From the Sector

Reset
675 results
In combination with Oerlikon's atmos.io digital platform, Haelixa's DNA marker technology makes the clear traceability of textile products a reality. Image Oerlikon Textile GmbH & Co. KG
20.11.2023

Man-made fiber yarns with DNA: Supply chains in textile end products traceable

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

Smart factory: total transparency with atmos.io
The concept is complemented by atmos.io, Oerlikon's digital platform, which records and evaluates extensive production and process data during the yarn manufacturing process. Atmos.io gives the yarn its digital identity during its time on Oerlikon systems, from the melt to the packaged package. This technology has been used successfully for some time to monitor the production process. With atmos.io, deviations in process parameters and yarn data can be identified and rectified within a very short time, which in turn keeps the yarn quality stable and reduces waste rates.

Combining both technologies enables clear traceability of the yarn produced, even in the downstream process steps. Hence, the yarn's components, qualities, manufacturing conditions, and origin are traced beyond doubt in the finished garment. "The unique DNA carries the 'roots' of the yarn digitally recorded in atmos.io into the everyday life of the end consumer," says Jochen Adler, CTO at Oerlikon Manmade Fibers. The textile end products meet the requirements of the digital product passport required by the EU, which contains the information needed to assess their life cycle assessment and circularity. Initial long-term tests have shown 100% traceability of the yarns in the POY and FDY spinning process. If the yarn manufacturer relies on the atmos.io platform, production systems can be adapted relatively easily to use the DNA markers.

Source:

Oerlikon Textile GmbH & Co. KG

Evlox, Recover and Jeanologia launch recycled denim collection (c) Jeanologia
20.11.2023

Evlox, Recover and Jeanologia launch recycled denim collection

On 23-24 November, Recover™, Evlox and Jeanologia will showcase their new recycled denim capsule collection, REICONICS, at Denim Première Vision in Milan.

The collection is the result of a collaborative project between the three companies, combining expertise from each specialist business to improve circularity in the denim industry, from fiber to finish.

It aims to inspire and bring value to the industry by creating truly circular products through a process that implements eco-design, transparency, process measurement, traceability, and scalability.

Made from Recover™ recycled cotton fiber and Spanish cotton, the REICONICS collection is GRS certified and is a tribute to the classic denim fabrics that have been successful in past decades.

It includes a range of premium denim fabrics developed by Evlox, and a total of 14 final garments that will be exhibited at Premiere Vision Denim. Each piece in the collection displays a variety of finishes generated using technology by Jeanologia, reducing water and energy consumption, and eliminating damaging emissions and discharge.

On 23-24 November, Recover™, Evlox and Jeanologia will showcase their new recycled denim capsule collection, REICONICS, at Denim Première Vision in Milan.

The collection is the result of a collaborative project between the three companies, combining expertise from each specialist business to improve circularity in the denim industry, from fiber to finish.

It aims to inspire and bring value to the industry by creating truly circular products through a process that implements eco-design, transparency, process measurement, traceability, and scalability.

Made from Recover™ recycled cotton fiber and Spanish cotton, the REICONICS collection is GRS certified and is a tribute to the classic denim fabrics that have been successful in past decades.

It includes a range of premium denim fabrics developed by Evlox, and a total of 14 final garments that will be exhibited at Premiere Vision Denim. Each piece in the collection displays a variety of finishes generated using technology by Jeanologia, reducing water and energy consumption, and eliminating damaging emissions and discharge.

Just one jacket in the REICONICS collection, using 32% Recover™ recycled fiber and Jeanologia finishing technology, saves up to 240 liters of water; compared to a jacket made with virgin cotton and treated with traditional finishing technique.

Source:

Jeanologia / Sapristi Décom

Fußballstadion Bild von Pexels auf Pixabay
20.11.2023

University of Manchester academics criticising UK government

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Pressdee, Benstead and Conlon stress the importance of establishing “sustainable behaviour throughout the supply chain” and praise the European Commission for proposing an “extended producer responsibility (EPR)” for textiles in the EU which “aims to create appropriate incentives to encourage producers to design products that have a reduced environmental impact at the end of their life.”

This contrasts with the UK where, they argue, “tackling sustainability in the fashion industry has lost its place on the political agenda.”

"We are calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”
Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon

The University of Manchester academics contend that there has been “disappointing lack of progress from the UK Government” following the House of Commons Environmental Audit Committee’s Fixing Fashion report in 2019.

They continue: “This report included a call for the use of EPR as well as other important recommendations such as a ban on incinerating or landfilling unsold stock that can be reused or recycled and a tax system that shifts the balance of incentives in favour of reuse, repair and recycling to support responsible companies. We urge the Government to think again and drive forward the Committee’s recommendations in order to put sustainable fashion back on the political agenda.”

Pressdee, Benstead and Conlon also criticise Ministers for abolishing the standalone GCSE in textiles which provided many young people with the ability to mend clothing such as football kits instead of throwing them away.

They write: “We are therefore calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”

The University of Manchester has launched a new project dedicated to tackling the impact of textile waste in the football industry through the provision of workshops tasked with transforming surplus football shirts into unique reusable tote bags, whilst educating local communities on the environmental impacts of textile waste and how to extend the life of garments. The initiative aims to provide a fun, responsible way to keep kits in circulation while shining a light on the problem.

More information:
United Kingdom politics
Source:

University of Manchester

17.11.2023

Alliance for European Flax-Linen and Hemp: Flax fibres for Sailing boats

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

Flax fibres also provide acoustic and vibration damping in composite applications, as well as providing a warm and aesthetically pleasing appearance below decks.

ecoRacer30
As a member of the Alliance for European Flax-Linen and Hemp, Bcomp, headquartered in Fribourg, Switzerland, has this year been working with Northern Light Composites (nlcomp), based in Monfalcone, northern Italy, on the creation of what is billed as the first fully recyclable nine-metre-long sailing boat – the ecoRacer30.

The boat is based on nlcomp’s proprietary rComposite technology – a combination of thermoplastic resins and BComp’s ampliTex high-performance natural fibre reinforcement fabrics and patented powerRibs technology.

