechniken ein Weg zu nachhaltigen Lösungen. Durch die Verwendung von Stricktechniken für Möbelbezüge wird weniger Textilabfall produziert, demgegenüber können durch die Webtechnik mit wenigen farbigen Garnen optisch mehrere Farben erzeugt werden. Textile Design Thinking befasst sich mit kritischen Themen wie dem Energieverbrauch oder der Haltbarkeit von Naturfasern und verbessert diese durch technologische Weiterentwicklung.

Bio-engineered: entwickelt zur Verbesserung der biologischen Abbaubarkeit
Bei bio-technisch hergestellten Textilien verschmelzen pflanzliche und technische Textilien. Bio-Engineering schlägt eine Brücke zwischen Natur und Technik und verändert die Art und Weise, wie Textilien hergestellt werden. Sie können in zwei Richtungen unterteilt werden: vollständig biotechnisch hergestellte und biologisch abbaubare Textilien. Bei vollständig biotechnologisch hergestellten Textilien werden von der Natur inspirierte Strategien angewandt. Anstatt die Pflanzen anzubauen und daraus Fasern zu extrahieren, werden Proteine und Kohlenhydrate aus Mais, Gras und Rohrzucker oder Bakterien eingesetzt. Die Textilien werden durch einen biomolekularen Prozess hergestellt, bei dem Filamente entstehen, die zu Garnen werden. Der nachhaltige Vorteil von biotechnologisch hergestellten Textilien besteht darin, dass sie einige der gleichen Funktionalitäten wie synthetisch hergestellte Textilien haben können. Da sie jedoch natürlichen Ursprungs sind, können sie biologisch abgebaut werden. „Biodegradable Fibres“ können herkömmlichen Textilien wie Polyester zugesetzt werden und verbessern deren Fähigkeit, sich zu in der Natur vorkommenden Materialien zurückzuverwandeln und sich somit in natürlichen Umgebungen wie Wasser oder Erdboden biologisch abzubauen. Die biologisch verbesserten Textilien werden zwar nicht vollständig, aber bis zu 93 Prozent im Vergleich zu herkömmlichen Textilien biologisch abgebaut.

Heimtextil Trends 24/25: Farben
Ein sensibler Ansatz bei den Färbemethoden kommt in einer dynamischen und gleichzeitig subtilen Farbpalette zum Ausdruck. Sie wird mit natürlichen, aus der Erde stammenden Pigmenten erzeugt, während traditionelle Färbeverfahren durch innovative Biotechnologie auf die nächste Stufe gebracht werden. In dem Bestreben, Farben zu erschaffen, die Emotionen hervorrufen und gleichzeitig Werte beim Umweltschutz respektieren, erzeugen Farbbakterien durch Pigmentwachstum Farbtöne von beeindruckendem Reichtum und großer Tiefe.
               
Zu dieser neuen Sensibilität gehört auch die Akzeptanz natürlicher Farbverläufe, da die Farben mit der Zeit verblassen oder sich in eine neue Farbrichtung verwandeln können. Die Farbtöne der Heimtextil Trends 24/25 wurden von natürlichen Farben inspiriert, die aus Avocadokernen, Algen, lebenden Bakterien, antiken Pigmenten wie Roh Sienna und biotechnisch hergestelltem Indigo und Cochenille stammen. Der hohe Schwarzanteil in den meisten Farben ermöglicht eine breite Anwendung und eine größere Vielfalt an Kombinationen. Die kräftigen, gesättigten Akzente beleben Sinne und Stimmung. Im Gegensatz dazu stehen die erdenden Neutraltöne in verschiedenen Grauabstufungen, Terra und sogar dunklem Violett, die für Ruhe und Gelassenheit sorgen.
     
Future Materials: regeneratives Design
Wie werden regenerative Textilien und Materialien definiert? Regeneratives Design hat sich dem Ziel verschrieben, ganzheitliche kreative Praktiken zu entwickeln, die die Ressourcen wiederherstellen oder erneuern, eine positive Auswirkung auf die Umwelt haben und das Gedeihen von Gemeinschaften fördern. Für die Heimtextil 2024 kuratiert die Design-Zukunftsberatung FranklinTill ein globales Schaufenster hochmoderner Textilien und Materialien, um die Prinzipien des regenerativen Designs zu veranschaulichen und bahnbrechende Designer*innen, Erzeuger*innen und Hersteller*innen zu würdigen, die an der Spitze des regenerativen Designs stehen.
Der Trend Space auf der Heimtextil in Frankfurt vom 9. bis 12. Januar 2023 präsentiert diese Lösungen auf inspirierende Weise. Zusätzlich bieten die Heimtextil Trends Besuchern in Form von Workshops, Vorträgen und weiteren interaktiven Formaten Orientierung und Einblicke in die Zukunft von Wohn- und Objekttextilien.

Quelle:

Heimtextil, Messe Frankfurt

Foto unsplash.com
05.09.2023

Ananas Anam und TENCEL™ kooperieren mit Calvin Klein

Auf der Suche nach einem besseren, umweltfreundlichen Schuhmaterial findet sich die Lösung in einer ungewöhnlichen Zutat: den Blättern der Ananas. Diese besondere Textilzutat steht im Mittelpunkt der jüngsten Schuhdesign-Kooperation zwischen Ananas Anam, TENCEL™ und Calvin Klein. Calvin Klein bringt den ersten Turnschuh auf den Markt, dessen Obermaterial aus PIÑAYARN® kombiniert mit TENCEL™ Lyocell-Fasern gestrickt ist.
 
Die als "The Sustainable Knit Trainer" bekannten Turnschuhe sind ein zeitloser Klassiker, der – versehen mit dem bekannten Calvin Klein-Logo - in den traditionellen Farben Schwarz und Off-White erhältlich ist. Das Obermaterial aus PIÑAYARN®-Strick, das zu 70 % aus TENCEL™ Lyocell und zu 30 % aus Anam PALF™ Ananasblattfasern besteht, ist sowohl pflanzlichen Ursprungs als auch biobasiert.
          

Auf der Suche nach einem besseren, umweltfreundlichen Schuhmaterial findet sich die Lösung in einer ungewöhnlichen Zutat: den Blättern der Ananas. Diese besondere Textilzutat steht im Mittelpunkt der jüngsten Schuhdesign-Kooperation zwischen Ananas Anam, TENCEL™ und Calvin Klein. Calvin Klein bringt den ersten Turnschuh auf den Markt, dessen Obermaterial aus PIÑAYARN® kombiniert mit TENCEL™ Lyocell-Fasern gestrickt ist.
 
Die als "The Sustainable Knit Trainer" bekannten Turnschuhe sind ein zeitloser Klassiker, der – versehen mit dem bekannten Calvin Klein-Logo - in den traditionellen Farben Schwarz und Off-White erhältlich ist. Das Obermaterial aus PIÑAYARN®-Strick, das zu 70 % aus TENCEL™ Lyocell und zu 30 % aus Anam PALF™ Ananasblattfasern besteht, ist sowohl pflanzlichen Ursprungs als auch biobasiert.
          
Da die Modebranche begonnen hat, die negativen Umweltauswirkungen synthetischer Materialien zu erkennen, haben sich viele Marken pflanzlichen Materialien wie PIÑAYARN® zugewandt. PIÑAYARN® wird in einem umweltfreundlichen Verfahren aus Abfällen von Ananasblättern gewonnen und in einem wasserfreien Spinnverfahren hergestellt. Die Zugabe von TENCEL™ Lyocell, einer Zellstofffaser aus nachhaltig bewirtschafteten Wäldern, die in einem Lösungsmittelspinnverfahren hergestellt wird, bei dem sowohl das Lösungsmittel als auch das Wasser mit einer Rückgewinnungsrate von mehr als 99 % recycelt werden, ermöglicht die vollständige Rückverfolgbarkeit der TENCEL™-Faser im fertigen Mischgarn.
 
Melissa Braithwaite, PIÑAYARN® Product Development Manager bei Ananas Anam, sagte: "Die Inspiration für PIÑAYARN® entstand aus dem Bedürfnis, der Textilindustrie eine Alternative zu übermäßig genutzten, oft umweltbelastenden, konventionellen Fasern wie Baumwolle oder Polyester zu bieten. Wir verfügen in unserem Geschäftsbereich über eine Fülle von nutzbaren Ressourcen, und die Erweiterung unseres Produktangebots bedeutet, dass wir mehr Abfälle verwerten können, wodurch sich unser positiver Einfluss auf die Umwelt und die Gesellschaft erhöht."

Mit der wachsenden Nachfrage der Verbraucher nach umweltfreundlichen Textilprodukten und Schuhen steigt auch die Beliebtheit von Textilfasern auf Holzbasis als Materialalternative. Die Zusammenarbeit von Ananas Anam und TENCEL™ mit Calvin Klein war insofern ein Erfolg, als sich die physikalischen Eigenschaften und die umweltfreundlichen Vorteile der PIÑAYARN®- und TENCEL™-Fasern perfekt ergänzen und ein weiches, für verschiedene Web- und Strickanwendungen geeignetes Mischmaterial ergeben.

Für Materialentwickler wie Ananas Anam, die den idealen Partner für Fasermischungen zur Herstellung von PIÑAYARN® suchten, sind TENCEL™ Lyocellfasern bekannt für ihre Vielseitigkeit und ihre Fähigkeit, mit einer Vielzahl von Textilien wie Hanf, Leinen und natürlich der Anam PALF™ Ananasblattfaser gemischt zu werden, um die Ästhetik, Leistung und Funktionalität von Stoffen zu verbessern. Darüber hinaus können TENCEL™ Lyocell-Fasern nicht nur in Schuhoberteilen verwendet werden, sondern auch in jedem Teil des Schuhs, einschließlich des Obermaterials, des Futters, der Einlegesohlen, der Polsterung, der Schnürsenkel, des Reißverschlusses und des Nähgarns. TENCEL™ Lyocell kann ebenfalls in Pulverform für die Laufsohle von Schuhen verwendet werden.

„Wir freuen uns sehr über die Zusammenarbeit mit Ananas Anam bei der Markteinführung von The Sustainable Knit Trainer by Calvin Klein, einem umweltfreundlichen Schuh für bewusste Konsumenten. Diese Partnerschaft ist ein perfektes Beispiel für unser Engagement, Bildung und Fachwissen zur Verfügung zu stellen, um jeden zu unterstützen, der sich dafür entscheidet, die Umwelt- und Sozialverträglichkeit seiner Produkte durch die Verwendung verantwortungsvoller Materialien zu verbessern“, so Nicole Schram, Global Business Development Manager bei Lenzing.
Quelle: Lenzing AG

Quelle:

Lenzing AG

(c) Institut auf dem Rosenberg
01.09.2023

'Blue Nomad' - Auf Flachsfasern in die Zukunft gleiten

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

bcomp begeistert besonders an dem Projekt, dass das in London und Monaco ausgestellte Modell die eigenen ampliTex™ Flachsfasern enthält. Das Institut auf dem Rosenberg und SAGA entwickeln derzeit einen Plan für den Bau eines tatsächlichen Prototyps des schwimmenden Hauses. Es könnte aus einem strukturell optimierten Gewebe aus Flachsfasern hergestellt werden und die Zukunft organischer und regenerativer Hochleistungsmaterialien aufzeigen, die herkömmliche synthetische und fossile Technologien ersetzen.

