From the Sector

Reset
69 results
06.05.2021

Technologieatlas Nachhaltigkeit: Familienunternehmen prägen die wichtigsten Umwelttechnologien

Wie entwickeln und nutzen Familienunternehmen in Deutschland Umwelttechnologien, und welchen Beitrag leisten sie zum Umweltschutz? Das untersuchte das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT für die Stiftung Familienunternehmen in der heute veröffentlichten Studie »Technologieatlas Nachhaltigkeit«. Das Ergebnis: Familienunternehmen sind in den 15 wichtigsten Umwelttechnologien sehr aktiv und tragen in hohem Maße zum Klimaschutz, zur Ressourcen- und Energiewende, zur Digitalisierung oder auch zur nachhaltigen Mobilität bei.

Wie entwickeln und nutzen Familienunternehmen in Deutschland Umwelttechnologien, und welchen Beitrag leisten sie zum Umweltschutz? Das untersuchte das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT für die Stiftung Familienunternehmen in der heute veröffentlichten Studie »Technologieatlas Nachhaltigkeit«. Das Ergebnis: Familienunternehmen sind in den 15 wichtigsten Umwelttechnologien sehr aktiv und tragen in hohem Maße zum Klimaschutz, zur Ressourcen- und Energiewende, zur Digitalisierung oder auch zur nachhaltigen Mobilität bei.

Damit Europa bis 2050 der erste klimaneutrale Kontinent wird – so legten es die Staaten der EU im European Green Deal fest - , sind vielfältige Technologien im Bereich der Umwelttechnik notwendig. Welche Technologien und Branchen genau dazu gehören, wie sich diese priorisieren oder bewerten lassen, und wie Familienunternehmen diese voranbringen, untersuchte das Fraunhofer UMSICHT in einer Studie. Das Forschungsteam erstellte einen »Technologieatlas Nachhaltigkeit«, der den gegenwärtigen Stand der Umwelttechnik in Deutschland beschreibt. Hierin wurde speziell der Beitrag von Familienunternehmen identifiziert, und es wurden Perspektiven für zukünftige, nachhaltige Entwicklungen aufgezeigt.

Untersuchte Umwelttechnologien
Folgende Technologien wurden betrachtet: Photovoltaik, Windkraft, Recycling, Biotechnologie, Wasseraufbereitung und Abwasserbehandlung, Wärmepumpen, Batterien, Wärmedämmung (thermische Isolierung), Leichtbau, Smart Home, Wasserstofftechnologie, Luftreinhaltung, Biokunststoffe, E-Fuels und übergreifend die Digitalisierung.  

Die Wissenschaftler*innen erstellten zu jeder Technologie Steckbriefe, die unter anderem Märkte und Arbeitsplätze, spezifische Herausforderungen und Hemmnisse, Innovationen und Zukunftsperspektiven aufzeigen. Die Studie und die Steckbriefe beruhen auf einer intensiven Literaturrecherche, Interviews mit Expert*innen in den Unternehmen und dem Input aus einen Beiratstreffen mit Vertreter*innen aus Familienunternehmen und Vertretern aus der Politik.

Familienunternehmen tragen in großem Maß zur Ressourcenschonung bei
In den Technologiefeldern Photovoltaik und Windkraft sind die meisten Familenunternehmen tätig. Weiterhin weisen die Bereiche E-Fuels, Wasserstoff und Batterien perspektivisch ein starkes Wachstumspotenzial auf. Eins der übergreifenden Ergebnisse: Familienunternehmen übernehmen in der Entwicklung und Anwendung der wichtigsten Umwelttechnologien eine wichtige Rolle. »Sie erachten den Kampf gegen den Klimawandel und Ressourcenschonung als zentrale Aufgabe und leisten wesentliche Beiträge, um die damit verbundenen Herausforderungen zu bewältigen. Sie sind bereit, in Innovationen zu investieren«, erläutert Markus Hiebel, Leiter der Studie und Abteilungleiter Nachhaltigkeit und Partizipation des Fraunhofer UMSICHT.

Wasserstofftechnologien, E-Fuels und Batterien sind Schlüsseltechnologien zur Sektorenkopplung. Die Verbindung über Branchen hinaus erfordert eine hohe Flexibilität der beteiligten Unternehmen – eine Fähigkeit, die insbesondere Familienunternehmen zugesprochen wird. »Unsere Klimaziele werden wir nur mit einer Vielzahl verschiedener und sich ergänzender Aktivitäten und Technologien erreichen. Das Know-How der Familienunternehmen in ihren jeweiligen Nischen ist dafür der wesentliche Schlüssel zum Erfolg«, sagt Stefan Heidbreder, Geschäftsführer der Stiftung Familienunternehmen.

Entscheidend für den weiteren Erfolg ist, dass die Politik technologieoffen agiert. Alle relevanten Umwelttechnologien sollten gleichermaßen berücksichtigt und keine diskriminiert werden. Der politische Rahmen sollte zudem planbar, verlässlich und möglichst global sein. Es braucht auch eine leistungsfähige digitale Infrastruktur sowie eine höhere Verfügbarkeit von Expert*innen.

Wesentliche Innovationstreiber im Bereich der Umwelttechnik sind oft staatliche Regulierungen wie ein Preis für CO2 oder Mindestrecyclingquoten. Um eine verlässliche Steuerungswirkung zu entfalten, sollten diese länderübergreifend gültig sein.

Die Studie ist als PDF zum Download beigefügt.

 

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

(c) Fraunhofer UMSICHT
15.04.2021

Fraunhofer: Kompendium zu Kunststoff in der Umwelt

Was ist Mikroplastik genau? Welche Bewertungsverfahren für Kunststoffeintrag in die Umwelt gibt es? Worin unterscheiden sich Duroplaste, Thermoplaste und Elastomere? Das neu erschienene »Kompendium Kunststoff in der Umwelt« zielt darauf ab, solch grundlegende Fragen rund um Plastik in der Umwelt zu beantworten – völlig unabhängig von bestimmten Fachdisziplinen. Das Kompendium dient als Hilfsmittel, um den gesellschaftlichen und wissenschaftlichen Diskurs zu diesem Thema auf eine gemeinsame fachliche Basis zu stellen.