It was built in a collaborative effort with the help of Barcelona-based Magnani Yachts, which took care of the composite manufacturing, and Sangiorgio Marine, which provided technical assistance as the boat was being assembled at its shipyard in Genova, Italy.

Magnani Yachts has subsequently become the first shipyard to hold an rComposite license and others are now being encouraged to adopt the technology.

The second ecoracer30 is currently under construction and has already been sold and nlcomp is planning to build a fleet of eight of these boats in time to enter a series of regattas in the summer of 2025.

Flax 27 Daysailer
Greenboats, based in Bremen, Germany, is another specialist in building boats from natural fibre composites and has this year launched the Flax 27 daysailer.

The lower hull of this vessel is also made from Bcomp’s ampliTex technical fabrics in combination with a sandwich core of recycled PET bottles. Using a vacuum infusion process, the fibres were integrated with a plant-based epoxy resin in order to further reduce the CO2 footprint of the vessel.

The light structure and modern shapes of the lower hull of the boat result in very fast, sharp and agile handling on the water.

Greenboats has also recently announced significant new backing from alliance member Groupe Depestele, which manages 13,000 hectares of flax land in Normandy, France.

Blue Nomad
A project in Switzerland has meanwhile proposed the use of flax fibre composites in solar-powered habitats designed for comfortable living on the oceans – as the world grapples with the frightening implications of climate change and rising sea levels.

As envisaged by students from Institut auf dem Rosenberg in St Gallen, Switzerland working with Denmark-based SAGA Space Architects, Blue Nomad structures would form modular blocks to establish large communities and oceanic farms.
 

Source:

Alliance for European Flax-Linen and Hemp

15.11.2023

Indorama Ventures: 3Q23 Performance report

  • Revenue of US$3.9B, a decline of 1% QoQ and 20% YoY
  • EBITDA of US$324M, an increase of 1% QoQ and a decrease of 37% YoY
  • Operating cash flows of US$410M
  • Net Operating Debt to Equity of 0.97x
  • EPS of THB 0.00

Indorama Ventures Public Company Limited (IVL) reported stable third-quarter earnings as the company’s management focuses on conserving cash and improving competitiveness to bolster performance in a continued period of weakness in the global chemical industry.

Indorama Ventures achieved EBITDA of $324 million in 3Q23, an increase of 1% QoQ and a decline of 37% YoY, impacted by a weak economic environment, geopolitical tensions, and continued post-pandemic disruptions in global markets. Sales volumes dropped 5% from a year ago to 3.6 million tons as China recovers from the pandemic more slowly than expected and an extended period of destocking in the manufacturing and chemical sectors continues to normalize from unprecedented levels last year.

  • Revenue of US$3.9B, a decline of 1% QoQ and 20% YoY
  • EBITDA of US$324M, an increase of 1% QoQ and a decrease of 37% YoY
  • Operating cash flows of US$410M
  • Net Operating Debt to Equity of 0.97x
  • EPS of THB 0.00

Indorama Ventures Public Company Limited (IVL) reported stable third-quarter earnings as the company’s management focuses on conserving cash and improving competitiveness to bolster performance in a continued period of weakness in the global chemical industry.

Indorama Ventures achieved EBITDA of $324 million in 3Q23, an increase of 1% QoQ and a decline of 37% YoY, impacted by a weak economic environment, geopolitical tensions, and continued post-pandemic disruptions in global markets. Sales volumes dropped 5% from a year ago to 3.6 million tons as China recovers from the pandemic more slowly than expected and an extended period of destocking in the manufacturing and chemical sectors continues to normalize from unprecedented levels last year.

Management continues to focus on conserving cash, realizing efficiency improvements, and optimizing the company’s operational footprint to boost profitability. These efforts resulted in positive operating cash flow of US$410 million in the quarter, positive free cash flow of $79 million year to date, and room for further reductions in working capital going forward. The company’s AA- rating was maintained by TRIS in the quarter, with a stable outlook. 

The company expects the operating environment to improve in 2024 as customer destocking continues to ease across all three of Indorama Ventures’ segments. The ramp up of PET and fibers expansion projects operations in India and the U.S. will also contribute to increased volumes.  

Combined PET posted EBITDA of $146 million, a 25% decline QoQ, amid historically low benchmark PET margins, increased feedstock prices in Western markets, and lingering effects of destocking. Integrated Oxides and Derivatives (IOD) segment posted a 27% rise in EBITDA to $119 million QoQ, supported by strong MTBE margins in the Integrated Intermediates business. The Integrated Downstream portfolio’s profitability was impacted by destocking, inflationary pressures, and margin pressure from imports. Fibers segment achieved a 140% increase in EBITDA to $48 million QoQ as Lifestyle volumes grew in key markets in Asia, and the Mobility and Hygiene verticals benefited from management’s focus on optimizing operations and refocusing the organization. 
 

Source:

Indorama Ventures Public Company Limited

Lenzing relies on wind power in the fiber and pulp production (c) Lenzing AG
At the ground-breaking ceremony, from left to right: Josef Reiter (Mayor of Engelhartstetten) Thomas Östros (Vice-President of the European Investment Bank) Helga Krismer-Huber (Green Party Lower Austria LAbg) Stephan Pernkopf (Deputy Governor of Lower Austria) Leonore Gewessler (Minister for Climate Protection) Gregor Erasim (owner of WLK energy) Gerda Holzinger-Burgstaller (Chairwoman of the Management Board of Erste Bank Österreich) Bianca Flesch (Environmental Management Messer Austria GmbH) Mario Wohanka (WLK Chief Financial Officer) Christian Skilich (CTO Lenzing AG)
10.11.2023

Lenzing relies on wind power in the fiber and pulp production

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

In 2019, Lenzing was the first fiber manufacturer to set itself the goal of reducing its CO2 emissions by 50 percent by 2030 and becoming carbon-neutral by 2050. This CO2 reduction target was recognized by the Science Based Targets Initiative. In 2022, Lenzing opened Upper Austria's largest open-space photovoltaic plant together with Verbund and also signed an electricity supply contract for photovoltaic energy with the green electricity producer Enery and Energie Steiermark.