Blue Nomad" ist nicht nur ein solitärer Lebensraum, sondern ein Konzept für eine neue Art von Gemeinschaft. Als modulare Blöcke konzipiert, können diese Lebensräume größere Gemeinschaften und Meeresfarmen bilden, die es den Bewohnern ermöglichen, Ressourcen zu teilen, während sie von einer Meeresfarm zur nächsten ziehen. Es ist eine beeindruckende Vision einer Zukunft, in der die Grenzen zwischen Land und Wasser verschwimmen und Nachhaltigkeit und Gemeinschaftsbildung im Mittelpunkt der menschlichen Siedlungen stehen.

Doch diese Vision ist nicht nur eine theoretische. Geplant ist eine Jungfernfahrt des "Blue Nomad" quer durch Europa, die ausschließlich mit Solarenergie betrieben wird und die Nachhaltigkeit der Ozeane, die Klimatologie und das Nomadentum der Zukunft fördert.

Dieses Projekt erinnert daran, was wir erreichen können, wenn wir Bildung, innovatives Design und Nachhaltigkeit miteinander verbinden. Der "Blue Nomad" repräsentiert die Zukunft - eine Zukunft, in der nachhaltige Materialien eine entscheidende Rolle beim Schutz unseres Planeten spielen.

Das Projekt "Blue Nomad" wurde auf der Londoner Design-Biennale 2023 sowie der Monaco Energy Boat Challenge ausgestellt, wo es Besucher in seinen Bann zog und große Begeisterung in der Öffentlichkeit auslöste.

Quelle:

Bcomp

sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Photo: zephylwer0, Pixabay
29.08.2023

Ein neuer Weg, Feuer mit nanoskaligem Material zu zähmen

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

„Bei unserer Technik, die wir als inverse thermische Degradation (inverse thermal degradation ITD) bezeichnen, wird ein dünner Film im Nanomaßstab auf ein bestimmtes Material aufgebracht. Der dünne Film verändert sich in Reaktion auf die Hitze des Feuers und reguliert die Menge an Sauerstoff, die in das Material eindringen kann. Das bedeutet, dass wir die Geschwindigkeit steuern können, mit der sich das Material erwärmt - was wiederum die chemischen Reaktionen im Material beeinflusst. Im Grunde können wir genau einstellen, wie und wo das Feuer das Material verändert.“

„ITD funktioniert folgendermaßen. Sie beginnen mit Ihrem Zielmaterial, z. B. einer Zellulosefaser. Diese Faser wird dann mit einer nanometerdicken Schicht aus Molekülen beschichtet. Die beschichteten Fasern werden dann einer intensiven Flamme ausgesetzt. Die äußere Oberfläche der Moleküle verbrennt leicht, wodurch sich die Temperatur in der unmittelbaren Umgebung erhöht. Die innere Oberfläche der molekularen Beschichtung verändert sich jedoch chemisch und bildet eine noch dünnere Glasschicht um die Zellulosefasern. Dieses Glas begrenzt die Menge an Sauerstoff, die zu den Fasern gelangen kann, und verhindert, dass die Zellulose in Flammen aufgeht. Stattdessen schwelen die Fasern - sie brennen langsam von innen nach außen.“

„Ohne die Schutzschicht des ITD würde die Beflammung von Zellulosefasern nur zu Asche führen“, sagt Thuo. „Mit der Schutzschicht des ITD erhält man Kohlenstoffröhren.“

„Wir können die Schutzschicht so gestalten, dass die Menge des Sauerstoffs, die das Zielmaterial erreicht, angepasst wird. Und wir können das Zielmaterial so gestalten, dass es die gewünschten Eigenschaften aufweist.“

Die Forscher führten Probeläufe mit Zellulosefasern durch, um Kohlenstoffröhren im Mikromaßstab herzustellen. Sie konnten die Stärke der Kohlenstoffrohrwände steuern, indem sie die Größe der durch das Einbringen Zellulosefasern, mit denen sie begannen, kontrollierten, indem sie verschiedene Salze in die Fasern einbrachten (was die Verbrennungsgeschwindigkeit zusätzlich steuert) und indem sie die Sauerstoffmenge, die durch die Schutzschicht dringt, variierten.

"Wir haben bereits mehrere Anwendungsmöglichkeiten im Kopf, die wir in zukünftigen Studien untersuchen werden", sagt Thuo. "Wir sind auch offen für eine Zusammenarbeit mit dem privaten Sektor, um verschiedene praktische Anwendungen zu erforschen, wie z. B. die Entwicklung von technischen Kohlenstoffröhren für die Öl-Wasser-Trennung, was sowohl für industrielle Anwendungen als auch für die Umweltsanierung nützlich wäre.

Die Arbeit mit dem Titel „Spatially Directed Pyrolysis via Thermally Morphing Surface Adducts“ wurde in der Zeitschrift Angewandte Chemie veröffentlicht. Mitautoren sind Dhanush Jamadgni und Alana Pauls, Doktoranden am NC State, Julia Chang und Andrew Martin, Postdoktoranden am NC State, Chuanshen Du, Paul Gregory, Rick Dorn und Aaron Rossini von der Iowa State University und E. Johan Foster von der University of British Columbia.

Quelle:

North Carolina State University, Matt Shipman

Photo dayamay Pixabay
21.08.2023

Composites Germany: Investitionsklima trübt sich ein

  • Ergebnisse der 21. Markterhebung vorgelegt
  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen drehen ins Negative
  • Investitionsklima trübt sich ein
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit nur leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 21. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.
Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

  • Ergebnisse der 21. Markterhebung vorgelegt
  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen drehen ins Negative
  • Investitionsklima trübt sich ein
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit nur leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 21. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.
Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Kritische Bewertung der aktuellen Geschäftslage
Nachdem bei der Bewertung der aktuellen Geschäftslage in 2021 durchweg positive Tendenzen zu erkennen waren, rutschte diese in 2022 ab. Bereits zum dritten Mal in Folge zeigen sich bei der aktuellen Erhebung pessimistischer Bewertungen.. Die Gründe für die negative Stimmung sind vielfältig. Haupttreiber aber dürften aber vor allem die nach wie vor hohen Energie- und Rohstoffpreise sein. Hinzu kommen weiterhin Probleme in einzelnen Bereichen der Logistikketten sowie ein zurückhaltendes Konsumklima. Trotz steigender Zulassungszahlen ist auch die Automobilindustrie als wichtigster Anwendungsbereich für Composites noch nicht auf ihr altes Volumen zurückgekehrt. Hier verdeutlicht sich auch der Strategiewechsel europäischer OEM, weg von Volumenmodellen, hin zu margenstarken Fahrzeugsegmenten zu gehen. Die Bauindustrie als zweiter zentraler Anwendungsbereich steckt derzeit in einer Krise. Zwar sind vielfach die Auftragsbücher noch gut gefüllt, aber Neuaufträge bleiben derzeit vielfach aus. Hohe Zinsen und Materialkosten bei hohen Lebenshaltungskosten belasten vor allem den privaten Bau stark. Derzeit wird für die Bauindustrie ein realer Umsatzrückgang für 2023 von 7 % erwartet.

 Auch die Bewertung der Geschäftslage des eigenen Unternehmens ist zunehmend pessimistischer. Vor allem für Deutschland zeigt sich ein negatives Bild. Fast 50 % der Befragten (44 %) bewerten die aktuelle Geschäftslage kritisch. Etwas positiver fällt die Sichtweise auf das weltweite Geschäft und Europa aus. Hier bewerten „nur“ 36 % bzw. 33 % der Befragten die Situation eher negativ.

Zukunftserwartungen drehen ins Negative
Der eher pessimistischen Beurteilung der aktuellen Geschäftslage folgend drehen auch die zukünftigen Geschäftserwartungen in Negative. Die entsprechenden Kennwerte für die generelle Geschäftslage zeigen nach einem Anstieg innerhalb der letzten Befragung nun deutlich nach unten. Auch für das eigene Unternehmen zeigen sich die Befragten hinsichtlich ihrer Zukunftserwartungen pessimistischer.

Die Teilnehmenden gehen anscheinend nicht von einer kurzfristigen Besserung der Situation aus. Auffällig ist auch hier, dass die Sichtweise auf die Region Deutschland im Verhältnis zu Europa und der weltweiten Konjunktur kritischer ist. 22 % der Befragten erwarten eine negative Entwicklung in Deutschland. Nur 13 % erwarten eine Verbesserung der aktuellen Situation. Für Europa und auch die Welt zeigen sich bessere Kennwerte.
 
Investitionsklima trübt sich ein
Die aktuell eher zurückhaltende Bewertung der wirtschaftlichen Situation und die pessimistischen Aussichten wirken sich auch auf das Investitionsklima aus.
Nachdem in der letzten Befragung noch 40 % der Teilnehmenden von einem Anstieg bei der Personalkapazität ausgegangen waren, liegt dieser Wert aktuell nur noch bei 18 %. Demgegenüber stehen 12 %, die sogar von einem Rückgang im Bereich Personal ausgehen.
Auch der Anteil der Befragten, die Maschineninvestitionen planen, ist rückläufig. Waren bei der letzten Befragung noch 71 % von entsprechenden Investitionen ausgegangen, so sinkt dieser Wert nun auf 56 % ab .

Erwartungen an Anwendungsindustrien unterschiedlich
Der Composites Markt ist durch eine starke Heterogenität sowohl material- aber auch anwendungsseitig gekennzeichnet. In der Befragung werden die Teilnehmenden gebeten, ihre Einschätzung hinsichtlich der Marktentwicklung unterschiedlicher Kernbereiche zu geben.
Die Erwartungen zeigen sich äußerst verschieden.

Die bereits beschriebenen Schwächen in den wichtigsten Kernmärkten Transport sowie Bau-/Infrastruktur zeigen sich deutlich. Wachstum wird vor allem im Bereich Windenergie und Luftfahrt erwartet.

Wachstumstreiber mit nur leichten Verschiebungen
Bei den Werkstoffen setzt sich der Paradigmenwechsel weiter fort. Wurde von den Befragten in den ersten 13 Erhebungen stets CFK als Material genannt, aus dessen Umfeld die wesentlichen Wachstumsimpulse für den Composites-Bereich zu erwarten sind, so werden die wesentlichen Impulse mittlerweile durchweg von GFK oder materialübergreifend vermutet.
Regional kommt es zu einer leichten Verschiebung. Derzeit ist es vor allem Nordamerika, aus dem die wesentlichen Wachstumsimpulse für die Branche erwartet werden. Europa und Asien verlieren leicht an Boden.