Was ist Mikroplastik genau? Welche Bewertungsverfahren für Kunststoffeintrag in die Umwelt gibt es? Worin unterscheiden sich Duroplaste, Thermoplaste und Elastomere? Das neu erschienene »Kompendium Kunststoff in der Umwelt« zielt darauf ab, solch grundlegende Fragen rund um Plastik in der Umwelt zu beantworten – völlig unabhängig von bestimmten Fachdisziplinen. Das Kompendium dient als Hilfsmittel, um den gesellschaftlichen und wissenschaftlichen Diskurs zu diesem Thema auf eine gemeinsame fachliche Basis zu stellen.

Das Themenfeld Plastik in der Umwelt ist für unterschiedliche Fachdisziplinen relevant. Definitionen und Fachtermini rund um Kunststoffe werden allerdings oft fachspezifisch bzw. kontextbezogen genutzt. Entsprechend existieren für einen Begriff zuweilen unterschiedliche Bedeutungsebenen. Um eine gemeinsame Basis im Diskurs zum Thema Plastikverschmutzung und seine Auswirkungen auf Mensch und Umwelt zu schaffen, haben Wissenschaftler*innen das 54 Seiten umfassende Kompendium »Kunststoff in der Umwelt« erstellt. »Für eine inter- und transdisziplinäre Zusammenarbeit zu Kunststoff in der Umwelt ist ein gemeinsames Grundverständnis unabdingbar«, erklärt der federführende Autor Jürgen Bertling des Fraunhofer UMSICHT.

Einheitliche Definitionen auf Deutsch und Englisch
Das im März auf Deutsch erschienene »Kompendium Kunststoff in der Umwelt« adressiert die Fachöffentlichkeit, beantwortet aber auch grundlegende Fragen rund um Plastik in der Umwelt. Somit kann es auch als Hilfsmittel für Behörden, Politik, Medien, Umweltorganisationen und die interessierte Öffentlichkeit genutzt werden. Die englische Version ist derzeit noch in Bearbeitung. Es wurde auch erarbeitet, um eine einheitliche Sprachregelung innerhalb des BMBF-Forschungsschwerpunkts »Plastik in der Umwelt« sowie in der Kommunikation nach außen zu unterstützten.

In insgesamt 13 Kapiteln werden die jeweils wichtigsten Begriffe und Definitionen benannt, erläutert und kontextualisiert. Das Kompendium arbeitet dabei vor allem mit bestehenden Definitionen (u. a. DIN/CEN/ISO-Normen oder rechtliche Definitionen aus der bundesdeutschen Gesetzgebung); eine eigene Definitionsarbeit wird nur sehr begrenzt geleistet. Dabei wird im Einzelfall verdeutlicht, wie Begriffe korrekt verwendet und welche Begriffe nicht gebraucht werden sollten. Das Kompendium beinhaltet zudem ein Stichwortverzeichnis, sodass die Erläuterungen zu gesuchten Begriffen schnell ausfindig gemacht werden können.

Das Kompendium »Kunststoff in der Umwelt« wurde im Rahmen des Querschnittsthemas »Begriffe und Definitionen« des BMBF-Forschungsschwerpunkts »Plastik in der Umwelt« erarbeitet. Wissenschaftler*innen aus den Verbundprojekten ENSURE, EmiStop, Innoredux, InRePlast, MaReK, MicBin, MicroCat»ch_Balt, MikroPlaTaS, PlastikBudget, PLASTRAT, RAU, ResolVe, RUSEKU, revolPET, SubµTrack und TextileMission haben sich aktiv an der Erstellung des Kompendiums beteiligt.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

25.03.2021

Fraunhofer-Institute entwickeln neue Technologien für eine grüne Chemie

Produktionsketten defossilisieren sowie eine zirkuläre, treibhausgasneutrale Stoff- und Energiewandlung etablieren – die chemische Industrie hat sich in Sachen Nachhaltigkeit ehrgeizige Ziele gesetzt. Unterstützung bei diesem Prozess leisten ab sofort neun Institute der Fraunhofer-Gesellschaft: Im Leitprojekt ShaPID wollen sie ihre Forschungsaktivitäten für das Erreichen der Nachhaltigkeitsziele bündeln und gleichzeitig ihre Beziehungen zur Branche stärken.

»Konkret wollen wir zeigen, dass eine nachhaltige, grüne Chemie durch praxisnahe technologische Innovationen möglich ist«, erläutert Prof. Ulf-Peter Apfel vom Fraunhofer UMSICHT, einem der beteiligten Institute. »Auf Grundlage der international anerkannten „12 Principles of Green Chemistry“ wollen wir gemeinsam neue Methoden und Technologien entwickeln.« Im Fokus der Forschende stehen dabei vier komplementäre Bereiche: (1) die Synthese-, Reaktions- und Katalysetechnik, (2) die kontinuierliche Prozess- und Verfahrenstechnik, (3) die Modellierung, Simulation und Prozessoptimierung sowie (4) die Digitalisierung und Automation.

Produktionsketten defossilisieren sowie eine zirkuläre, treibhausgasneutrale Stoff- und Energiewandlung etablieren – die chemische Industrie hat sich in Sachen Nachhaltigkeit ehrgeizige Ziele gesetzt. Unterstützung bei diesem Prozess leisten ab sofort neun Institute der Fraunhofer-Gesellschaft: Im Leitprojekt ShaPID wollen sie ihre Forschungsaktivitäten für das Erreichen der Nachhaltigkeitsziele bündeln und gleichzeitig ihre Beziehungen zur Branche stärken.

»Konkret wollen wir zeigen, dass eine nachhaltige, grüne Chemie durch praxisnahe technologische Innovationen möglich ist«, erläutert Prof. Ulf-Peter Apfel vom Fraunhofer UMSICHT, einem der beteiligten Institute. »Auf Grundlage der international anerkannten „12 Principles of Green Chemistry“ wollen wir gemeinsam neue Methoden und Technologien entwickeln.« Im Fokus der Forschende stehen dabei vier komplementäre Bereiche: (1) die Synthese-, Reaktions- und Katalysetechnik, (2) die kontinuierliche Prozess- und Verfahrenstechnik, (3) die Modellierung, Simulation und Prozessoptimierung sowie (4) die Digitalisierung und Automation.