Source:

Lenzing AG

North American Nonwovens Industry Outlook 2022-2027 (c) INDA
07.11.2023

North American Nonwovens Industry Outlook 2022-2027 released

INDA, the Association of the Nonwoven Fabrics Industry, has released a new report, North American Nonwovens Industry Outlook, 2022-2027. This report is the twelfth edition detailing demand data for 2017 through 2022, with forecasts to 2027 and provides analysis across end-use markets through 2027.

It includes:

INDA, the Association of the Nonwoven Fabrics Industry, has released a new report, North American Nonwovens Industry Outlook, 2022-2027. This report is the twelfth edition detailing demand data for 2017 through 2022, with forecasts to 2027 and provides analysis across end-use markets through 2027.

It includes:

  • Economic and population drivers contributing to market growth over the next 5 years for markets in the U.S., Mexico, and Canada.
  • Disposable, Filtration, Wipes, Medical and Other applications.
  • Long-Life durable sectors for Transportation, Building and Construction, Furnishings, Geo and Agro Textiles, and Apparel.
  • Key drivers for the demand models and reasons for market upsets like the COVID pandemic.
  • A summary of historical and future trends that will affect the nonwovens market.

The report provides analysis across all nonwoven end-use markets, providing a comprehensive and accurate view of the total North American nonwovens industry. INDA redesigned this report to support strategic business planning and decision-making. The projections in the report were made by analyzing current market trends and drivers to highlight the market potential in terms of dollar value, units, and volume in both square meters and tonnage.

The new North American Nonwovens Industry Outlook report is available at 6,000.00 $, the discounted member price is 4,500.00

More information:
Market report INDA
Source:

Association of the Nonwoven Fabrics Industry

Lenzing and Södra win ITMF Award for cooperation in textile recycling (c) Lenzing AG/Leopold
Lenzing x Södra Project team
06.11.2023

Lenzing and Södra: ITMF Award for cooperation in textile recycling

  • Lenzing and Södra – a long-standing partnership for systemic change
  • International Textile Manufacturers Federation (ITMF) honored the two companies in the "International Cooperation" category
  • EU co-funded recycling project for textiles on an industrial scale

The Lenzing Group, the world’s leading supplier of specialty fibers for the textile and nonwovens industries, and the Swedish pulp producer Södra have received the ITMF Award 2023 in the category “International Cooperation” for their joint achievements in textile recycling and circular economy. The award was presented at the ITMF Annual Conference in Keqiao, China, on November 06, 2023.

  • Lenzing and Södra – a long-standing partnership for systemic change
  • International Textile Manufacturers Federation (ITMF) honored the two companies in the "International Cooperation" category
  • EU co-funded recycling project for textiles on an industrial scale

The Lenzing Group, the world’s leading supplier of specialty fibers for the textile and nonwovens industries, and the Swedish pulp producer Södra have received the ITMF Award 2023 in the category “International Cooperation” for their joint achievements in textile recycling and circular economy. The award was presented at the ITMF Annual Conference in Keqiao, China, on November 06, 2023.

The ITMF Award 2023 is given by the International Textile Manufacturers Federation (ITMF) to recognize outstanding achievements and merits in the textile sector in two categories: ”Sustainability & Innovation“ and ”International Cooperation“. Since 2021, the two pioneers have been joining forces in textile recycling, making a decisive contribution to promoting the circular economy in the fashion industry. As part of the cooperation, the companies intend to share their knowledge with each other and jointly develop processes to enable the wider use of cellulose-based used textiles on a commercial scale.

The OnceMore® pulp from Södra, which was jointly developed further by Södra and Lenzing, is subsequently used, among other things, as a raw material for the production of Lenzing fibers with REFIBRA™ technology. The OnceMore® process makes it possible to process and recycle a blend of cotton and polyester.

ITMF paid particular tribute to the joint LIFE TREATS project (Textile Recycling in Europe AT Scale)1,which was supported by an EU grant of EUR 10m under the LIFE 20222 program and aims to build a large-scale plant at Södra's Mörrum site in Sweden.

For more information on the ITMF Awards 2023, visit the ITMF website.

1 Project 101113614 — LIFE22-ENV-SE-TREATS
2 https://cinea.ec.europa.eu/programmes/life_en

Source:

Lenzing AG

03.11.2023

Lenzing implements performance program in response to lack of market recovery

  • Revenue of EUR 1.87 bn and EBITDA of EUR 219.1 mn in the first three quarters of 2023
  • Positive free cash flow of EUR 27.3 mn in the third quarter
  • Implementation of performance program focusing on positive free cash flow, strengthened sales and margin growth and sustainable cost excellence
  • Modernization and conversion of Indonesian site successfully completed – EU Ecolabel received

The anticipated recovery in markets relevant for the Lenzing Group has to date failed to materialize. The continued sharp increase in raw material and energy costs on the one hand and very subdued demand on the other had a negative impact on Lenzing’s business trends as well as on industry as a whole during the reporting period.

  • Revenue of EUR 1.87 bn and EBITDA of EUR 219.1 mn in the first three quarters of 2023
  • Positive free cash flow of EUR 27.3 mn in the third quarter
  • Implementation of performance program focusing on positive free cash flow, strengthened sales and margin growth and sustainable cost excellence
  • Modernization and conversion of Indonesian site successfully completed – EU Ecolabel received

The anticipated recovery in markets relevant for the Lenzing Group has to date failed to materialize. The continued sharp increase in raw material and energy costs on the one hand and very subdued demand on the other had a negative impact on Lenzing’s business trends as well as on industry as a whole during the reporting period.

Revenue in the first three quarters of 2023 decreased by 5.3 percent year-on-year to EUR 1.87 bn. This reduction was primarily due to lower fiber revenues, while pulp revenues were up. The earnings trend was mainly influenced by the market environment. As a consequence, earnings before interest, tax, depreciation and amortization (EBITDA) in the reporting period decreased by 16.7 percent year-on-year to EUR 219.1 mn. The net result after tax amounted to minus EUR 96.7 mn (compared with EUR 74.9 mn in the first three quarters of 2022), while earnings per share amounted to minus EUR 4.90 (compared with EUR 2.16 in the first three quarters of 2022).