Composites-Index zeigt in verschiedene Richtungen
Die zahlreichen negativen Einflüsse der letzten Zeit zeigen sich nun auch im Gesamt-Composites-Index. Dieser gibt bei allen Indikatoren nach. Sowohl die aktuelle als auch die zukünftige Beurteilung drehen ins Negative.  

Die gesamte verarbeitende Composites-Menge in Europa in 2022 war bereits leicht rückläufig, im Vergleich zu 2021. Nach einem guten 1. Quartal 2022 zeigt sich derzeit eine deutliche Abkühlung der Aktivitäten. Es bleibt abzuwarten, ob es gelingen wird, der negativen Entwicklung gegenzusteuern. Hier wäre ein zielgerichtetes Eingreifen, auch der politischen Entscheidungsträger wünschenswert. Dies kann aber ohne die Industrie/Wirtschaft nicht gelingen. Nur gemeinsam wird es gelingen den Wirtschaftsstandort Deutschland weiter zu stärken und die Position zu behaupten oder vor dem Hintergrund einer schwächelnden Weltkonjunktur auszubauen. Für Composites zeigen sich nach wie vor sehr gute Chancen zum Ausbau der Marktposition in neuen, aber auch bestehenden Märkten. Die Abhängigkeit von gesamtwirtschaftlichen Entwicklungen aber bleibt bestehen. Es gilt nun über Innovationen neue Marktfelder zu erschließen, Chancen konsequent zu nutzen und gemeinsam daran zu arbeiten, Composites weiter in bestehenden Märkten zu implementieren. Dies kann oftmals gemeinsam besser gelingen als allein. Composites Germany bietet mit seinem hervorragenden Netzwerk vielfältige Möglichkeiten.

Weitere Informationen:
Composites Composites Germany Umfrage
Quelle:

Composites Germany
c/o AVK-TV GmbH

Point of View: Let’s end fast fashion, Prof Minna Halme. Foto: Veera Konsti / Aalto University
18.08.2023

Standpunkt: Schluss mit Fast Fashion!

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Wir kaufen billige Produkte im Wissen, dass wir sie bald ersetzen müssen. Wir werfen gebrauchte Gegenstände weg, anstatt sie zu reparieren oder wiederzuverwenden. Arbeitgeber planen in Bezug auf finanzielle Quartale, obwohl sie hoffen, längerfristig bedeutend und stabil zu bleiben. Sogar Länder geben der kurzfristigen Wirtschaftsleistung den Vorrang und stellen das Bruttoinlandsprodukt (BIP) über jeden anderen Indikator.
 
Unsere globale Besessenheit von kurzfristiger wirtschaftlicher Effizienz - und die Frage, wie man sie überwinden kann - ist ein großes Rätsel, über das Minna Halme, Professorin für Nachhaltigkeitsmanagement, die meiste Zeit ihrer Karriere nachgedacht hat. Schon als Studentin an der Wirtschaftshochschule war sie irritiert, wie sehr sich ihr Unterricht auf kurzfristige Ziele konzentrierte.

„Es ging darum, mehr zu verkaufen, die Gewinne der Aktionäre zu maximieren, ökologisch zu wachsen - aber nicht wirklich zu fragen: Warum? Was ist der Zweck von all dem?“, so Halme.
„Selbst mir als 20-Jähriger kam das irgendwie seltsam vor.“

„Was versuchen wir hier zu tun? Versuchen wir, eine bessere Wirtschaft für alle oder für die meisten Menschen zu schaffen? Wessen Leben versuchen wir zu verbessern, wenn wir mehr unterschiedlich verpackte Joghurtsorten oder Kleidung verkaufen, die schnell unmodern ist?“

Halme hat ihre Karriere der Untersuchung dieser Fragen gewidmet. Heute ist sie eine Vordenkerin im Bereich innovativer Geschäftspraktiken und wurde unter anderem als Mitglied des finnischen Expertengremiums für nachhaltige Entwicklung und des Gremiums für globale Nachhaltigkeit der Vereinten Nationen anerkannt.

Ihr oberstes Ziel? Pionierarbeit zu leisten, zu forschen und für alternative Denkweisen einzutreten, die Werte wie langfristige wirtschaftliche Nachhaltigkeit und Widerstandsfähigkeit in den Vordergrund stellen - Alternativen, von denen sie und andere Experten glauben, dass sie allen einen dauerhaften, weitreichenden Nutzen bringen würden.
 
Wie traditionelle Indikatoren versagt haben
Ein Weg, in der unsere Vorliebe für wirtschaftliche Effizienz die Art und Weise prägt, wie wir den allgemeinen Wohlstand oder Status eines Landes messen, ist das BIP. Das ist nicht die Schuld des Erfinders des modernen Konzepts des BIP, der in den 1930er Jahren ausdrücklich davor warnte, es auf diese Weise zu verwenden.

„Das BIP war nie dazu gedacht, uns etwas über das Wohlergehen der Bürger eines Landes zu sagen", sagt Halme. Vor fünfundsiebzig Jahren war es jedoch leicht, beides miteinander zu verwechseln. Viele Länder waren eher bestrebt, ihren Wohlstand unter ihren Bürgern umzuverteilen, und Bevölkerungsumfragen zeigen, dass das BIP bis in die 1970er Jahre häufig mit dem allgemeinen Wohlstand korrelierte.

Doch mit dem Aufkommen eines zunehmend rücksichtsloseren Kapitalismus der freien Marktwirtschaft wurde dies immer weniger der Fall - und die Unzulänglichkeiten des BIP wurden umso deutlicher. „Wir befinden uns in einer Situation, in der die Verteilung des Reichtums mehr und mehr zu denjenigen wandert, die bereits über Kapital verfügen. Diejenigen, die es nicht haben, befinden sich in einer rückläufigen wirtschaftlichen Position", sagt Halme. Tatsächlich besitzen die reichsten 1 % der Weltbevölkerung heute fast die Hälfte des weltweiten Vermögens.

„Einige Regierungen, wie die finnische, berücksichtigen zwar Indikatoren für den ökologischen und sozialen Fortschritt. Aber keiner wird als so wichtig für die Entscheidungsfindung angesehen wie das BIP", sagt Halme - und das BIP gilt auch als Maßstab für den Erfolg einer Regierung. Diese Einstellung versucht Halme durch ihre Arbeit als Beraterin der finnischen Regierung zu Nachhaltigkeitspraktiken sowie durch ihre eigene Forschung zu ändern.

Wo die Industrie versagt hat
Unsere oft ausschließliche Konzentration auf die Ökonomie - und insbesondere darauf, so schnell und effizient wie möglich Gewinne zu erzielen - vermittelt kein klares Bild davon, wie es allen in einer Gesellschaft geht. Schlimmer noch, es hat die Industrie ermutigt, mit einer kurzfristigen Perspektive zu handeln, die zu längerfristigen Problemen führt.
 
Fast Fashion ist ein Beispiel dafür. Gegenwärtig sind die Lieferketten für Bekleidung - wie die der meisten Waren - linear. Die Rohstoffe kommen von einem Standort und werden Schritt für Schritt verarbeitet, in der Regel in verschiedenen Produktionsstätten auf der ganzen Welt, wobei Materialien, Energie und Transportmittel verwendet werden, die „billig“ sind, weil ihre hohen Umweltkosten nicht berücksichtigt werden.

Schließlich werden sie von einem Verbraucher gekauft, der das Produkt vorübergehend trägt, bevor er es wegwirft. Um die Gewinnspannen zu erhöhen, setzt die Branche auf schnell wechselnde Trends. Eine erschreckende Menge dieser Kleidungsstücke landet auf der Mülldeponie - einige davon, bevor sie überhaupt getragen worden sind.

Wie der COVID Lockdown gezeigt haben, ist diese Art linearer Lieferketten nicht belastbar. Und sie sind auch nicht nachhaltig.

Schätzungen zufolge ist die Modebranche derzeit die zweitgrößte Umweltverschmutzungsbranche der Welt und für bis zu 10 % aller Treibhausgasemissionen verantwortlich. Forscher der Aalto-Universität haben festgestellt, dass die Branche jährlich mehr als 92 Millionen Tonnen Deponieabfälle produziert. Bis 2030 wird ein Anstieg auf 134 Millionen Tonnen erwartet.
„Die Verringerung des CO2-Fußabdrucks der Modebranche ist nicht nur gut für die Umwelt, sondern auch für die langfristigen Aussichten der Branche selbst. Mit dieser Art von falschem Effizienzdenken untergräbt man die Grundlage unserer langfristigen Widerstandsfähigkeit sowohl für die Ökologie als auch für die Gesellschaft", sagt Halme.

Um aus dieser Falle herauszukommen, sagen sie und andere Forscher, ist ein kompletter Paradigmenwechsel erforderlich. „Es ist wirklich schwierig, nur an den Rändern zu feilen", sagt sie.
Auf dem Weg zur Resilienz

Mehrere Jahre lang erforschte und studierte Halme die ökologische Effizienz und suchte nach Möglichkeiten, wie Unternehmen mehr Produkte mit weniger Umweltbelastungen herstellen könnten. Doch allmählich wurde ihr klar, dass dies nicht die Antwort ist. Obwohl die Unternehmen durch Innovationen effizientere Produkte und Technologien entwickeln konnten, stieg ihr absoluter Verbrauch an natürlichen Ressourcen weiter an.

„Ich begann zu denken: Wenn nicht Effizienz, was dann?", sagt Halme. Sie erkannte, dass die Lösung in der Resilienz liegt, d. h. in der Förderung von Möglichkeiten, wie Systeme, einschließlich der Umwelt, in der Zukunft fortbestehen und sich sogar regenerieren können, anstatt sie in der Gegenwart weiter zu schädigen.
Die Lösung ist nicht „mehr von allem“, auch nicht von „nachhaltigen“ Materialien. Es ist weniger.

„Die einzige Möglichkeit, Fast Fashion zu verbessern, ist, sie zu beenden“, schreiben Halme und ihre Mitautoren. Das bedeutet, dass Kleidung so gestaltet werden muss, dass sie lange hält, dass Geschäftsmodelle die Wiederverwendung und Reparatur erleichtern und dass dem Upcycling Vorrang eingeräumt wird. Auch die Recyclingsysteme müssen überarbeitet werden, um festzustellen, wann ein Kleidungsstück wirklich ausgedient hat - insbesondere im Hinblick auf synthetische Mischfasern, die schwer zu trennen und abzubauen sind.

Dies würde die derzeitige Konzentration auf kurzfristige Einnahmen über den Haufen werfen. Und, so Halme, dies ist ein weiteres Beispiel dafür, dass wir bessere Möglichkeiten brauchen, um den Erfolg dieser Branchen zu messen, indem wir Faktoren wie Belastbarkeit und Nachhaltigkeit berücksichtigen - und nicht nur kurzfristige Gewinne.
Und obwohl jeder Einzelne etwas bewirken kann, müssen diese Veränderungen letztlich von der Industrie ausgehen.