Vom grünen Rohstoff zum grünen Produkt
Die Anwendung der neuen Technologien und Methoden soll im technischen Maßstab an drei Referenzprozessen demonstriert werden, die unterschiedliche Produktsparten der Chemie adressieren: Bei »Green Plastics« geht es um die Gestaltung neuer Polymere aus CO2 und biogenen Rohstoffquellen, während bei »Green Monomers« energieeffiziente Synthesen von Monomeren aus nicht-fossilen Rohstoffen beleuchtet werden. Last but not least wird bei »Efficient Building Blocks« der Einsatz hochreaktiver Moleküle für die atomeffiziente Synthese untersucht. »Alle drei Prozesse beschreiten den Weg vom grünen Rohstoff über eine grüne Prozessführung bis hin zu grünen Produkten«, so Ulf-Peter Apfel. »Die Entwicklung wird eng sowohl von Life Cycle Assessments und Systemanalysen als auch von REACh-Bewertungen und (Öko-)Toxizitätsvorhersagen begleitet.«

Die Forschenden des Fraunhofer UMSICHT konzentrieren sich im Rahmen von ShaPID auf die Etablierung von Demonstratoren im Bereich »Green Monomers«. »Dabei geht es vor allem um die alternative Synthese von 1,4-Butadien und Diolen – allesamt wichtige Verbindungen für die chemische Industrie – aus nachwachsenden Rohstoffen über neue thermische und elektrochemische Pfade«, erklärt Dr. Barbara Zeidler-Fandrich.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Vötsch Industrietechnik GmbH: Infrarot für textile Prozesse (c) Vötsch Industrietechnik GmbH
07.01.2021

Vötsch Industrietechnik GmbH: Infrarot für textile Prozesse

In der Textilverarbeitung ist Infrarot-Strahlung eine bewährte Wärmequelle. Sie überträgt kontaktlos hohe Leistungen in kurzer Zeit. Dadurch kann Energie eingespart und die Produktionsgeschwindigkeit erhöht werden. Letztlich werden die Produktionskosten minimiert. Infrarotsysteme sind sehr kompakt und können eine hohe Leistungsdichte auf einer kleinen Fläche erzeugen. Daraus resultieren kleine Anlagenlayouts und ein geringer Platzbedarf in der Produktion.

  • Infrarot-Strahler übertragen Wärme kontaktfrei
  • Kurze Reaktionszeiten erlauben eine exakte Temperaturführung
  • Optimal abgestimmte Infrarot-Strahlersysteme erhöhen die Prozessgeschwindigkeit, verbessern die Qualität und sparen Energie

Fixierung von Teppich Bahnen bestehend aus Textilgewebe und Bitumen Laminierung
Durch die Verwendung von Infrarot wird stets eine konstante Bitumentemperatur beim Laminieren mit dem Textilsubstrat gewährleistet unabhängig von der Produktionsgeschwindigkeit (sogar nach Maschinenstillstand) und unabhängig von der Umgebungstemperatur. Dadurch wurde das Problem der Delamination gelöst.

In der Textilverarbeitung ist Infrarot-Strahlung eine bewährte Wärmequelle. Sie überträgt kontaktlos hohe Leistungen in kurzer Zeit. Dadurch kann Energie eingespart und die Produktionsgeschwindigkeit erhöht werden. Letztlich werden die Produktionskosten minimiert. Infrarotsysteme sind sehr kompakt und können eine hohe Leistungsdichte auf einer kleinen Fläche erzeugen. Daraus resultieren kleine Anlagenlayouts und ein geringer Platzbedarf in der Produktion.

  • Infrarot-Strahler übertragen Wärme kontaktfrei
  • Kurze Reaktionszeiten erlauben eine exakte Temperaturführung
  • Optimal abgestimmte Infrarot-Strahlersysteme erhöhen die Prozessgeschwindigkeit, verbessern die Qualität und sparen Energie

Fixierung von Teppich Bahnen bestehend aus Textilgewebe und Bitumen Laminierung
Durch die Verwendung von Infrarot wird stets eine konstante Bitumentemperatur beim Laminieren mit dem Textilsubstrat gewährleistet unabhängig von der Produktionsgeschwindigkeit (sogar nach Maschinenstillstand) und unabhängig von der Umgebungstemperatur. Dadurch wurde das Problem der Delamination gelöst.

Trocknung von Baumwollgewebe auf 2% Restfeuchte
Das System erzeugt eine konstante Restfeuchte bei variierender Produktionsgeschwindigkeit von 10-100m/min und über die vollständige Gewebebreite.
Der Trockenofen ist vertikal aufgebaut, wodurch sehr wenig Platz von nur 1m für 200kW benötigt wurde.

Vorwärmung von Nadelfilz Matten
Das Gewebe wird über die gesamte Produktionsbreite von 5000mm am Eingang des Umluftofens mit einer erhöhten Temperatur (± 60°C zusätzlich) angeliefert, und zwar unabhängig von der Produktionsgeschwindigkeit. Die Prozess Geschwindigkeit konnte auf 12m/min. erhöht werden.
Nahtlose Integration in den zur Verfügung stehenden Platz auf der Produktionsmaschine. Es waren lediglich 500mm in Durchlaufrichtung erforderlich.

Source:

AFBW - Allianz Faserbasierte Werkstoffe Baden-Württemberg e.V.

(c) Fraunhofer UMSICHT
17.12.2020

Fraunhofer: Buch »Prototype Nature« erschienen

Das frisch erschienene Buch »Prototype Nature« stellt die Biologie in den Mittelpunkt und geht der Frage nach, wie diese für die Wissenschaft, Technik, Wirtschaft und Gesellschaft als Vorbild fungieren kann, um neue Wege für eine nachhaltigere Welt zu ebnen. Aufbauend auf dem gleichnamigen Symposium, geben Wissenschaftler*innen und Designer*innen Einblicke in vielversprechende Ansätze der Bionik und der Biotechnologie und damit auch Denkanstöße für das eigene Handeln in einer bioinspirierten Welt.