Outlook
According to the IMF, a full return of the global economy to pre-pandemic growth rates appears increasingly out of reach in the coming quarters. In addition to the consequences of the pandemic and the ongoing war in Ukraine, growth is also being influenced by restrictive monetary policy and extreme weather events. The consequences of the renewed military confrontation in the Middle East are not yet foreseeable. Overall, the IMF warns of greater risks to global financial stability, and expects the growth rate to decrease to 3 percent this year and to 2.9 percent next year.

The currency environment is expected to remain volatile in the regions of relevance to Lenzing.

The general market environment is continuing to weigh on the consumer climate and on sentiment in the industries relevant to Lenzing.

In the trend-setting market for cotton, the current 2023/24 crop season is emerging as a further 1.7 mn tonnes of inventory build-up, following 1.8 mn tonnes of inventory build-up in the previous season.

Earnings visibility remains severely limited overall.

Lenzing is fully on track with the implementation of the reorganization and cost reduction program and on this basis is implementing a comprehensive performance program focused on positive free cash flow, strengthened sales and margin growth as well as sustainable cost excellence. The overarching goal is to position Lenzing even more strongly and to further increase its crisis resilience.

In structural terms, Lenzing continues to anticipate growth in demand for environmentally responsible fibers for the textile and clothing industry as well as the hygiene and medical sectors. As a consequence, Lenzing is very well positioned with its “Better Growth” strategy and plans to continue driving growth with specialty fibers as well as its sustainability goals, including the trans-formation from a linear to a circular economy model.

The successful implementation of the key projects in Thailand and Brazil as well as the investment projects in China and Indonesia will further strengthen Lenzing’s positioning in this respect.

Taking the aforementioned factors into consideration, the Lenzing Group continues to expect that EBITDA for the 2023 financial year will lie in a range between EUR 270 mn and EUR 330 mn.

Source:

Lenzing AG

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Photo Carbios
26.10.2023

Carbios: Building and operating permits for world’s first PET biorecycling plant

Carbios  has been granted the building permit and operating authorization for the world’s first PET[1] biorecycling plant, allowing construction to start. The plant will be built in Longlaville in the Grand-Est Region on a 13.7-hectare site adjacent to the existing PET production plant of Indorama Ventures, its strategic partner.

Carbios  has been granted the building permit and operating authorization for the world’s first PET[1] biorecycling plant, allowing construction to start. The plant will be built in Longlaville in the Grand-Est Region on a 13.7-hectare site adjacent to the existing PET production plant of Indorama Ventures, its strategic partner.

This state-of-the-art facility, scheduled for commissioning in 2025, will play a crucial role in the fight against plastic pollution by providing an industrial-scale enzymatic recycling solution for PET waste. Carbios’ technology enables PET circularity and offers an alternative raw material to virgin fossil-based monomers, allowing PET producers, chemical companies, waste management firms, public entities, and brands to have an effective solution to meet regulatory requirements and fulfill their sustainability commitments. The plant will have a processing capacity of 50,000 tons of post-consumer PET waste per year (mostly waste that is non-recyclable mechanically, equivalent to 2 billion colored PET bottles or 2.5 billion PET food trays) and will generate 150 direct and indirect jobs in the region.
 
The plant will be built on a 13.7-hectare site acquired by Carbios on Indorama Ventures’ existing PET plant site without suspensive conditions. The land area gives the possibility to double the facility’s capacity.
 
A plant designed to minimize its carbon footprint
The plant is designed to maximize circularity, with high-quality output products, and minimize its environmental footprint, especially with regards to energy consumption. Optimizations are underway to further increase the recycling of water required for the process.

Located near the borders with Belgium, Germany, and Luxembourg, the plant’s location is strategic for nearby waste supply. Moreover, Carbios’ biorecycling technology can process complex waste that conventional technologies cannot recycle and produce food-grade products, enhancing the plant’s flexibility for waste supply. Carbios and Indorama Ventures will collaborate to ensure the feedstock supply of the Longlaville plant, located in a geographical area where the supply potential could reach 400,000 tons in 2023, and up to 500,000 tons in 2030 with improved selective collection.

Carbios has already secured an initial supply source by winning part of the CITEO tender for the biorecycling of multilayer food trays. The consortium composed of Carbios, Wellman (a subsidiary of Indorama Ventures), and Valorplast has been selected to handle 30% of the tonnage proposed by CITEO. Carbios will handle the portion of the flow consisting of multilayer food trays at its Longlaville plant starting in 2025.
 
Plant funding secured
In July 2023, Carbios successfully completed its capital increase for approximately €141 million, the largest capital increase on Euronext Growth since 2015. This amount is mainly intended to finance the construction of this plant, for which the total investment is estimated at around €230 million. The portion of the investment not funded by the proceeds from the July 2023 capital increase is expected to be covered by Indorama Ventures, which plans to mobilize approximately €110 million for this project, French state subsidies of €30 million, and €12.5 million from the Grand-Est Region, as well as a portion of Carbios Group’s available cash, which amounted to €78 million as of 30 June 2023.

Source:

Carbios

25.10.2023

Carbios: Appointment of Bénédicte Garbil as Senior Vice President of Corporate Affairs and Sustainability

Carbios announced the strengthening of its leadership team with the appointment of Bénédicte Garbil as Senior Vice President of Corporate Affairs and Sustainability. Bénédicte Garbil oversees three strategic areas: Public Affairs, Corporate Affairs, and Sustainability. In her Corporate Affairs role, she supervises Communication, Regulatory, Project Management, and Innovation Funding functions. In her Sustainability role, she oversees CSR, QHSE, and LCA functions. Bénédicte Garbil also joins the Group’s Executive Committee.