„Textilien sind ein gutes Beispiel, denn wenn sie schnell kaputt gehen und man keine Reparaturwerkstatt in der Nähe hat oder wenn die Stoffe von so schlechter Qualität sind, dass es keinen Sinn macht, sie zu reparieren, dann ist das für die meisten Menschen ein zu großer Aufwand“, sagt Halme. Die meisten Lösungen sollten also von der Unternehmensseite kommen. Und das Ziel sollte sein, es den Verbrauchern sowohl modisch als auch einfach zu machen, ökologisch und sozial nachhaltige Entscheidungen zu treffen.
 
Was ist erforderlich?
Die ultimative Herausforderung, sagt Lauri Saarinen, Assistenzprofessor an der Aalto der Aalto-Universität für Wirtschaftsingenieurwesen, ist die Frage, wie man zu einem nachhaltigeren Modell gelangt und gleichzeitig die Wettbewerbsfähigkeit der Unternehmen erhält. Aber er glaubt, dass es Möglichkeiten gibt.

„Eine Möglichkeit besteht darin, die Produktion lokal zu halten. Wenn wir mit der kostengünstigen Offshore-Fertigung konkurrieren, indem wir die Dinge vor Ort und in einem geschlossenen Kreislauf herstellen, dann haben wir den doppelten Vorteil, indem wir lokal Arbeitsplätze schaffen und uns in Richtung einer nachhaltigeren Lieferkette bewegen“, sagt Saarinen. Wenn beispielsweise Kleidung näher am Verbraucher produziert würde, wäre es einfacher, Kleidungsstücke zur Reparatur zurückzuschicken oder gebrauchte Artikel zurückzunehmen und weiterzuverkaufen.

Lokale Produktion ist ein weiteres Beispiel dafür, dass wir die Methode, mit der wir den gesellschaftlichen Erfolg messen, neu überdenken müssen. Schließlich scheinen Outsourcing und Offshoring zugunsten einer billigeren Produktion kurzfristig die Kosten zu senken, aber dies geschieht zu Lasten dessen, was nach Ansicht von Halme und anderen Experten wirklich wichtig ist: eine längerfristige wirtschaftliche Tragfähigkeit, Widerstandsfähigkeit und Nachhaltigkeit. Es ist nicht einfach, zu dieser Art von Denken überzugehen. Dennoch sehen Saarinen und Halme vielversprechende Signale.
 
Für Finnland verweist Halme beispielsweise auf das Start-up-Unternehmen Menddie, das es leicht und bequem macht, Kleidungsstücke zum Reparieren oder Ändern wegzuschicken. Sie hebt auch die Bekleidungs- und Lifestyle-Marke Marimekko hervor, die ihre gebrauchten Kleidungsstücke in einem Online-Secondhand-Shop weiterverkauft, sowie das Label Anna Ruohonen, ein Konzept für Maßanfertigungen und Kunden auf Abruf, bei dem keine überschüssigen Kleidungsstücke entstehen.

Genau diese Art von Projekten findet Halme interessant - und sie hofft, mit ihrer Arbeit sowohl für diese zu werben als auch Pionierarbeit zu leisten.
„Momentan haben diese Veränderungen noch nicht zu einer echten Transformation geführt“, sagt sie. Auf globaler Ebene sind wir noch weit von einem echten Wandel hin zu längerfristiger Resilienz entfernt. Aber das könne sich, wie sie betont, schnell ändern. Schließlich hat sich das in der Vergangenheit auch bereits geändert: „Man muss sich nur ansehen, was uns hierhergebracht hat.“

„Das Streben nach Wirtschaftswachstum wurde in relativ kurzer Zeit - nur über etwa sieben Jahrzehnte - zu einem so dominanten Schwerpunkt“, sagt sie. Der Wandel hin zu einer längerfristigen Resilienz ist durchaus möglich. Wissenschaftler und Entscheidungsträger müssen nur ihr Hauptziel auf langfristige Widerstandsfähigkeit umstellen. Die Kernfrage ist, ob unsere mächtigsten Wirtschaftsakteure klug genug sind, dies zu tun.
 
Im Rahmen ihrer Forschung hat Halme Projekte geleitet, die Pionierarbeit für die Art von Veränderungen leisten, die die Modeindustrie vornehmen könnte. Gemeinsam mit ihrer Aalto-Kollegin Linda Turunen hat sie beispielsweise kürzlich ein Messverfahren entwickelt, mit dem die Modeindustrie die Nachhaltigkeit eines Produkts klassifizieren könnte. Dabei wird gemessen, wie haltbar das Produkt ist, wie leicht es recycelt werden kann und ob bei der Herstellung gefährliche Chemikalien verwendet werden - was den Verbrauchern bei der Kaufentscheidung helfen könnte. Ihre Kollegen haben vor kurzem eine Ausstellung kuratiert, in der gezeigt wurde, was wir in einer nachhaltigen Zukunft tragen könnten, z. B. eine Lederalternative, die aus weggeworfenen Blumenstecklingen hergestellt wird, oder modulare Designs, mit denen ein und dasselbe Kleidungsstück mehrfach verwendet werden kann, indem z. B. ein Rock in ein Hemd verwandelt wird.

Da all dies längerfristiges Denken, Innovation und Investitionen erfordert, ist die Industrie zurückhaltend, diese Veränderungen vorzunehmen, sagt Halme. Eine Möglichkeit, die Industrie zu einem schnelleren Wandel zu bewegen, ist die Regulierung. In der Europäischen Union beispielsweise müssen Unternehmen mit mehr als 500 Mitarbeitern aufgrund einer aktualisierten Reihe von Richtlinien nun über eine Reihe von Faktoren der Unternehmensverantwortung Bericht erstatten, die von den Auswirkungen auf die Umwelt bis zur Behandlung der Mitarbeiter reichen. Diese Vorschriften werden nicht nur dazu beitragen, Verbraucher, Investoren und andere Interessengruppen über die Rolle eines Unternehmens bei globalen Herausforderungen zu informieren. Sie werden auch dazu beitragen, Investitionsrisiken zu bewerten und abzuwägen, ob ein Unternehmen die notwendigen Maßnahmen ergreift, um langfristig finanziell stabil zu sein.

Quelle:

Aalto University, Amanda Ruggeri. Übersetzung Textination

BioKnit Myzel-Gewölbe BioKnit Myzel-Gewölbe © Hub or Biotechnology in the Built Environment
11.08.2023

Gestrickte futuristische Öko-Gebäude aus Pilzbeton

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 
Wissenschaftler, bemüht, die Umweltauswirkungen der Bauindustrie zu verringern, haben einen Weg entwickelt, Baumaterialien mit Hilfe von gestrickten Formteilen und dem Wurzelgeflecht von Pilzen wachsen zu lassen. Obwohl Forscher schon früher mit ähnlichen Verbundwerkstoffen experimentiert haben, war es aufgrund der Form- und Wachstumsbeschränkungen des organischen Materials schwierig, verschiedene Anwendungen zu entwickeln, die das Potenzial ausschöpfen. Durch die Verwendung der gestrickten Matrizen als flexibles Gerüst oder „Schalung“ schufen die Wissenschaftler einen Verbundstoff namens „Mycocrete“, der stärker und vielseitiger in Bezug auf Form und Gestalt ist und es den Wissenschaftlern ermöglicht, leichte und relativ umweltfreundliche Baumaterialien zu züchten.

„Unser Ziel ist es, das Aussehen, die Haptik und das sich Komfortgefühl von architektonischen Räumen zu verändern, indem wir Myzel in Kombination mit biobasierten Materialien wie Wolle, Sägemehl und Zellulose verwenden“, sagte Dr. Jane Scott von der Universität Newcastle, korrespondierende Autorin der Veröffentlichung in Frontiers in Bioengineering and Biotechnology. Die Forschungsarbeit wurde von einem Team aus Designern, Ingenieuren und Wissenschaftlern der Forschungsgruppe für lebende Textilien durchgeführt, die Teil des Hub for Biotechnology in the Built Environment ist, einem von Research England finanzierten Gemeinschaftsunternehmen der Universitäten Newcastle und Northumbria.

Wurzelgeflechte
Zur Herstellung von Verbundwerkstoffen mit Myzel, einem Teil des Wurzelgeflechts von Pilzen, mischen Wissenschaftler Myzelsporen mit Getreidekörnern, von denen sie sich ernähren können, und Material, auf dem sie wachsen können. Diese Mischung wird in eine Form gepackt und in eine dunkle, feuchte und warme Umgebung gebracht, damit das Myzel wachsen kann und das Substrat fest zusammenhält. Sobald es die richtige Dichte erreicht hat, aber bevor es anfängt, Fruchtkörper – also Pilze - zu produzieren, wird es ausgetrocknet. Dieser Prozess könnte ein billiger, nachhaltiger Ersatz für Schaumstoff, Holz und Plastik sein. Allerdings benötigt das Myzel zum Wachsen Sauerstoff, was die Größe und Form herkömmlicher starrer Formen einschränkt und die derzeitigen Anwendungen begrenzt.

Gestrickte Textilien bieten eine mögliche Lösung: sauerstoffdurchlässige Formen, die sich mit dem Wachstum des Myzels von flexibel zu steif verändern können. Aber Textilien können zu weich sein, und es ist schwierig, die Formen gleichmäßig zu füllen. Scott und ihre Kollegen entwarfen eine Myzelmischung und ein Produktionssystem, mit dem das Potenzial gestrickter Formen genutzt werden kann.

„Stricken ist ein unglaublich vielseitiges 3D-Fertigungssystem“, so Scott. „Es ist leicht, flexibel und formbar. Der größte Vorteil der Stricktechnologie im Vergleich zu anderen textilen Verfahren ist die Möglichkeit, 3D-Strukturen und Formen ohne Nähte und ohne Abfall zu stricken.“

Die Wissenschaftler bereiteten Proben eines herkömmlichen Myzelkomposits als Referenz vor und züchteten sie zusammen mit Proben des Mycocrete, das ebenfalls Papierpulver, Papierfaserklumpen, Wasser, Glycerin und Xanthan enthielt. Diese Paste sollte mit einer Injektionspistole in die gestrickte Schalung eingebracht werden, um die Konsistenz der Füllung zu verbessern: Die Paste musste flüssig genug für das Einbringungssystem sein, aber nicht so flüssig, dass sie ihre Form nicht behielt.

Die Schläuche für die geplante Teststruktur wurden aus Merinogarn gestrickt, sterilisiert und an einer starren Struktur befestigt, während sie mit der Paste gefüllt wurden, so dass Spannungsänderungen des Gewebes die Leistung des Mycocrete nicht beeinträchtigen würden.

Die Zukunft bauen
Nach dem Trocknen wurden die Proben Zug-, Druck- und Biegefestigkeitstests unterzogen. Die Mycocrete-Proben erwiesen sich als fester als die herkömmlichen Mycel-Verbundproben und übertrafen die ohne gestrickte Schalung gewachsenen Mycel-Verbundstoffe. Darüber hinaus sorgte das poröse Gestrick der Schalung für eine bessere Sauerstoffverfügbarkeit, und die darin gewachsenen Proben schrumpften weniger als die meisten Myzelverbundwerkstoffe, wenn sie getrocknet werden, was darauf hindeutet, dass berechenbarere und konsistentere Herstellungsergebnisse erzielt werden könnten.