Ein Blick ins Inhaltsverzeichnis: »Giftfreies Antifouling nach biologischem Vorbild«; »Von Tierhaut zu Bakterienhaut – von Modedesign zu Biodesign«; »Von der Natur lernen – eine Skizze zur Utopie des Sein-Lassens« - so lauten 3 der 31 vorgestellten Ansätze. Das Buch zeigt auf, welche Vielfalt es an Interaktionen zwischen Biologie, Technik und Design gibt und bietet die Möglichkeit, die Funktionsweise heutiger Organismen und Ökosysteme besser zu verstehen, und zeigt wie diese in analoge technische und gestalterische Lösungen überführt werden.

Das frisch erschienene Buch »Prototype Nature« stellt die Biologie in den Mittelpunkt und geht der Frage nach, wie diese für die Wissenschaft, Technik, Wirtschaft und Gesellschaft als Vorbild fungieren kann, um neue Wege für eine nachhaltigere Welt zu ebnen. Aufbauend auf dem gleichnamigen Symposium, geben Wissenschaftler*innen und Designer*innen Einblicke in vielversprechende Ansätze der Bionik und der Biotechnologie und damit auch Denkanstöße für das eigene Handeln in einer bioinspirierten Welt.

Ein Blick ins Inhaltsverzeichnis: »Giftfreies Antifouling nach biologischem Vorbild«; »Von Tierhaut zu Bakterienhaut – von Modedesign zu Biodesign«; »Von der Natur lernen – eine Skizze zur Utopie des Sein-Lassens« - so lauten 3 der 31 vorgestellten Ansätze. Das Buch zeigt auf, welche Vielfalt es an Interaktionen zwischen Biologie, Technik und Design gibt und bietet die Möglichkeit, die Funktionsweise heutiger Organismen und Ökosysteme besser zu verstehen, und zeigt wie diese in analoge technische und gestalterische Lösungen überführt werden.

Das 21. Jahrhundert gilt als das Jahrhundert der Biologie. Biotechnische und bioinspirierte Innovationen verändern heutige Produktionssysteme und unseren Alltag radikal. Gleichzeitig wandelt sich die Biologie selbst wie z. B. die Gentechnik oder die synthetische Biologie zeigen. Die vielfältigen Fortschritte in der Bionik und der Biotechnologie führen zu einem umfassenden Wandel der Mensch-Technik-Biologie-Verhältnisse. »Sie erfordert die Übernahme von Verantwortung in einem Maße, wie es uns Menschen in der Vergangenheit nur selten gelungen ist«, schreibt Mitherausgeber Jürgen Bertling des Fraunhofer UMSICHT in seiner Danksagung.

Interdisziplinäre Zusammenarbeit verschiedener Fachdisziplinen
Ein weiterer wichtiger Aspekt des Buches ist die Interaktion zwischen den verschiedenen Wissenschaften, die sich teilweise ergänzen, aber auch an bestimmten Punkten widersprechen.

Wichtig für die vielfältigen Fortschritte in der Bionik und der Biotechnologie ist die interdisziplinäre Zusammenarbeit verschiedener Fachdisziplinen. Um die Biologie, die Natur als Vorbild für die Wirtschaft und die Gesellschaft zu nutzen, müssen Naturwissenschaftler und Ingenieure mit Fachleuten aus den Industriebereichen Produktion und Marketing, Gestaltung und Design auf offene Art und Weise zusammenarbeiten. »Warum trennt man beispielsweise immer die Funktion von der Schönheit? In der Natur ist Schönheit Funktion. Lasst uns von der Natur lernen«, sagt Mitherausgeberin Anke Bernotat, Design-Professorin an der Folkwang Universität der Künste. So können Lösungen für wettbewerbsfähiges und umweltverträgliches Produzieren und Wirtschaften entwickelt werden.

Herausgeber des Buchs sind Jürgen Bertling vom Fraunhofer UMSICHT und Anke Bernotat (Folkwang Universität der Künste). Das Projekt »Prototype Nature« wurde vom BMBF durch die Projektträgern DLR und BIOKON gefördert.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

Verleihung des UMSICHT-Wissenschaftspreis 2020 © Fraunhofer UMSICHT
Verleihung UMSICHT-Wissenschaftspreis 2020: Dr. Susanne Raedeker, stellv. Vorstandsvorsitzende des UMSICHT-Fördervereins, und Prof. Görge Deerberg, Geschäftsführer des UMSICHT-Fördervereins.
02.10.2020

Verleihung des UMSICHT-Wissenschaftspreis 2020

  • Wissenschaft im Fokus der Öffentlichkeit

Der vom UMSICHT-Förderverein ausgeschriebene UMSICHT-Wissenschaftspreis zeichnete zum 11. Mal Menschen aus, die den Dialog zwischen Wissenschaft und Gesellschaft fördern und komplizierte Sachverhalte verständlich kommunizieren. In der Kategorie Wissenschaft überzeugte Dr. Pattarachai Srimuk die Fachjury mit seiner Arbeit zum Thema Wasseraufbereitung. Adrian Lobe erhielt den Preis in der Kategorie Journalismus für seinen Artikel über die Umweltauswirkungen digitaler Dienste. Die Preisverleihung fand in diesem Jahr erstmalig virtuell statt.

  • Wissenschaft im Fokus der Öffentlichkeit

Der vom UMSICHT-Förderverein ausgeschriebene UMSICHT-Wissenschaftspreis zeichnete zum 11. Mal Menschen aus, die den Dialog zwischen Wissenschaft und Gesellschaft fördern und komplizierte Sachverhalte verständlich kommunizieren. In der Kategorie Wissenschaft überzeugte Dr. Pattarachai Srimuk die Fachjury mit seiner Arbeit zum Thema Wasseraufbereitung. Adrian Lobe erhielt den Preis in der Kategorie Journalismus für seinen Artikel über die Umweltauswirkungen digitaler Dienste. Die Preisverleihung fand in diesem Jahr erstmalig virtuell statt.