Carbios announced the strengthening of its leadership team with the appointment of Bénédicte Garbil as Senior Vice President of Corporate Affairs and Sustainability. Bénédicte Garbil oversees three strategic areas: Public Affairs, Corporate Affairs, and Sustainability. In her Corporate Affairs role, she supervises Communication, Regulatory, Project Management, and Innovation Funding functions. In her Sustainability role, she oversees CSR, QHSE, and LCA functions. Bénédicte Garbil also joins the Group’s Executive Committee.

Bénédicte Garbil started as a public affairs advisor at the French Federation of Healthcare Industries before becoming Director of Public Affairs at a pharmaceutical laboratory. In 2013, she joined the public sector, first working at the General Directorate of Enterprises (DGE) as Head of the Health, Biotechnology, and Agri-food Industries Bureau, and then at the General Investment Commissioner’s Office (CGI) from 2014 to 2017 as Deputy Director of Health and Biotechnology. Her experience allowed her to gain expertise in public policies and funding innovative projects, contributing to the creation of public funding mechanisms supported by the French Program of Investments for the Future (PIA). After her public service, she led Edwards Lifesciences in France for 4 years, then founded a consulting company accompanying biotechnology and healthcare companies in their development, from valuation to market access, including industrial development in France. A graduate of Sciences Po Lille, she holds a master’s degree in health law and a university degree in pharmacoeconomics.

More information:
Carbios management
Source:

Carbios

Winners of AVK Innovation Award 2023 (c) AVK
Winners of AVK Innovation Award 2023
25.10.2023

Winners of AVK Innovation Award 2023

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

Third place: “High Performance Recycled Carbon Fibre Materials (HiPeR)” – Composites Technology Center GmbH (CTC GmbH), partners: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; partners Japan: Faserinstitut Bremen e.V., Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Innovative Processes & Methods category
First place: “Chopped Fibre Direct Processing (CFP)” – KraussMaffei Technologies GmbH, partner: Wirthwein SE

Second place: “CIRC - Complete Inhouse Recycling of Thermoplastic Compounds” – Fraunhofer Institute for Production Engineering and Automation (IPA), partners: Schindler Handhabetechnik GmbH, Vision & Control GmbH

Third place: “CarboScreen – Sensor-Based Monitoring of Carbon-Fibre Production” – CarboScreen GmbH, partner: Institute of Textile Technology at RWTH Aachen University

Research & Science category
First place: “Development of a Stereocomplex PLA Blend on a Pilot Plant Scale” – Faserinstitut Bremen e. V.

Second place: “Fibre-Reinforced Salt as a Robust Lost Core Material” – Technical University of Munich, Chair of Carbon Composites, partners: Apppex GmbH, Haas Metallguss GmbH

Third place: “VliesSMC – Recycled Carbon Fibres with a Second Life in the SMC Process” – Sächsisches Textilforschungsinstitut e.V. (STFI), partner: Fraunhofer Institute for Chemical Technology (ICT)

 

Entries for the next Innovation Award 2024 can be submitted from January 2024 onwards.

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Sitip fabrics to feature at "Sculpture by the Sea" in Australia Photo: Elena Redaelli
20.10.2023

Sitip fabrics to feature at "Sculpture by the Sea" in Australia

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

On display at Sculpture by the Sea, the land art event that brings the Sydney coastline to life every year, is “Seabilia”, Elena Redaelli’s latest work created using waste fabric from Sitip’s production processes. A creation that draws attention to the environment and its fragility in the face of human activity, “Seabilia” is a reminder of how precious yet delicate this balance is, and how humans must become mindful of their actions before the effects end up being completely irreversible.

Sitip's commitment to environmental sustainability struck a chord with Elena Redaelli, and a meeting between the Bergamo-based textile company and the artist from Erba, Italy, led to “Seabilia”, a work that will be displayed as part of Sculpture by the Sea on Tamarama Beach near Bondi in Sydney.

It’s one of the most popular events to take place in this corner of Australia, attracting half a million visitors who flock to these Aussie beaches to admire more than one hundred works created by artists from all over the world.

Held since 1997, this event captures the imagination of its visitors for three weeks each austral spring and, thanks to the vast area it covers, has earned the title of largest annual sculpture exhibition in the world.

The 2023 edition, scheduled to take place from 20 October to 6 November, will feature Elena Redaelli's work created using waste Native-Cosmopolitan Kyoto fabric which, having failed the company's quality control tests, was donated to the artist.

A post-consumer recycled circular knit fabric composed of 89% recycled polyester (PLR), 11% elastane (EA), and weighing 240 grams, the Native-Cosmopolitan Kyoto is made from recycled yarns derived from plastic waste that’s been recovered from the environment, particularly from the sea and from recycling centres. The fabric is Bluesign, GRS (Global Recycled Standard) and OEKO-TEX certified, attesting to Sitip's commitment to environmental responsibility and protection.

During the process, the artist hand-cut the waste fabric and crocheted the pieces together using recycled cotton and other types of thread.

In the creative mind of the artist, the genesis of “Seabilia” arose from deep in the ocean where tiny creatures inhabit the darkest, least explored parts of the planet. A place where the rhythm of life for the inhabitants is marked by silence and obscurity, while waves and tides agitate the surface above. The life of the ocean, such a vast and imposing environment, is impacted every single day by human activity, slowly weakening its delicate balance. “Seabilia” is intended to act as a reminder of how precious yet extremely fragile this balance is, and how humans must become more aware of the consequences of their actions before it’s too late and such a vital asset is lost forever.

“Following Emersione, a work that was exhibited at the Ex Ateneo in Bergamo during Fiber Storming, a textile art exhibition organised by ArteMorbida Textile Arts Magazine and curated by Barbara Pavan, Seabilia is the second art project where I’ve had the opportunity to utilise SITIP's fabrics. – explains the artist, Elena Redaelli. As it was going to be displayed on the rocks at Tamarama Beach, my installation needed a durable, elastic fabric with structural characteristics capable of withstanding ocean winds and sudden changes in weather. Using waste Native-Cosmopolitan Kyoto fabric was the obvious choice, not just because of its very high quality, but also, and more importantly, because it’s made from recycled yarns derived from plastic waste that’s been recovered from the environment, often even from the sea itself. The different textures and shades of white enabled me to create a varied work that, despite the almost monochromatic tones, conjures a diverse range of tactile sensations. The biomorphic modular composition evokes skeletons of sea creatures that appear to have been deposited onto the rocks by a wave and left there to wither in the blazing Australian sun.”