Dem Team gelang es ebenfalls, einen größeren Prototyp mit der Modellbezeichnung BioKnit zu bauen - eine komplexe, freistehende Kuppel, die dank der flexiblen Strickform aus einem einzigen Stück besteht, ohne Verbindungsstellen, die sich als Schwachstellen erweisen könnten.

„Die mechanische Leistung des Mycocrete in Kombination mit einer dauerhaft gestrickten Schalung ist ein bedeutendes Resultat und ein Schritt in Richtung der Verwendung von Myzel und textilen Biohybriden im Bauwesen“, so Scott. „In dieser Arbeit haben wir bestimmte Garne, Substrate und Myzelien spezifiziert, die notwendig sind, um ein bestimmtes Ziel zu erreichen. Es gibt jedoch zahlreiche Möglichkeiten, diese Formulierung für andere Anwendungen anzupassen. Biogefertigte Architektur könnte neue Maschinentechnologie erfordern, um Textilien in den Bausektor zu bringen.“

Quelle:

Press release adapted with thanks to Frontiers in Bioengineering and Biotechnology

(c) NC State
07.08.2023

Wearable Connector Technology - Vorteile für Militär, Medizin und mehr

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

"Die Ziele, die wir uns für diese Forschung gesetzt haben, sind völlig neuartig im Vergleich zu jeder anderen Fachliteratur, die es über tragbare Steckverbindungen gibt", sagt Shourya Dhatri Lingampally, Studentin und Forschungsassistentin am Wilson College of Textiles, die gemeinsam mit der Assistenzprofessorin Minyoung Suh an dem Projekt arbeitet.

Die im Herbst 2021 gestartete Arbeit von Suh und Lingampally konzentriert sich auf in Textilien integrierte tragbare Anschlüsse, eine einzigartige „Hightech-Brücke“ zwischen flexiblen Textilien und externen elektronischen Geräten. Im Kern zielt das Projekt darauf ab, den Technologiereifegrad (Technology Readiness Level) dieser Konnektoren zu verbessern - ein Schlüsselwert, der von der NASA und dem Verteidigungsministerium verwendet wird, um den Reifegrad einer bestimmten Technologie zu bewerten.

Zu diesem Zweck untersuchen Lingampally und ihre Kollegen Probleme, die in der Vergangenheit die Leistung von tragbaren Geräten beeinträchtigt haben.

Sicherlich können diese Fortschritte der Mode zugutekommen und zu ausgefallenen Hemden, Jacken oder Accessoires führen – „die auf der Grundlage biometrischer Daten des Trägers leuchten oder ihre Farbe ändern“, so Lingampally -, aber die Forschung hat ihre Wurzeln in einer deutlich tiefer gehenden Mission.

Potentieller Nutzen für Militär, Medizin und mehr
Das Projekt wird mit einem Zuschuss von mehr als 200.000 Dollar von Advanced Functional Fabrics of America (AFFOA) finanziert, einem US-amerikanischen Manufacturing Innovation Institute (MII) mit Sitz in Cambridge, Massachusetts. Die Aufgabe von AFFOA besteht darin, die inländischen Produktionskapazitäten für neue technische Textilprodukte, wie z. B. textilbasierte tragbare Technologien, zu fördern.

Ein Hauptziel der Forschung ist die Verbesserung der Funktionalität von tragbaren Überwachungsgeräten, mit denen Soldaten zuweilen ausgestattet werden, um die Gesundheit und Sicherheit von Einsatzkräften aus der Ferne zu überwachen.

Ähnliche Geräte ermöglichen es Ärzten und anderem medizinischen Personal, den Gesundheitszustand von Patienten aus der Ferne zu überwachen, auch wenn sie nicht am Krankenbett liegen.

Diese Technologie gibt es zwar schon seit Jahren, aber sie erforderte bisher zu oft die Verlegung von Kabeln und ein insgesamt logistisch ungünstiges Design. Das könnte sich bald ändern.

„Wir haben die elektronischen Komponenten in einem kleinen Druckknopf oder einer Schnalle zusammengefasst, so dass die Schaltkreise für den Träger weniger hinderlich sind“, erläutert Lingampally die Innovationen des Teams, zu denen auch der 3D-Druck der Verbindungsprototypen mithilfe der Stereolithographie-Technologie gehört.

„Wir versuchen, die Designparameter zu optimieren, um die elektrische und mechanische Leistung dieser Steckverbinder zu verbessern“, fügt sie hinzu.

Um ihre Ziele zu erreichen, arbeitete die Gruppe mit James Dieffenderfer, Assistant Research Professor am NC State Department of Electrical and Computer Engineering, zusammen. Das Team führte eine Vielzahl elektrischer Anschlüsse und Verbindungen wie leitende Fäden, Epoxidharz und Lötmittel durch textile Materialien, die mit starren elektronischen Geräten ausgestattet waren.

Außerdem testeten sie die Komponenten auf ihre Kompatibilität mit Standardverbindungen für digitale Geräte wie USB 2.0 und I2C.

Letztendlich hofft Lingampally, dass ihre Arbeit dazu beitragen wird, dass tragbare Technologien nicht nur einfacher und bequemer zu benutzen sind, sondern auch zu einem niedrigeren Preis erhältlich sind.

„Ich würde gerne sehen, wie sie skaliert und in Massenproduktion hergestellt werden, damit sie für jede Branche kostengünstig eingesetzt werden können“, erklärt sie.

Die Arbeit ihres Teams verdeutlicht jedoch auch die weitreichenden Grenzen der Forschung im Bereich intelligenter Textilien, die weit über Mode und Komfort hinausgehen.

Die Grenzen der Textilforschung erweitern
Die Arbeit von Suh und Lingampally ist nur die jüngste wegweisende Forschungsarbeit des Wilson College of Textile, mit der kritische Probleme in der Textilindustrie und darüber hinaus gelöst werden sollen.

"Die ständigen Fortschritte bei Technologie und Materialien bieten der Textilindustrie ein immenses Potenzial, um positive Veränderungen in verschiedenen Bereichen von der Mode bis zum Gesundheitswesen und darüber hinaus voranzutreiben", sagt Lingampally, eine Studentin im Masterstudiengang Textilien (M.S. Textiles), und verweist auf die Ermutigung, die sie in ihrem Studiengang erfährt, um bei der Festlegung und Weiterentwicklung ihrer Forschung innovativ und kreativ zu sein.

Im Promotionsprogramm für Faser- und Polymerwissenschaften, mit dem Suh arbeitet, konzentrieren die Kandidaten ihre Forschung auf eine scheinbar endlose Reihe von MINT-Themen, die, um nur einige zu nennen, von Forensik über medizinische Textilien und Nanotechnologie bis hin zu intelligenter Wearable Technology reichen.

In diesem Fall, so Suh, war die Forschung mit „unerwarteten Herausforderungen“ verbunden, die an jeder Ecke faszinierende Anpassungen“ erforderten. Letztendlich führte es aber zu Durchbrüchen, die in der Branche der Wearable Technologies bisher nicht zu beobachten waren, und das Interesse anderer Forscher außerhalb der Universität und auch privater Unternehmen weckten.

"Dieses Projekt war von seiner Art her recht experimentell, da es bisher keine Forschung gab, die auf die gleichen Ziele ausgerichtet war", so Suh.

Inzwischen hat das Team Tests zur Haltbarkeit und Zuverlässigkeit seiner in Textilien integrierten tragbaren Steckverbindungen abgeschlossen. Letztlich möchte die Gruppe die Stichprobengröße für die Tests erhöhen, um die Ergebnisse zu festigen und zu validieren. Das Team hofft auch, neue, innovative Verbindungstechniken sowie andere 3D-Drucktechniken und Materialien zu analysieren, um die Wearable Technologies weiter zu verbessern.

Quelle:

North Carolina State University, Sean Cudahy

Chemikalienschutzanzüge Foto: Pixabay, Alexander Lesnitsky
31.07.2023

DITF: Neues Konzept für Chemikalienschutzanzüge

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

In einem Verbundvorhaben mit verschiedenen Firmen, Instituten und Berufsfeuerwehren wird derzeit daran gearbeitet, sowohl den textilen Materialverbund als auch die Hartkomponenten und Verbindungselemente zwischen beiden neu zu gestalten. Das Ziel ist ein sogenannter „AgiCSA“, der für die Einsatzkräfte aufgrund der leichteren und flexibleren Konstruktion deutlich mehr Komfort bietet. Das Teilvorhaben der DITF fokussiert sich einerseits auf die Entwicklung eines individuell anpassbareren, körpernahen Anzugs, andererseits auf die Integration von Sensoren, die der Online-Überwachung wichtiger Körperfunktionen der Einsatzkraft dienen.
               
Unterstützung bekamen die DITF zum Projektbeginn von der Feuerwehr Esslingen. Sie stellte einen heute standardmäßig zum Einsatz kommenden Komplett-CSA zur Verfügung. Dieser konnte an den DITF auf seine Trageeigenschaften getestet werden. Dabei untersuchen die Denkendorfer Forscher, an welchen Stellen Optimierungsbedarf für verbesserten ergonomischen Tragkomfort besteht.

Ziel ist die Konstruktion eines chemikalien- und gasdichten Anzugs, der relativ eng am Körper anliegt. Es stellte sich schnell heraus, dass man sich vom bisherigen Konzept der Verwendung von Geweben als textilem Grundmaterial lösen und in Richtung elastischer Maschenwaren denken musste. Bei der Umsetzung kamen den Forschern neuere Entwicklungen im Bereich der Maschentechnologie in Form von Abstandsgewirken zu Hilfe. Durch die Verwendung von Abstandstextilien lassen sich viele Anforderungen, die an das Grundsubstrat gestellt werden, sehr gut erfüllen.

Abstandstextilien weisen eine voluminöse, elastische Struktur auf. Aus einer Vielzahl verwendbarer Fasertypen und dreidimensionaler Konstruktionsmerkmale wurde für den neuen CSA ein 3 mm dickes Abstandstextil aus einem Polyester-Polfaden und einer flammhemmenden Fasermischung aus Aramid und Viskose ausgewählt. Dieses Textil wird beidseitig mit Fluor- bzw. Butylkautschuk beschichtet. Dadurch erhält das Textil eine Barrierefunktion, die das Eindringen giftiger Flüssigkeiten und Gase verhindert. Die Beschichtung erfolgt durch ein neu entwickeltes Sprühverfahren am fertig konfektionierten Anzug. Der Vorteil dieses Verfahrens im Gegensatz zum bisher üblichen Beschichtungsprozess ist, dass die gewünschte Elastizität des Anzugs erhalten bleibt.