Am 2. Oktober wurde der UMSICHT-Wissenschaftspreis verliehen. Diesmal aufgrund der Corona-Pandemie nicht in gewohnter Umgebung am Fraunhofer UMSICHT in Oberhausen, sondern virtuell. Die Preisträger waren online zugeschaltet und freuten sich aus der Ferne über die mit insgesamt 10 000 Euro dotierte Auszeichnung. »Wir freuen uns gemeinsam mit den Preisträgern, vor allem auch, dass so viele Gäste an der Verleihung teilgenommen und Dr. Pattarachai Srimuk und Adrian Lobe einen würdigen Rahmen bereitet haben«, so Prof. Görge Deerberg, Geschäftsführer des UMSICHT-Förderverein und stellv. Institutsleiter des Fraunhofer UMSICHT. Dem konnte Dr. Susanne Raedeker, stellv. Vorsitzende des Fördervereins, nur zustimmen. Sie überreichte gemeinsam mit Prof. Deerberg die beiden Preise.

Der Moderator der vergangenen Preisverleihungen und Schirmherr des UMSICHT-Wissenschaftspreis, Prof. Dietrich Grönemeyer, würdigte in einer Videobotschaft die herausragenden Arbeiten der Preisträger. Einmal mehr spiegelten die zahlreichen eingereichten Bewerbungen die aktuellen Themen und Trends in der Forschungslandschaft wider und zeigten den großen Stellenwert verständlicher Kommunikation von Wissenschaftsthemen auf.

Preisträger Kategorie Wissenschaft: Dr. Pattarachai Srimuk

Der UMSICHT-Wissenschaftspreis 2020 in der Kategorie Wissenschaft ging an Dr. Pattarachai Srimuk, der als Postdoc am Leibniz-Institut für Neue Materialien in Saarbrücken arbeitet. Er erhielt den Preis für seine Dissertation zum Thema »Sustainable water treatment and ion separation with battery materials: green energy meets blue water« (deutsch: »Nachhaltige Wasseraufbereitung und Ionentrennung mit Batteriematerialien: Grüne Energie trifft blaues Wasser«).

»Der Wasserverbrauch steigt mit zunehmendem Wachstum der Weltbevölkerung. Parallel dazu verschärfen sich in vielen Ländern die Probleme in Bezug auf Zugang und Verfügbarkeit von Trinkwasser«, erklärt Dr. Srimuk. Gefragt sind energieeffiziente Wasseraufbereitungstechnologien. Eine vielversprechende Technologie zur Entsalzung von Wasser ist die kapazitive Deionisierung, kurz CDI. Das Verfahren funktioniert bisher jedoch nur mit Brackwasser energieeffizient. Dr. Srimuk hat im Rahmen seiner Dissertation neue Faraday’sche Elektrodenmaterialien erforscht, die auch Meerwasser effizient und effektiv entsalzen. Seine Aktivitäten können somit einen wichtigen Beitrag zur weltweiten »Wasserwende« leisten.

Preisträger Kategorie Journalismus: Adrian Lobe

In der Kategorie Journalismus hat sich die Fachjury – ausgewählte Wissenschaftlerinnen und Wissenschaftler, Unternehmerinnen und Unternehmer, Selbständige, Journalisten sowie PR-Fachleute –  für Adrian Lobe ausgesprochen. Der freie Autor ist u. a. für Berliner Zeitung, Neue Zürcher Zeitung und Süddeutsche Zeitung tätig und schreibt eine Kolumne für Spektrum der Wissenschaft. In seinem Artikel »Cyberfossiler Kapitalismus«, erschienen in der Süddeutschen Zeitung, widmete er sich dem ökologischen Fußabdruck von digitalen Maschinen.

»In den seltensten Fällen dürfte beim Googlen der Gedanke an die negativen Umweltauswirkungen einer Suchanfrage präsent sein. Auch beim Streamen von Filmen ist einem nicht immer bewusst, dass im Hintergrund Rechenzentren laufen, die CO2 ausstoßen«, so Adrian Lobe. Dabei seien diese Emissionen nicht zu unterschätzen. Er zeigt in seinem Artikel die Umweltauswirkungen anhand von Studien und Analysen auf und nennt die Konsequenzen der rasant wachsenden Digitalisierung durch künstliche Intelligenz und Cloud Computing. Auch geht er auf die selbstverstärkende Wachstumsspirale ein, auf die bestimmte digitale Dienste angewiesen sind. Hierzu zählen z. B. Klimamodelle, die immer extremere Rechenleistung benötigen, je detaillierter sie werden: Sie vermehren ihren eigenen ökologischen Fußabdruck, den sie auf Gegenstandsebene erkennen wollen. Lobe ist sich sicher, dass es neben nachhaltigem Cloud Computing eine neue Ökologie der Intelligenz braucht, denn: »Es gibt nichts, was so umweltfreundlich ist wie eigenes Denken.«

UMSICHT-Wissenschaftspreis 2021

Bewerbungen für den UMSICHT-Wissenschaftspreis 2021 sind ab Ende 2020 möglich, den genauen Termin geben wir auf der Internetseite des Fraunhofer UMSICHT bekannt.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und
Energietechnik UMSICHT

 

Alten Bekannten auf der Spur: Tiny-House-Ausstellung startet Tour © Folkwang Universität der Künste
In der Tiny-House-Ausstellung werden die vielseitigen Facetten der Bioökonomie erlebbar gemacht.
19.08.2020

Alten Bekannten auf der Spur: Tiny-House-Ausstellung startet Tour

  • Die Tiny-House-Ausstellung »Wunderkammer der Bioökonomie« startet Ost-West-Tour im Wissenschaftsjahr.
  • Besucher*innen lernen »Alte Bekannte« - vergessene Pflanzen - neu kennen.

In der interaktiven Ausstellung dreht sich alles um Pflanzen, Böden, Mikroben und Kulturen. Fraunhofer UMSICHT koordiniert das Projekt und entwickelte zusammen mit der Folkwang Universität der Künste die Workshops und Partizipationsformate. Ziel: Allen interessierten Menschen die vielseitigen Themen der Bioökonomie näherbringen und erlebbar machen.