 

Source:

Sitip

18.10.2023

Tonello at Kingpins with new technologies

Once again Tonello will be present their technologies and partnerships at Kingpins from October 18-19.

DyeMate, the ozone, THE Laser
DyeMate is Tonello's new "patent-pending" technology that reinterprets the traditional indigo garment dyeing process, by making it automatic and repeatable, efficient and sustainable: carried out in a nitrogen atmosphere, without oxygen, with controlled reduction and oxidation, to achieve results that are perfectly comparable, in terms of authenticity and "aesthetic flavor," to those of denim that fades and becomes vintage with the passage of time.

Tonello will present a collection of garments with super bleach effects. With OBleach, EGO and O-Zone triad redefined the garment bleaching process, including no harmful chemicals such as chlorine and permanganate, in favor of sustainable and healthy production.

The entire collection will be embellished and finished with aesthetic solutions and details: the natural overdyeing of Wake, the ultra-thin graphics made with THE Laser Lab, the reproducible breakages of THE Laser T and TM.

Once again Tonello will be present their technologies and partnerships at Kingpins from October 18-19.

DyeMate, the ozone, THE Laser
DyeMate is Tonello's new "patent-pending" technology that reinterprets the traditional indigo garment dyeing process, by making it automatic and repeatable, efficient and sustainable: carried out in a nitrogen atmosphere, without oxygen, with controlled reduction and oxidation, to achieve results that are perfectly comparable, in terms of authenticity and "aesthetic flavor," to those of denim that fades and becomes vintage with the passage of time.

Tonello will present a collection of garments with super bleach effects. With OBleach, EGO and O-Zone triad redefined the garment bleaching process, including no harmful chemicals such as chlorine and permanganate, in favor of sustainable and healthy production.

The entire collection will be embellished and finished with aesthetic solutions and details: the natural overdyeing of Wake, the ultra-thin graphics made with THE Laser Lab, the reproducible breakages of THE Laser T and TM.

Collections, design, collaborations
The MSP - Most Sustainable Product - collection, developed together with Kingpins and Denim House, designed by Piero Turk and Serena Conti, and processed in Tonello's Research and Development Center with the latest responsible finishing technologies, returns this year.

Tonello will also present another project: ONE Denim. A collection that aims to combat resource waste in the denim industry by demonstrating concretely how many new denim garments could be made from a single fabric by optimizing processes and choosing appropriate technologies and production methods. The fabrics chosen are from Sharabati Denim, the design is by Piero Turk, and the collection is processed by Tonello.

SA-KE
This project was born out of a dialogue between Tonello's technology and the creativity of British designers Sadia Rafique and Kelly Harrington, who produced as many as 70 artworks that are partly physically present at Kingpins and partly published in a book-zine that tells the philosophy and logic of this unique and original work. A work that combines technology, expressive research and all new forms of image generation, across the boundary between natural and artificial, but still totally human.

Source:

Tonello

Responsible Care Federal Competition 2023 Photo Rudolf GmbH
12.10.2023

RUDOLF wins Responsible Care Federal Competition 2023

The innovative company RUDOLF has been honoured for its outstanding achievements in the field of sustainability and environmental protection and has won the coveted Responsible Care Federal Competition 2023 in the category SME.

The innovative company RUDOLF has been honoured for its outstanding achievements in the field of sustainability and environmental protection and has won the coveted Responsible Care Federal Competition 2023 in the category SME.

The award was presented as part of a competition organised by the German Chemical Industry Association (VCI). Responsible Care is a voluntary initiative of the chemical industry. Its aim is continuous improvement in the areas of environmental protection, health and safety. Chemical companies and associations in more than 50 countries support the initiative. The award-winning project of the innovative company RUDOLF impressed the jury with its pioneering technology, which reduces CO2 emissions by up to 99.9 % compared to conventional cooling systems. „The project uses near-surface geothermal energy for industrial cooling - according to the motto „Efficiency First“ the most efficient way has been chosen!“ - Jury statement
 
TerraCool‘s winning system uses near-surface geothermal energy as the most natural form of cooling. It utilises the constant temperature of around 10°C at a depth of around 10 metres below ground. A specially developed heat exchanger system takes advantage of this natural cooling effect. In the future, it will be used to cool chemical production processes at RUDOLF. The main advantage of this technology is that it is CO2 neutral. The technology is highly efficient and consumes only 0.1 % of the electricity used by conventional cooling systems.  By using natural resources, the system reduces CO2 emissions by up to 99.9 % compared to conventional cooling systems, resulting in a very presentable carbon footprint. Another impressive aspect is its high energy efficiency. With just 1 kW of electrical energy, the system generates up to 600 kW of cooling capacity, thanks to the use of a highly energyefficient circulating pump system. Energy is, and will continue to be, a valuable „raw material“ for our industry and one that we need to manage carefully. The system is self-contained and has no contact with groundwater. No environmentally harmful refrigerants or antifreeze are required. With this technology, RUDOLF has made a pioneering contribution to the climate-neutral transformation of the economy, proving that innovative solutions can go hand in hand with environmental protection and sustainability. The Responsible Care award recognises the company‘s commitment to a greener future.

Source:

Rudolf GmbH

CEO of Jet Technology Howard Ju with Alfred Deakin Professor and Deakin Chair in Biotechnology Colin Barrow. Photo: Deakin University
CEO of Jet Technology Howard Ju with Alfred Deakin Professor and Deakin Chair in Biotechnology Colin Barrow.
11.10.2023

New Deakin REACH partnership: Textiles made from organic waste?

Australia is one of the highest waste generators in the world, with over 7.6 million tonnes of food ending up in landfill each year, costing over $36.6 billion and producing 17.5 million tonnes of greenhouse gas.