Eine weitere Neuheit ist die Integration eines schräg verlaufenden Reißverschlusses. Dieser erleichtert das An- und Ausziehen des Schutzanzugs. Während dies bislang nur mit Hilfe einer weiteren Person möglich war, kann der neue Anzug prinzipiell von der Einsatzkraft alleine angelegt werden. Vorbild für das neue Design sind moderne Trockenanzüge mit schräg verlaufendem, gasdichtem Reißverschluss.   

In den neuen AgiSCA sind zudem Sensoren integriert, die die Übertragung und Überwachung der Vital- und Umgebungsdaten der Einsatzkraft wie auch deren Ortung via GPS-Daten erlaubt. Diese Zusatzfunktionen unterstützen die Einsatzsicherheit erheblich.

Für die Hartkomponenten - den Helm sowie die Rückentrage für die Pressluftversorgung - werden leichte carbonfaserverstärkte Verbundmaterialien der Firma Wings and More GmbH & Co. KG verwendet.

Erste Demonstratoren sind verfügbar und stehen den Projektpartnern zu Prüfzwecken zur Verfügung. Die Kombination von aktueller Textiltechnologie, Leichtbaukonzepten und IT-Integration in Textilien hat in diesem Projekt zu einer umfassenden Verbesserung eines hochtechnologisierten Produkts geführt.

BMBF-Projekt „Entwicklung eines Chemikalienschutzanzuges mit erhöhter Beweglichkeit für effizientere Einsatzkonzepte durch erhöhte Autonomie der Einsatzkräfte (AgiCSA)“
Das Vorhaben greift die Ziele des Rahmenprogramms der Bundesregierung „Forschung für die zivile Sicherheit 2018-2023 und der Fördermaßnahme „KMU-innovativ: Forschung für die zivile Sicherheit“ vom 3. Juli 2018 auf.

Weitere Informationen:
Chemikalienschutzanzug DITF Projekt
Quelle:

DITF Deutsche Institute für Textil- und Faserforschung

Hauchdünne Smart Textiles werden für den Einsatz im geburtsmedizinischen Monitoring weiterentwickelt und sollen eine Analyse der Vitaldaten via App für die Schwangeren ermöglichen. Foto: Pixabay, Marjon Besteman
24.07.2023

Intelligentes Pflaster für Remote-Monitoring der Schwangerschaft

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 
Mit dem Beginn einer Schwangerschaft geht eine Phase intensiver Gesundheitsüberwachung des Kindes und der schwangeren Person einher. Herkömmliche Vorsorge-Untersuchungen mit Ultraschallgeräten zeichnen jedoch nur Momentaufnahmen des jeweiligen Zustands auf und erfordern vor allem bei Risikoschwangerschaften häufige Besuche bei Ärzt*innen. Mit Hilfe von neuartigen Wearables und Smart Textiles planen Forschende im EU-geförderten Projekt Newlife, ein dauerhaftes geburtsmedizinisches Monitoring im Alltag zu ermöglichen.
 
Ein Ziel des Konsortiums aus 25 Partner*innen ist es, ein biokompatibles, dehnbares und flexibles Patch zu entwickeln, um den Verlauf der Schwangerschaft und die Entwicklung des Embryos kontinuierlich zu überwachen. Ähnlich wie ein Pflaster soll das Patch auf der Haut der schwangeren Person angebracht werden, mittels miniaturisierter Sensoren (z.B. Ultraschall) permanent Vitaldaten aufzeichnen und via Bluetooth an ein Endgerät, beispielsweise ein Smartphone übermitteln.

Moderne Medizintechnik setzt schon seit einiger Zeit auf die Technologie der Smart Textiles und intelligente Wearables, um Patient*innen anstelle einer stationären Überwachung ein komfortables Dauer-Monitoring von Zuhause zu bieten. Am Fraunhofer-Institut für Zuverlässigkeit und Mikroelektronik IZM bringt das Team rund um Christine Kallmayer diese Technologie zur anwendungsbezogenen Umsetzung und profitiert dabei von langjähriger Erfahrung mit Integrationstechnologien in flexible Materialien. Beim integrierten Patch setzen die Forschenden auf thermoplastische Polyurethane als Basismaterialien, in die Elektronik und Sensorik eingebettet werden. Dadurch wird sichergestellt, dass das Tragegefühl einem handelsüblichen Pflaster entspricht statt einer starren Folie. Damit das geburtsmedizinische Monitoring unmerkbar und bequem für Schwangere und das Ungeborene verläuft, plant das Projektkonsortium innovative Ultraschallsensoren auf MEMS-Basis direkt in das PU-Material zu integrieren. Über unmittelbaren Hautkontakt sollen die miniaturisierten Sensoren Daten aufnehmen. Dehnbare Leiterbahnen aus TPU-Material sollen die Informationen dann zur Auswerteelektronik und schlussendlich zu einer drahtlosen Schnittstelle weiterleiten, so dass Ärzt*innen und Hebammen alle relevanten Daten in einer App einsehen können. Zusätzlich zum Ultraschall planen die Forschenden weitere Sensoren wie Mikrofone und Temperatursensoren sowie Elektroden einzubauen.
 
Auch nach der Geburt kann die neue Integrationstechnologie von großem Nutzen für die Medizintechnik sein: Mit weiteren Demonstratoren plant das Newlife-Team das Monitoring von Neugeborenen zu ermöglichen. Sensoren für ein kontinuierliches EKG, Überwachung der Atmung und Infrarot-Spektroskopie zur Beobachtung der Gehirn-Aktivität sollen in das weiche Textil eines Baby-Bodys und eines Mützchens integriert werden. „Besonders für Frühchen und Neugeborene mit gesundheitlichen Risiken ist das Remote-Monitoring eine sinnvolle Alternative zum stationären Aufenthalt und kabelgebundener Überwachung. Dafür müssen wir einen bisher unvergleichlichen Komfort der hauchdünnen Smart Textiles gewährleisten: Es darf keine Elektronik spürbar sein. Zusätzlich muss das gesamte Modul extrem zuverlässig sein, da die smarten Textilien Waschgänge problemlos überstehen sollten“, erklärt die Projekt-Verantwortliche am Fraunhofer IZM Christine Kallmayer.
 
Zur externen Überwachung wird im Projekt außerdem an Möglichkeiten geforscht, durch Kameradaten und Sensorik im Baby-Bett Aussagen über Gesundheitszustand und Wohlbefinden des Kindes abzuleiten. Sobald die Hardware-Basis von Patch, textiler Elektronik und Sensor-Bett aufgebaut und getestet ist, werden die Projektpartner*innen noch einen Schritt weitergehen: Mittels Cloud-basierter Lösungen sollen KI und maschinelles Lernen die Anwendung für medizinisches Personal erleichtern und höchste Sicherheit der Daten gewährleisten.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

(c) Nadine Glad
18.07.2023

Digitaler Produktpass für transparente Lieferketten und zirkuläre Produkte

Wer beim Kauf eines Produktes Informationen benötigt, ist aktuell oft noch auf Anleitungen in Papierform oder aufwendige Recherchen angewiesen. In einem aktuellen Projekt arbeitet ein Konsortium aus Forschung und Wirtschaftsverbänden jetzt im Auftrag der EU-Kommission an einem einheitlichen digitalen Produktpass. Dieser soll im Rahmen einer EU-Verordnung z.B. über einen QR-Code alle Produktinformationen entlang der Wertschöpfungskette verfügbar und dezentral abrufbar machen.

Wer beim Kauf eines Produktes Informationen benötigt, ist aktuell oft noch auf Anleitungen in Papierform oder aufwendige Recherchen angewiesen. In einem aktuellen Projekt arbeitet ein Konsortium aus Forschung und Wirtschaftsverbänden jetzt im Auftrag der EU-Kommission an einem einheitlichen digitalen Produktpass. Dieser soll im Rahmen einer EU-Verordnung z.B. über einen QR-Code alle Produktinformationen entlang der Wertschöpfungskette verfügbar und dezentral abrufbar machen.

Absolutes Must-have im Reisegepäck ist für die meisten in der Regel ein Personalausweis oder ein Reisepass. Diese sind international anerkannte Dokumente zur Angabe von Daten über die eigene Person. Dieser für uns selbstverständliche Vorgang soll bald auch für Elektronik- und Textilprodukte sowie Batterien Realität werden. Da Handys, Tablets und Co. selbstverständlich keinen haptischen Reisepass bei sich tragen, sollen ihre „persönlichen Daten“ in Zukunft mittels eines digitalen Produktpasses über einen QR-Code oder RFID-Chip an jeder Stelle der Wertschöpfungskette abrufbar sein.

Verbraucher*innen sollen so beim Kauf von Textilien, Elektronikprodukten, aber auch Möbeln und Spielzeug mehr Möglichkeiten erhalten, sich über wichtige Produktinformationen wie die Energieeffizienzklasse, die Herstellungsbedingungen oder die Reparierbarkeit zu informieren, um darauf aufbauend eine versierte und nachhaltige Kaufentscheidung treffen zu können.

Aber auch für andere Beteiligte z.B. bei der Reparatur oder dem Recycling ergeben sich enorme Potenziale: Bisher kann es bei hoch miniaturisierten Elektronikprodukten schwer herauszufinden sein, welche Rohstoffe oder toxischen Bestandteile im Produkt enthalten sind und wie diese voneinander getrennt werden können. Damit diese Informationen immer auch der richtigen Zielgruppe zur Verfügung stehen, sollen nutzungsspezifische Zertifikate den Zugang reglementieren.

Die Gesamtheit der im Produktpass enthaltenen Informationen ist zum jetzigen Zeitpunkt noch nicht endgültig geklärt. Im Projekt CIRPASS erarbeitet die Gruppe um Eduard Wagner am Fraunhofer IZM aktuell, welche gesetzliche Informationspflicht bereits existiert und welche weiteren Informationen für den Produktpass interessant sein könnten. Am Ende soll eine Informationsarchitektur aufgebaut werden, in der geklärt wird, welche Informationen für die Beteiligten der Wertschöpfungskette einen Mehrwert haben und mit welchem Aufwand sie bereitgestellt werden können. Ein Reparaturindikator, der angibt, wie gut sich ein Produkt reparieren lässt, ist beispielsweise in Frankreich seit 2021 verpflichtend und kommt für den digitalen, gesamteuropäischen Produktpass ebenfalls in Frage. „Auch die Angabe der Energieeffizienzklasse ist mittlerweile vorgeschrieben. Doch diese Informationen müssen jetzt noch einzeln ermittelt werden, und bei anderen Werten gibt es noch keine europaweite Anzeigepflicht. Hier ein Höchstmaß an Einheitlichkeit zu schaffen, ist ein wichtiges Ziel des Produktpasses.“ sagt Nachhaltigkeitsexperte Eduard Wagner.