Vom 26. bis zum 30. August 2020 startet die interaktiven Tiny-House-Ausstellung »Wunderkammer der Bioökonomie« ihre Deutschlandtour in Oppenheim (Rheinhessen). Mithilfe der »Alten Bekannte«, alltäglichen oder in Vergessenheit geratenen Dingen wie Sauerkraut, Wein oder Kompost, schlägt das im Wissenschaftsjahr 2020/21 geförderte Projekt eine Brücke zur Bioökonomie. Das komplexe Thema wird so anschaulich und in Workshops, Touren und Debatten erlebbar gemacht. Beim ersten Tourstopp stehen Pflanzen und deren Relevanz für die Bioökonomie im Mittelpunkt.

  • Die Tiny-House-Ausstellung »Wunderkammer der Bioökonomie« startet Ost-West-Tour im Wissenschaftsjahr.
  • Besucher*innen lernen »Alte Bekannte« - vergessene Pflanzen - neu kennen.

In der interaktiven Ausstellung dreht sich alles um Pflanzen, Böden, Mikroben und Kulturen. Fraunhofer UMSICHT koordiniert das Projekt und entwickelte zusammen mit der Folkwang Universität der Künste die Workshops und Partizipationsformate. Ziel: Allen interessierten Menschen die vielseitigen Themen der Bioökonomie näherbringen und erlebbar machen.

Vom 26. bis zum 30. August 2020 startet die interaktiven Tiny-House-Ausstellung »Wunderkammer der Bioökonomie« ihre Deutschlandtour in Oppenheim (Rheinhessen). Mithilfe der »Alten Bekannte«, alltäglichen oder in Vergessenheit geratenen Dingen wie Sauerkraut, Wein oder Kompost, schlägt das im Wissenschaftsjahr 2020/21 geförderte Projekt eine Brücke zur Bioökonomie. Das komplexe Thema wird so anschaulich und in Workshops, Touren und Debatten erlebbar gemacht. Beim ersten Tourstopp stehen Pflanzen und deren Relevanz für die Bioökonomie im Mittelpunkt.

Seit jeher spielen Pflanzen für den Menschen eine besondere Rolle. Sie ernähren uns, versorgen uns mit Sauerstoff, wir bauen Möbel aus ihnen und verbrennen sie, um Wärme zu erzeugen. Pflanzen liefern uns Textilfasern und Biokunststoffe; sie sind für uns Stromquelle, Luftfilter und Schattenspender. Über Jahrtausende wurden diverse Pflanzen durch Zucht so verändert, dass wir sie vielfältig nutzen können. Doch der Klimawandel und der hohe Ressourcenverbrauch bringen neue Herausforderungen für die Pflanzenzucht mit sich. Können die »Alten Bekannten« einen Beitrag leisten, ihnen zu begegnen?

Alte und neue Pflanzenzuchtmethoden

Die »Wunderkammer der Bioökonomie« hält Antworten bereit und lässt Besucher*innen dabei selbst zu Entdecker*innen werden. In einem Workshop können mit altbekannten Methoden Zimmerpflanzen für zu Hause gezüchtet werden, die das Raumklima verbessern und anschließend auch mitgenommen werden dürfen. Expert*innen geben ihr Wissen über alte und neue Pflanzenzuchtmethoden weiter und debattieren anschließend mit dem Publikum, ob und wie diese zu einer nachhaltigen Gesellschaft beitragen können. Schließlich erwartet Interessierte eine Wanderung durch die Weinberge der Region Oppenheim, bei der sie erfahren, warum und wie Weinstöcke gezüchtet werden.

Nach dem einwöchigen Auftakt geht die Deutschlandtour des Projekts an drei weiteren Stationen weiter: Vom 22. bis zum 28. September dreht sich in Dresden alles um das Thema Boden, im Oktober werden in Thüringen Mikroorganismen unter die Lupe genommen und im November fragt die »Wunderkammer« in Dortmund, was Bioökonomie mit Kultur zu tun hat. Die Teilnahme an den Workshops ist kostenlos.

Wie können wir nachhaltiger leben, Ressourcen schonen und gleichzeitig unseren hohen Lebensstandard erhalten? Das Wissenschaftsjahr 2020|21 – Bioökonomie hält Antworten auf diese Frage bereit. Bürgerinnen und Bürger sind dazu eingeladen, im Dialog mit Wissenschaft und Forschung den Wandel hin zu nachhaltigen, biobasierten Produktions- und Konsumweisen zu diskutieren. In vielfältigen Formaten wird das Konzept der Bioökonomie mit all seinen Potenzialen und Herausforderungen erlebbar gemacht und aus unterschiedlichen Perspektiven beleuchtet. Die Wissenschaftsjahre sind eine Initiative des Bundesministeriums für Bildung und Forschung (BMBF) gemeinsam mit Wissenschaft im Dialog (WiD).

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und
Energietechnik UMSICHT

Wissenschaftliche Ergebnisse und Methoden für das Handwerk verfügbar machen © Wilfried Meyer, Pressefoto, Düsseldorf
Unterzeichnung des Memorandum of Understanding in Oberhausen (v.l.): Prof. Dr. Hans Jörg Hennecke (Hauptgeschäftsführer HANDWERK.NRW), Andreas Ehlert (Präsident HANDWERK.NRW), Erich Jelen (Zirkuläre und Biobasierte Kunststoffe, Fraunhofer UMSICHT), Prof. Dr.-Ing. Eckhard Weidner (Institutsleiter des Fraunhofer UMSICHT) und Gabriele Poth (Handwerkskammer Düsseldorf, Leiterin Zentrum für Umwelt, Energie und Klima).
07.07.2020

Wissenschaftliche Ergebnisse und Methoden für das Handwerk verfügbar machen

  • HANDWERK.NRW und das Fraunhofer UMSICHT gehen eine neue Kooperation ein, um wissenschaftliche Ergebnisse und Methoden besser für Dienstleistungen und Produkte des Handwerks verfügbar zu machen. Mit der Unterzeichnung eines Memorandum of Understanding am 6. Juli 2020 beim Fraunhofer UMSICHT in Oberhausen startet diese nun offiziell.