Deakin’s partnership with Jet Technology through REACH will explore ways to transform industry-generated organic waste into new products like organic textiles and stock feed using a rapid composting system.

Jet Technology’s Environmental Recycling System (ERS) will build a circular economy by creating valuable products for a range of industry sectors.

Australia is continuing to generate more landfill each year. A new partnership between Deakin’s Recycling and Clean Energy Commercialisation Hub (REACH) and Japanese-based company Jet Technology aims to turn this around by repurposing organic waste and transforming it into new products.

Australia contributes more than 7.6 million tonnes of food to landfill annually, costing over $36.6 billion and producing 17.5 million tonnes of CO2.

Australia is one of the highest waste generators in the world, with over 7.6 million tonnes of food ending up in landfill each year, costing over $36.6 billion and producing 17.5 million tonnes of greenhouse gas.

Deakin’s partnership with Jet Technology through REACH will explore ways to transform industry-generated organic waste into new products like organic textiles and stock feed using a rapid composting system.

Jet Technology’s Environmental Recycling System (ERS) will build a circular economy by creating valuable products for a range of industry sectors.

Australia is continuing to generate more landfill each year. A new partnership between Deakin’s Recycling and Clean Energy Commercialisation Hub (REACH) and Japanese-based company Jet Technology aims to turn this around by repurposing organic waste and transforming it into new products.

Australia contributes more than 7.6 million tonnes of food to landfill annually, costing over $36.6 billion and producing 17.5 million tonnes of CO2.

Deakin University scientist Alfred Deakin Professor and Chair in Biotechnology Colin Barrow and his team from the Centre for Sustainable Bioproducts will work with Jet Technology to explore the possible reuses of organic waste using Jet Technology’s Environmental Recycling System (ERS). The project will focus on converting organic waste from the agriculture, dairy and fishery sectors by drastically shortening composting time so it can be used to make new products.

The four-year research project will be undertaken at the BioFactory at Deakin’s Waurn Ponds campus. It will initially focus on processing agricultural waste, converting apple pomace into a bioproduct for the textile industry. Apple pomace consists of the apple skin, pulp, seeds and stems left over from apple juice manufacturing. Its disposal in landfill can lead to greenhouse gas emissions and potential contamination of soil and groundwater.

If successful, it could lead to the establishment of a local multi-million-dollar bioeconomy where organisations such as councils, supermarkets and food and beverage businesses could cut costs while generating new revenue streams and job opportunities.

Deakin’s REACH initiative collaborates with progressive industry, government, and education partners to establish a multi-billion-dollar bioeconomy in Victoria and push the limits of technological innovation to deliver energy and recycling solutions that reduce landfill, fossil fuel emissions, and the devastating costs of global warming.

Photo from Pixabay
09.10.2023

Otrium and Bleckmann launch garment repair partnership

Digital fashion outlet Otrium announces the launch of a dedicated garment refurbishment and repair programme for damaged returns following a successful pilot scheme. The initiative is being run in partnership with Bleckmann, experts in supply chain management for fashion and lifestyle brands. Working with Bleckmann’s team of circular fashion experts from The Renewal Workshop, Otrium is taking the next step in its strategic journey to help reduce the number of that might ultimately end up in landfills or destroyed.
 
Most of the returns that Otrium currently receives can be easily restored and put back on sale. However, in rare cases, returned items are damaged. “Preventing waste is an important part of Otrium’s DNA, and thanks to our partnership with Bleckmann and their Renewal Workshop team, we can now repair the majority of damaged returns and put them back into circulation,” said Kevin Carolan, Director of Logistics at Otrium. “We are happy that we can use our position in the fashion supply chain to create lasting change and accelerate towards our mission of reducing the volume of garments that go to landfill.”

Digital fashion outlet Otrium announces the launch of a dedicated garment refurbishment and repair programme for damaged returns following a successful pilot scheme. The initiative is being run in partnership with Bleckmann, experts in supply chain management for fashion and lifestyle brands. Working with Bleckmann’s team of circular fashion experts from The Renewal Workshop, Otrium is taking the next step in its strategic journey to help reduce the number of that might ultimately end up in landfills or destroyed.
 
Most of the returns that Otrium currently receives can be easily restored and put back on sale. However, in rare cases, returned items are damaged. “Preventing waste is an important part of Otrium’s DNA, and thanks to our partnership with Bleckmann and their Renewal Workshop team, we can now repair the majority of damaged returns and put them back into circulation,” said Kevin Carolan, Director of Logistics at Otrium. “We are happy that we can use our position in the fashion supply chain to create lasting change and accelerate towards our mission of reducing the volume of garments that go to landfill.”

Since 2020, Otrium is exploring refurbishment and repairs with their third-party logistics provider Bleckmann. In April 2023, both partners started a three-month pilot at Bleckmann’s facility in Almelo, the Netherlands, to expand the programme with a broader range of repairs and optimised processes through data use. During the pilot, the Renewal Workshop team at Bleckmann refurbished more than 1,000 returned garments, shoes and accessories for Otrium each month.

“With hundreds of high-end labels on the platform, we needed an efficient solution tailored to the needs of a wide range of products – from shoes and coats to bags,” explained Marlot Kiveron, Head of Sustainability at Otrium. “The Renewal Workshop team worked closely with us to develop a streamlined and scalable process that could grow in line with our ambitions, delivering like-new repairs at the speed of e-commerce. Their combination of purpose, professionalism, agility and expertise makes them the ideal partner for this kind of project.”
 
Bleckmann’s integrated data capabilities were also crucial to the success of the partnership. “Data collection and analysis can be vital in demonstrating the commercial viability of sustainability initiatives,” said Tamara Zwart, Director of Renewal at Bleckmann. “Using our advanced stock tracking systems, we determined that 70% of the renewed Otrium stock had been sold within seven weeks. We’re all delighted with the results!”
Furthermore, carbon-tracking software Vaayu calculated that on average, a refurbished return sold on Otrium avoids 2.760kg of carbon emissions and 69g of waste proofing that this programme can have a positive impact on both: the planet and the business.