Damit 2026 die ersten Produktpässe verfügbar sind, gilt es also, viele Akteur*innen abzuholen und einen Konsens zu den wichtigsten Informationen zu finden. „Im Projekt haben wir 23 Stakeholder-Gruppen identifiziert, für die wir die jeweiligen Bedürfnisse abfragen. Und das für alle drei Sektoren“, erklärt Wagner. „Bei uns sind Materialproduzent*innen, Elektronikhersteller*innen- sowie Reparateur*innen und Recyclingverbände an Bord.“ Die Ergebnisse dieser Konsultationen werden dann an die EU-Kommission weitergegeben und dienen den aktuellen politischen Aktivitäten als Orientierung, welche in Zukunft die gesetzlichen Anforderungen hinsichtlich des Produktpasses festlegen. Besonders berücksichtigt und gefördert werden sollen hier auch kleinere und mittlere Unternehmen, für die die Bereitstellung zusätzlicher Informationen einen hohen Mehraufwand darstellen kann.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

Foto: Claude Huniade
11.07.2023

Ionisch leitfähige Fasern als neuer Weg für intelligente und Funktionstextilien

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

WEAFING steht für Wearable Electroactive Fabrics Integrated in Garments. Das Projekt startete am 1. Januar 2019 und endete am 30. Juni 2023.

Diese Wearables basieren auf einer neuen Art von Textilmuskeln, deren Garne mit elektromechanisch aktiven Polymeren beschichtet sind und sich zusammenziehen, wenn eine niedrige Spannung angelegt wird. Textilmuskeln bieten eine völlig neue und sehr unterschiedliche Qualität haptischer Empfindungen und sprechen auch Rezeptoren unseres taktilen Sinnessystems an, die nicht auf Vibration, sondern auf sanften Druck oder Schlag reagieren.

Da es sich um textile Materialien handelt, bieten sie zudem eine neue Möglichkeit, tragbare Haptik zu entwerfen und herzustellen. Sie können nahtlos in Stoffe und Kleidungsstücke integriert werden. Für diese neuartige Form der textilen Muskeln ist eine große Bandbreite an haptischen Anwendungsmöglichkeiten abzusehen: für Ergonomie, Bewegungscoaching im Sport oder Wellness, zur Unterstützung von Virtual- oder Augmented-Reality-Anwendungen in Spielen oder zu Trainingszwecken, zur Inklusion von sehbehinderten Menschen durch Informationen über ihre Umgebung, zur Stressreduktion oder sozialen Kommunikation, für anpassungsfähige Möbel, die Automobilindustrie und vieles mehr.

Im Projekt von Claude Huniade geht es darum, leitfähige Garne ohne leitfähige Metalle herzustellen.

„In meiner Forschung geht es um die Herstellung elektrisch leitfähiger Textilfasern - letzendlich von Garnen - durch die nachhaltige Beschichtung handelsüblicher Garne mit Nicht-Metallen. Die größte Herausforderung besteht darin, ein Gleichgewicht zwischen der Beibehaltung der textilen Eigenschaften und dem Hinzufügen der leitenden Eigenschaft zu finden“, so Claude Huniade.

Ionofasern könnten als Sensoren verwendet werden, da ionische Flüssigkeiten empfindlich auf ihre Umgebung reagieren. So können die Ionenfasern beispielsweise Änderungen der Luftfeuchtigkeit, aber auch jede Dehnung oder jeden Druck, dem sie ausgesetzt sind, wahrnehmen.

„Ionofasern könnten wirklich herausragen, wenn sie mit anderen Materialien oder Geräten kombiniert werden, die Elektrolyte benötigen. Ionofasern ermöglichen es, dass bestimmte Phänomene, die derzeit nur in Flüssigkeiten möglich sind, auch in der Luft auf leichtgewichtige Weise realisiert werden können. Die Anwendungsmöglichkeiten sind vielfältig und einzigartig, zum Beispiel für Textilbatterien, textile Displays oder textile Muskeln“, so Claude Huniade.

Weitere Forschung ist erforderlich
Es sind noch weitere Forschungsarbeiten erforderlich, um die Ionenfasern mit anderen funktionellen Fasern zu kombinieren und spezielle textile Produkte herzustellen.

Wie unterscheiden sie sich von herkömmlichen elektronisch leitfähigen Fasern?

„Im Vergleich zu elektronisch leitfähigen Fasern unterscheiden sich Ionofasern dadurch, wie sie Elektrizität leiten. Sie sind weniger leitfähig, bringen aber andere Eigenschaften mit, die elektronisch leitfähigen Fasern oft fehlen. Ionofasern sind flexibler und haltbarer und entsprechen der Art der Leitung, die unser Körper verwendet. Sie entsprechen sogar besser als elektronisch leitende Fasern der Art, wie Elektrizität in der Natur vorkommt“, schloss er.

Derzeit liegt die Einzigartigkeit seiner Forschung in den Beschichtungsstrategien. Diese Methoden umfassen sowohl die Verfahren als auch die verwendeten Materialien.

Verwendung von ionischen Flüssigkeiten
Eine der Spuren, die er verfolgt, betrifft eine neue Art von Material als Textilbeschichtung, nämlich ionische Flüssigkeiten in Kombination mit handelsüblichen Textilfasern. Genau wie Salzwasser leiten sie Strom, aber ohne Wasser. Ionische Flüssigkeiten sind stabilere Elektrolyte als Salzwasser, da nichts verdunstet.

„Der Faktor der Verarbeitbarkeit ist eine wichtige Voraussetzung, da die Textilproduktion Fasern stark beansprucht, vor allem, wenn sie in größerem Maßstab eingesetzt werden. Die Fasern können auch zu Geweben oder Gewirken verarbeitet werden, ohne dass sie mechanisch beschädigt werden, wobei ihre Leitfähigkeit erhalten bleibt. Überraschenderweise ließen sie sich sogar glatter zu Stoffen verarbeiten als die handelsüblichen Garne, aus denen sie hergestellt werden“, erklärte Claude Huniade.

Quelle:

University of Borås

Funktionelle Textilien - eine Alternative zu Antibiotika University of Borås
04.07.2023

Funktionelle Textilien - eine Alternative zu Antibiotika

Tuser Biswas forscht mit dem Ziel, moderne medizinische Textilien zu entwickeln, die sowohl der Umwelt als auch der menschlichen Gesundheit zugutekommen. Textilien mit antimikrobiellen Eigenschaften könnten den Einsatz von Antibiotika verringern.

Tuser Biswas forscht mit dem Ziel, moderne medizinische Textilien zu entwickeln, die sowohl der Umwelt als auch der menschlichen Gesundheit zugutekommen. Textilien mit antimikrobiellen Eigenschaften könnten den Einsatz von Antibiotika verringern.

Seine Arbeit umfasst Forschungs- und Lehrtätigkeiten auf dem Gebiet der textilen Materialtechnologie. Das aktuelle Forschungsvorhaben befasst sich mit dem ressourceneffizienten Tintenstrahldruck von Funktionsmaterialien auf verschiedenen textilen Oberflächen für fortschrittliche Anwendungen.
 
Die konventionelle Textilindustrie verschlingt natürliche Ressourcen in Form von Wasser, Energie und Chemikalien. Eine ressourceneffizientere Art, Textilien herzustellen, ist der Tintenstrahldruck. Tuser Biswas, der vor kurzem seine Doktorarbeit im Fachbereich Textile Materialtechnologie verteidigt hat, versucht, Methoden für funktionelle Textilien zu entwickeln. Er hat gezeigt, dass es möglich ist, Enzyme auf Textilien zu drucken. Enzyme sind Proteine, die im Körper als Katalysatoren fungieren, da sie chemische Prozesse in Gang setzen, ohne sich selbst zu verändern. Sie könnten zum Beispiel in Medizintextilien mit antimikrobiellen Eigenschaften oder zur Messung biologischer oder chemischer Reaktionen eingesetzt werden.

„Seit der industriellen Revolution verwendet unsere Gesellschaft eine Fülle von synthetischen und aggressiven Chemikalien. Unsere Forschung zielt darauf ab, diese Chemikalien durch umweltfreundliche und biobasierte Materialien zu ersetzen“, so Tuser Biswas.
 
Vielversprechende Ergebnisse mit Enzymen auf Textilien
Es war nicht ganz einfach, eine gute Enzymtinte zu entwickeln, und es bedurfte mehrerer Versuche, bis er schließlich zu seiner großen Freude erfolgreiche Ergebnisse erzielte. Tuser Biswas erklärte, das wichtigste Ergebnis sei der Nachweis, dass ein gedrucktes Enzym ein anderes Enzym an die Oberfläche eines Stoffes binden könne. Obwohl die Aktivität der Enzyme nach dem Druck um 20-30 Prozent abnahm, sind die Ergebnisse dennoch vielversprechend für zukünftige Anwendungen. Gleichzeitig hat die Arbeit neue Erkenntnisse zu vielen grundlegenden Fragen des Druckens von Biomaterialien auf Gewebe geliefert.

„Bevor wir mit dem Projekt begannen, fanden wir mehrere ähnliche Studien, die sich auf die Herstellung eines fertigen Produkts konzentrierten. Aber wir wollten die grundlegenden Herausforderungen dieses Themas untersuchen, und jetzt wissen wir, wie es funktionieren kann“, so Tuser Biswas.
Er bemüht sich nun um eine Finanzierung, um seine Forschungen fortzusetzen, und hat bisher einen Zuschuss von der Sjuhärad-Sparkassen-Stiftung erhalten. Während der Tage des Wissens im April 2023 präsentierte er seine Forschungsergebnisse vor Vertretern der Stadt Borås und der Wirtschaft, der Sjuhärad-Sparkassen-Stiftung und der Universität Borås.
     
Medizintextilien statt Antibiotika
Tuser Biswas hofft, dass die weitere Forschung im Bereich der Textiltechnologie Alternativen zum Einsatz von Antibiotika bieten kann. Angesichts der zunehmenden Antibiotikaresistenz ist dies nicht nur lokal, sondern weltweit ein wichtiges Thema.

„Anstatt den Patienten mit Antibiotika zu behandeln, kann man präventiv und effektiver handeln, indem man die Bakterien an der Oberfläche schädigt, wo sie zu wachsen beginnen. Zum Beispiel in einem Wundverband. Antimikrobielle Mittel auf Nanopartikelbasis können das Wachstum wirksam reduzieren. Dies ist möglich, da Nanopartikel besser mit der Bakterienmembran interagieren können und das Ziel leichter erreichen als herkömmliche Antimikrobiotika."

Quelle:

Lina Färm. University of Borås. Übersetzung ins Deutsche Textination.

Fadenähnliche Pumpen können in Kleidung eingewebt werden (c) LMTS EPFL
27.06.2023

Fadenähnliche Pumpen können in Kleidung eingewebt werden

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

„Wir präsentieren die weltweit erste Pumpe in Form einer Faser, also eines Schlauches, der seinen eigenen Druck und Durchfluss erzeugt“, so LMTS-Chef Herbert Shea. "Jetzt können wir unsere Faserpumpen direkt in Textilien und Kleidung einnähen und herkömmliche Pumpen hinter uns lassen." Die Forschungsergebnisse wurden in der Zeitschrift Science veröffentlicht.

Leicht, leistungsstark ... und waschbar
Sheas Labor hat eine lange Tradition in der zukunftsweisenden Fluidik. Im Jahr 2019 stellten sie die erste dehnbare Pumpe der Welt her.