Eine hohe technologische Entwicklungsdynamik oder Megatrends wie z. B. die Digitalisierung erfordern, dass Prozesse ständig angepasst und neues Wissen zielgerichtet transferiert werden. Wichtige Anwender von Forschungsergebnissen und Ideengeber für das Umgestalten von Prozessen oder Produkten sind Handwerksbetriebe. Um Expertenwissen weiterzugeben und Handwerkstechniken auf diesem Wege nachhaltig zu verbessern, intensivieren das Fraunhofer UMSICHT und HANDWERK.NRW daher ihre Zusammenarbeit. Am 6. Juli unterzeichneten die Partner ein Memorandum of Understanding.

  • HANDWERK.NRW und das Fraunhofer UMSICHT gehen eine neue Kooperation ein, um wissenschaftliche Ergebnisse und Methoden besser für Dienstleistungen und Produkte des Handwerks verfügbar zu machen. Mit der Unterzeichnung eines Memorandum of Understanding am 6. Juli 2020 beim Fraunhofer UMSICHT in Oberhausen startet diese nun offiziell.

Eine hohe technologische Entwicklungsdynamik oder Megatrends wie z. B. die Digitalisierung erfordern, dass Prozesse ständig angepasst und neues Wissen zielgerichtet transferiert werden. Wichtige Anwender von Forschungsergebnissen und Ideengeber für das Umgestalten von Prozessen oder Produkten sind Handwerksbetriebe. Um Expertenwissen weiterzugeben und Handwerkstechniken auf diesem Wege nachhaltig zu verbessern, intensivieren das Fraunhofer UMSICHT und HANDWERK.NRW daher ihre Zusammenarbeit. Am 6. Juli unterzeichneten die Partner ein Memorandum of Understanding.

Die Kooperation adressiert insbesondere Technologien und Methoden für mehr Energieeffizienz, den Klimaschutz, den Umwelt- und Arbeitsschutz und die Materialentwicklung und -prüfung. Es sollen beispielsweise Materialien charakterisiert und ihr Verhalten in der Umwelt analysiert werden. Die Partner möchten neue Methoden der Aufklärung von Funktions- und Schadmechanismen und auch komplett neue Materialien und Techniken für das Handwerk entwickeln.

»Wir sind uns sicher, dass die Kooperation ideal ist, um Synergien zwischen beiden Organisationen herzustellen. Wir möchten als Forschungsinstitut innovative und nachhaltige Technologien entwickeln – und zwar passgenau für komplexe Fragestellungen der Anwender«, erklärt Prof. Eckhard Weidner, Institutsleiter des Fraunhofer UMSICHT. »Wir freuen uns sehr über die Kooperation, die es beiden Partnern ermöglicht, einen wertvollen Beitrag zu einer ressourcenschonenden Gesellschaft und Wirtschaft zu leisten. Das Handwerk als mittelständisch orientierter Wirtschaftsbereich wird durch die intensivierte Zusammenarbeit mit der Wissenschaft seine innovativen Kompetenzen ausbauen und noch stärker in den Dienst des Klimaschutzes stellen können. Diese intensivierte Zusammenarbeit wird unseren Betrieben aber auch Nutzen bringen, denn sie hilft unseren Unternehmen dabei, ihre betrieblichen Prozesse zu optimieren«, sagt Andreas Ehlert, Präsident von HANDWERK.NRW.

Gemeinsame Forschungsprojekte und neue Bildungskonzepte

Innerhalb der Kooperation sind bedarfsorientierte gemeinsame Forschungsprojekte auf nationaler und internationaler Ebene geplant. Aber auch die Entwicklung neuer Bildungskonzepte steht im Mittelpunkt. Im Rahmen von Workshops, Veranstaltungen – als Aus-, Fort- oder Weiterbildung – und Beratungen soll Expertenwissen transferiert werden, um so Technologien nachhaltig weiterzuentwickeln.

HANDWERK.NRW repräsentiert rund 190 000 mittelständische Handwerksunternehmen in Nordrhein-Westfalen. Diese sind wichtige Anwender, Dienstleister und Innovatoren bei der nachhaltigen Umgestaltung von Produkten, Prozessen und Serviceleistungen. Das Fraunhofer UMSICHT entwickelt Lösungen für eine nachhaltige Energie- und Rohstoffwirtschaft, stellt wissenschaftliche Ergebnisse bereit und transferiert sie in Unternehmen, Gesellschaft und Politik.

Source:

Public Relations Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

BioökonomieREVIER Rheinland: Neue Wertschöpfungsmöglichkeiten für die Region © BioökonomieREVIER Rheinland
Logo BioökonomieREVIER Rheinland
05.02.2020

BioökonomieREVIER Rheinland

Neue Wertschöpfungsmöglichkeiten für die Region

»Vom Braunkohle- zum BioökonomieREVIER«: Im Rahmen des Strukturwandels soll das Rheinische Revier zu einer Modellregion für ressourceneffizientes und nachhaltiges Wirtschaften werden. Insgesamt 15 Innovationslabore entstehen gerade an der Schnittstelle zwischen (Land-)Wirtschaft und Wissenschaft, beteiligt sind Vertreter aus Wirtschaft, Wissenschaft, Politik und Gesellschaft. Die Innovationslabore sollen den schnellen Transfer neuer Verfahren in die Praxis ermöglichen, um Wertschöpfung und neue Arbeitsplätze zu generieren. Das Fraunhofer UMSICHT ist gemeinsam mit weiteren Partnern für das Projekt »AZUR« verantwortlich, das den Anbau und die Verwertung von Heil- und Medizinpflanzen am Beispiel von Arnika untersucht.