Having established the business case, the team decided to expand the initiative beyond the pilot phase. “This project is a milestone in our sustainability journey,” concluded Marlot. “It’s a key part of our ongoing commitment to finding more ways to reduce our environmental impact while helping to ensure that more clothes get worn. By the end of 2023, we aim to repair at least 25,000 damaged garments. Together with Bleckmann and their renewal experts, we’re well on our way to proving that this circular business model can be a valuable part of our future growth.”

Source:

Otrium, Bleckmann

04.10.2023

Official launch of ReHubs Europe

At a kick off meeting hosted by Mango, EURATEX and 20 incoming members presented ReHubs Europe, a new international non-profit organisation poised to give a boost to the textile recycling. The launch follows three years of intense preparation, and the publication of a Techno-Economic Study, which analysed the business case, cost and environmental benefits for upscaling textile waste recycling in Europe.

ReHubs Europe will gather key players from the textile value chain - textile manufacturers, fashion brands, collectors and recyclers, chemical industry, technology providers - who welcome the ReHubs joint ambition to recycle 2.5 million tons of textile waste by 2030. This requires up to 250 industrial projects across Europe, covering different types of fibre-to-fibre recycling.

ReHubs Europe is the industry’s response to the upcoming EU legislation, which sets compulsory collection and sorting of textile waste, by 2025. To manage this, an upscale of recycling capacity is needed as well as a collaboration of different players from the value chain.

At a kick off meeting hosted by Mango, EURATEX and 20 incoming members presented ReHubs Europe, a new international non-profit organisation poised to give a boost to the textile recycling. The launch follows three years of intense preparation, and the publication of a Techno-Economic Study, which analysed the business case, cost and environmental benefits for upscaling textile waste recycling in Europe.

ReHubs Europe will gather key players from the textile value chain - textile manufacturers, fashion brands, collectors and recyclers, chemical industry, technology providers - who welcome the ReHubs joint ambition to recycle 2.5 million tons of textile waste by 2030. This requires up to 250 industrial projects across Europe, covering different types of fibre-to-fibre recycling.

ReHubs Europe is the industry’s response to the upcoming EU legislation, which sets compulsory collection and sorting of textile waste, by 2025. To manage this, an upscale of recycling capacity is needed as well as a collaboration of different players from the value chain.

Chris Deloof will lead ReHubs Europe as Executive Director. Chris has a long-standing experience in the textile sector and is a passionate advocate for cross-industry collaboration. Moreover, Chris is deeply committed to driving the transition towards a circular economy, which aligns seamlessly with ReHubs Europe's mission.

ReHubs Europe will operate from Brussels, in close partnership with EURATEX. Membership is open to any companies who wish to invest in textile waste recycling in Europe.

Source:

Euratex

IFM researchers Research Fellow Frank Chen, Research Fellow Marzieh Parhizkar, Research Engineer Amol Patil and Associate Professor Alessandra Sutti. Photo Deakin University
IFM researchers Research Fellow Frank Chen, Research Fellow Marzieh Parhizkar, Research Engineer Amol Patil and Associate Professor Alessandra Sutti.
20.09.2023

Deakin/Xefco: Dyeing jeans without a drop of water

Deakin University has signed a partnership agreement with Geelong-based company Xefco as part of its Recycling and Clean Energy Commercialisation Hub (REACH) to conduct new research to transform how our clothing, including jeans, get their colour.

Jeans are one of the most worn garments in the world, but they are also one of the least environmentally friendly, taking around 75 litres of water to dye just one pair.

Deakin’s work with Xefco is helping to explore if a waterless manufacturing process can replace the water intensive processes the clothing industry has used for hundreds of years. The new technology in development is called ‘Ausora’.

Associate Professor Alessandra Sutti, from Deakin’s Institute for Frontier Materials, said it was exciting to be on the commercialisation journey with Xefco, working with the company to discover what is possible and hopefully reduce the world’s fashion footprint.

“If successful, the Ausora technology, which colours fabrics without the need for large quantities of water, will put us a step closer to more efficient and sustainable clothing manufacturing,” Associate Professor Sutti said.

Deakin University has signed a partnership agreement with Geelong-based company Xefco as part of its Recycling and Clean Energy Commercialisation Hub (REACH) to conduct new research to transform how our clothing, including jeans, get their colour.

Jeans are one of the most worn garments in the world, but they are also one of the least environmentally friendly, taking around 75 litres of water to dye just one pair.

Deakin’s work with Xefco is helping to explore if a waterless manufacturing process can replace the water intensive processes the clothing industry has used for hundreds of years. The new technology in development is called ‘Ausora’.

Associate Professor Alessandra Sutti, from Deakin’s Institute for Frontier Materials, said it was exciting to be on the commercialisation journey with Xefco, working with the company to discover what is possible and hopefully reduce the world’s fashion footprint.

“If successful, the Ausora technology, which colours fabrics without the need for large quantities of water, will put us a step closer to more efficient and sustainable clothing manufacturing,” Associate Professor Sutti said.

Xefco CEO Tom Hussey said the company’s new pilot plant, housed at Deakin in Geelong, will test different materials, including specialised fabrics such as waterproof items like outdoor jackets and jeans.

“This is the first stage of Xefco’s vision for the technology, with the REACH project focused on demonstrating the commercial viability of the technology at pilot scale and developing processes so it can be scaled up for commercial production,” Mr Hussey said.

“Together, Deakin and Xefco will push the limits of innovation and see what is possible.”
Xefco’s pilot plant is co-located with Deakin researchers at ManuFutures, the state-of-the-art advanced manufacturing hub at Deakin’s Waurn Ponds campus.

Founded in 2018 Xefco now employs 17 people and its products are already making a difference across the world. Its XReflex technology, which reduces consumption of insulation materials, is being used by some of the world’s leading apparel and fashion brands including The North Face.

Backed by a $50 million grant from the Australian Government’s inaugural Trailblazer Universities Program, with industry and university support taking the total project value to $380 million, REACH is facilitating the development of greener supply chains and accelerating business success as markets move from a throughput economy to a circular economy.

Source:

Deakin University