„Diese Arbeit baut auf unserer vorherigen Generation von Soft-Pumpen auf“, erläutert Michael Smith, ein LMTS-Post-Doktorand und Hauptautor der Studie. „Das Faserformat ermöglicht es uns, leichtere und leistungsstärkere Pumpen herzustellen, die besser mit tragbarer Technologie kompat-bel sind.“

Die LMTS-Faserpumpen nutzen ein Prinzip namens Ladungsinjektion-Elektrohydrodynamik (EHD), um einen Flüssigkeitsstrom ohne bewegliche Teile zu erzeugen. Zwei schraubenförmige Elektroden, die in die Pumpenwand eingebettet sind, ionisieren und beschleunigen die Moleküle einer speziellen, nicht leitenden Flüssigkeit. Die Ionenbewegung und die Form der Elektroden erzeugen einen Netto-Fluidstrom, der geräuschlos und ohne Vibrationen arbeitet und nur ein handtellergroßes Netzteil und eine Batterie benötigt.

Um die einzigartige Struktur der Pumpe zu erreichen, entwickelten die Forscher ein neuartiges Herstellungsverfahren, bei dem Kupferdrähte und Polyurethanfäden um einen Stahlstab gewickelt und dann durch Hitze verschmolzen werden. Nachdem der Stab entfernt wurde, können die 2 mm dicken Fasern mit herkömmlichen Web- und Nähtechniken in Textilien integriert werden.

Die einfache Konstruktion der Pumpe hat eine Reihe von Vorteilen. Die benötigten Materialien sind preiswert und leicht verfügbar, der Herstellungsprozess lässt sich leicht skalieren. Da die Höhe des von der Pumpe erzeugten Drucks direkt mit ihrer Länge zusammenhängt, können die Schläuche auf die jeweilige Anwendung zugeschnitten werden, um die Leistung zu optimieren und gleichzeitig das Gewicht zu minimieren. Die robuste Konstruktion kann auch mit herkömmlichen Waschmitteln gereinigt werden.

Vom Exoskelett zur virtuellen Realität
Die Autoren haben bereits gezeigt, wie diese Faserpumpen in neuen und spannenden tragbaren Technologien eingesetzt werden können. So können sie beispielsweise heiße und kalte Flüssigkeiten durch Kleidungsstücke zirkulieren lassen, die in Umgebungen mit extremen Temperaturen oder in therapeutischen Umgebungen zur Behandlung von Entzündungen und sogar zur Optimierung sportlicher Leistungen eingesetzt werden.

„Diese Anwendungen erfordern ohnehin lange Schläuche, und in unserem Fall sind die Schläuche die Pumpe. Das bedeutet, dass wir sehr einfache und leichte Flüssigkeitskreisläufe herstellen können, die bequem und angenehm zu tragen sind“, erklärt Smith.

In der Studie werden auch künstliche Muskeln aus Stoff und eingebetteten Faserpumpen beschrieben, die als Antrieb für weiche Exoskelette verwendet werden könnten, um Patienten beim Bewegen und Gehen zu helfen.

Die Pumpe könnte sogar eine neue Dimension in die Welt der virtuellen Realität bringen, indem sie das Temperaturempfinden simuliert. In diesem Fall tragen die Nutzer einen Handschuh mit Pumpen, die mit heißer oder kalter Flüssigkeit gefüllt sind, so dass sie die Temperaturveränderungen als Reaktion auf den Kontakt mit einem virtuellen Objekt spüren können.

Aufgepumpt für die Zukunft
Die Forscher sind bereits dabei, die Leistung ihres Geräts zu verbessern. "Die Pumpen funktionieren bereits gut, und wir sind zuversichtlich, dass wir mit weiteren Arbeiten weitere Verbesserungen in Bereichen wie Effizienz und Lebensdauer erzielen können", sagt Smith. Es wurde bereits damit begonnen, die Produktion der Faserpumpen zu erhöhen, und das LMTS plant auch, sie in komplexere tragbare Geräte einzubauen.

„Wir sind überzeugt, dass diese Innovation die Wearable Technology entscheidend verändern wird“, sagt Shea.

Weitere Informationen:
EPFL Fasern Exoskelette wearables
Quelle:

Celia Luterbacher, School of Engineering | STI
Übersetzung: Textination

Swijin Inage Swijin
20.06.2023

Innovative Sportbekleidung: Schwimmen und Rennen ohne Umziehen

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Diese Innovation ermöglicht Frauen erstmals einen fließenden Übergang zwischen Land- und Wassersportarten, ohne die Kleidung wechseln zu müssen. So können Frauen etwa beim Wandern oder Laufen unkompliziert ins Wasser gehen. Auch Stand-Up-Paddlerinnen genießen mit dem „SwimRunner" uneingeschränkte Bewegungsfreiheit und gleichzeitig genügend Sitz, sowohl auf dem Board als auch im Wasser.
          
Wissenschaft im Dienste des Sports
Was auf den ersten Blick wie eine relativ einfache Anforderung erscheint, hat sich in der Entwicklung als äußerst komplexes Produkt herausgestellt. Im Rahmen eines Innosuisse-Projekts kam es zur Zusammenarbeit von Swijin mit der Empa-Abteilung für Biomimetische Membranen und Textilien. Unter der Leitung des Empa-Ingenieurs Martin Camenzind definierten die Forschenden zunächst die Anforderungen an das Material und den Schnitt des Sport-BHs. „Bei der Entwicklung hatten wir eine dreifache Herausforderung: Einerseits musste es die Anforderungen an einen hochbelastbaren Sport-BH an Land erfüllen. Gleichzeitig sollte aber die Kompression eines Badeanzugs im Wasser aufrechterhalten werden – und dies bei einer sehr kurzen Trocknungszeit“, sagt Camenzind.

Da es noch keine vergleichbare Bekleidung auf dem Markt gibt, entwickelte das Team auch gleich neue Tests für die Beurteilung des Hochleistungstextils. „Wir haben auch ein Mannequin entworfen: Ein Modell des weiblichen Oberkörpers, mit dem man die mechanischen Eigenschaften von BHs messen kann», erklärt der Forscher. Neben den wissenschaftlichen Erkenntnissen floss in die Produktentwicklung auch viel Kompetenz von Sportphysiologen, Textilingenieurinnen, Branchenspezialisten, Designerinnen und natürlich Athletinnen ein.

Höchste Ansprüche
Viele dieser Sportlerinnen entstammen der „Swimrun“-Szene. Swimrun ist eine schnell wachsende Abenteuersportart, die in den Schärengärten Schwedens entstanden ist. Im Gegensatz zu Triathleten, die zuerst schwimmen, dann Rad fahren und schließlich laufen, wechseln Swimrunner während des Rennens immer wieder zwischen Trailrunning und Schwimmen im offenen Wasser hin und her. Die Intensität dieser Sportart bot Swijin die optimalen Bedingungen für die Produktentwicklung – und gab auch den Namen der ersten Kollektion, „SwimRunner“. „Das Feedback der Athletinnen war mitentscheidend für den Erfolg des Produkts. Sie schwimmen und laufen oft sechs bis sieben Stunden am Stück. Als sie mit unseren Prototypen zufrieden waren, wussten wir: Der SwimRunner ist ‚ready for market‘“, sagt Swijin-Gründerin Claudia Glass.

Die Produktidee kam Claudia Glass während eines Urlaubs auf Mallorca. Bei ihren morgendlichen Läufen sehnte sie sich danach, kurz ins Meer tauchen zu können. „Sport-BHs sind aber nicht zum Schwimmen konzipiert“, erklärt die Gründerin. „Im Wasser saugen sie sich voll und trocknen aufgrund ihres dicken Kompressionsmaterials scheinbar nie. Letzten Sommer trug ich den ‚SwimRunner‘-Prototyp den ganzen Tag. Morgens lief ich mit meinem Hund zum Zürichsee und sprang hinein. Als ich wieder zu Hause ankam, hätte ich mich einfach an meinen Schreibtisch setzen können und anfangen zu arbeiten – ich war komplett trocken und fühlte mich sehr komfortabel.“
 
Design und Nachhaltigkeit
Das Jungunternehmen legt Wert darauf, Ingenieurwesen und Design zu vereinen. Swijins Kreativdirektorin Valeria Cereda sitzt im Zentrum der Weltmodestadt Mailand und lässt ihre Erfahrung mit Luxusmarken in die Ästhetik von Swijin einfließen. Als ehemalige Leistungsschwimmerin ist sie aber zugleich auf Funktionalität bedacht.

Die Hochleistungsprodukte von Swijin lassen sich nur mit synthetischen Materialien verwirklichen. Das junge Unternehmen ist entschlossen, die Umweltbelastung der Produkte auf ein Minimum zu reduzieren. Die enge Lieferkette hält den CO2-Fussabdruck gering. Die Materialien des „SwimRunner“ sind zu 100 % in der EU hergestellt und auf Qualität ausgelegt.

Herkömmliche Bekleidungsetiketten geben nur Auskunft über den Herstellungsort des Kleidungsstücks. Swijin arbeitet mit dem Anbieter Avery Dennison zusammen, um alle Produkte mit einem „Digital Identity Label“ auszustatten. Dieses bietet den Verbrauchern detaillierte Informationen über die gesamte Wertschöpfungskette, bis hin zu den Investitionen des Textilherstellers zur Verringerung des CO2-Fussabdrucks und zum Einsatz des wasserbasierten, lösemittelfreien Logos. Swijin verpackt alle Materialien in „Cradle to Cradle Gold“ zertifizierten Verpackungen, die von Voegeli AG im Emmental hergestellt werden.

Außerdem geht Swijin proaktiv die Herausforderungen am Ende des Produktlebenszyklus an. Um einer echten Kreislauffähigkeit funktionaler Textilien näher zu kommen, nimmt Swijin als Leuchtturmpartner im „Yarn-to-Yarn®“-Pilotprojekt der Rheiazymes AG teil. Dabei handelt es sich um eine Biotech-Lösung, die Mikroorganismen und Enzyme einsetzt, um aus Alttextilien direkt und klimaneutral neue Ausgangsstoffe zu generieren. Wenn Kundinnen „End-of-Life“ Swijin-Produkte zurückgeben – wofür Swijin auch Anreize bietet – können die hochwertigen Monomere in Ursprungsqualität wieder in die Lieferkette zurückgeführt werden: echte „circularity“.

„Als aufstrebende Marke haben wir die Pflicht und den Luxus, Partner auszuwählen, deren Vision und Werte mit unseren eigenen übereinstimmen“, sagt Claudia Glass. „Ich hatte ein klares Verständnis davon, welche Art von Marke ich kaufen würde, aber ich konnte sie nirgends finden. Mit Swijin fühlen wir uns verpflichtet, unsere Werte auch tatsächlich zu verwirklichen.“

Weitere Informationen:
Sportwear schwimmen BH Synthetikfasern Empa
Quelle:

Claudia Glass, Anna Ettlin, EMPA