Neue Wertschöpfungsmöglichkeiten für die Region

»Vom Braunkohle- zum BioökonomieREVIER«: Im Rahmen des Strukturwandels soll das Rheinische Revier zu einer Modellregion für ressourceneffizientes und nachhaltiges Wirtschaften werden. Insgesamt 15 Innovationslabore entstehen gerade an der Schnittstelle zwischen (Land-)Wirtschaft und Wissenschaft, beteiligt sind Vertreter aus Wirtschaft, Wissenschaft, Politik und Gesellschaft. Die Innovationslabore sollen den schnellen Transfer neuer Verfahren in die Praxis ermöglichen, um Wertschöpfung und neue Arbeitsplätze zu generieren. Das Fraunhofer UMSICHT ist gemeinsam mit weiteren Partnern für das Projekt »AZUR« verantwortlich, das den Anbau und die Verwertung von Heil- und Medizinpflanzen am Beispiel von Arnika untersucht.

Aus den Händen von Forschungsstaatssekretär Thomas Rachel MdB (3.v.l.) nahmen Prof. Wolfgang Marquardt (Vorstandsvorsitzender Forschungszentrum Jülich), Prof. Ulrich Schurr (Forschungszentrum Jülich), Prof. Ulrich Schwaneberg (RWTH Aachen), Dr. Georg Schaumann (Sense up) und Prof. Volker Sander (FH Aachen) die Förderurkunden entgegen. Die Fraunhofer-Gesellschaft und YNCORIS GmbH & Co. KG sind weitere Partner des Konsortiums.

Aus den Händen von Forschungsstaatssekretär Thomas Rachel MdB (3.v.l.) nahmen Prof. Wolfgang Marquardt (Vorstandsvorsitzender Forschungszentrum Jülich), Prof. Ulrich Schurr (Forschungszentrum Jülich), Prof. Ulrich Schwaneberg (RWTH Aachen), Dr. Georg Schaumann (Sense up) und Prof. Volker Sander (FH Aachen) die Förderurkunden entgegen. Die Fraunhofer-Gesellschaft und YNCORIS GmbH & Co. KG sind weitere Partner des Konsortiums.

Das Rheinische Revier ist stark von der Nutzung fossiler Rohstoffe geprägt. Ein zentraler Pfeiler der Energiewende ist jedoch der Kohleausstieg, weshalb die Region besonders vom Strukturwandel betroffen ist. Die Gestaltung dieses Strukturwandels ist Kern des Projekts »BioökonomieREVIER Rheinland«, das Ziel: eine Modellregion für nachhaltiges Wirtschaften zu schaffen. Insgesamt stellt die Bundesregierung bis Mitte 2021 rund 25 Millionen Euro für das Vorhaben zur Verfügung. »Mit der Förderung durch das Bundesministerium für Bildung und Forschung wollen wir die Bioökonomie in die Anwendung bringen und so zu neuen Produkten, neuen Produktionsverfahren und neuen Arbeitsplätzen kommen. Das Rheinische Revier bietet dafür beste Voraussetzungen und wird einer der Eckpfeiler sein, um die jüngst beschlossene, neue Bioökonomiestrategie der Bundesregierung mit Leben zu füllen«, so Forschungsstaatssekretär Thomas Rachel MdB zum Projektauftakt. Beste Voraussetzungen für eine erfolgreiche Umsetzung bringen auch die beteiligten Organisationen mit ein: Sie decken das gesamte Spektrum von der Grundlagenforschung bis hin zur praktischen Umsetzung ab.

Landwirtschaftliche Produktion erweitern: hochwertige pharmazeutische Inhaltsstoffe

Im ersten Teilprojekt wird eine Regionalstrategie ausgearbeitet. Parallel dazu entstehen sogenannte Innovationslabore und -plattformen an den Schnittstellen von Wissenschaft, Wirtschaft und Landwirtschaft. Sie gehen auf konkrete Probleme im Rheinischen Revier ein und sollen auch in der Fläche wirksame Maßnahmen umsetzen.

Das Fraunhofer UMSICHT bringt seine Expertise im Bereich nachhaltiger Landwirtschaft mit ein. Auf Basis der Forschungsarbeit soll die landwirtschaftliche Produktion in der Region ausgebaut werden. In Zusammenarbeit mit dem Fraunhofer IME und dem Forschungszentrum Jülich betrachten die Wissenschaftlerinnen und Wissenschaftler die nachhaltige biogene Wertschöpfung von Heil- und Medizinpflanzen am Beispiel von Arnika. »Im Laufe des Projekts `AZUR` wählen wir zum einen ertragreiche Arnikapflanzen aus Zuchtprogrammen für den Freilandbau aus, zum anderen entwickeln wir die sensorgesteuerte Kultivierung in Indoor-Systemen«, erklärt Volkmar Keuter, Leiter der Abteilung Photonik und Umwelt am Fraunhofer UMSICHT. Auch der Ernteprozess wird detailliert betrachtet, um mithilfe neuer Technologien gezielt die wirkstoffreichsten Blüten zu gewinnen.

Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

 

DYNAFLEX® auf der e-World 2020 (c) Dynaflex
DYNAFLEX® auf der e-World 2020
23.01.2020

DYNAFLEX® auf der e-World 2020

Die Energiewende ist eine tragende Säule des Strukturwandels und erfordert ein Umdenken in vielen Bereichen. Damit in einem zunehmend dynamischen und volatilen Umfeld erfolgreiche Wirtschafts-Ökosysteme wachsen können, sind aufeinander abgestimmte, anpassungsfähige Lösungen an der Schnittstelle von Energie- und Stoffwirtschaft notwendig. Genau hier setzt das Leistungszentrum DYNAFLEX® an und entwickelt unter Federführung des Fraunhofer UMSICHT zukunftsfähige Lösungen. In Bad Langensalza entsteht zurzeit ein Pilotstandort, der als Vorreiter für cross-industrielle Netzwerke dienen soll und neue Wertschöpfungsketten erschließt.

Im Mittelpunkt aktueller Geschäftstätigkeiten und Unternehmensstrategien stehen zunehmend Technologien zur Effizienzsteigerung und zur Vermeidung von CO2-Emissionen. Eine nachhaltige und umweltschonende Wertschöpfung bedeutet zwar zunächst eine Umstellung für die Beteiligten, dient aber auch als klarer Wettbewerbsvorteil.

Die Energiewende ist eine tragende Säule des Strukturwandels und erfordert ein Umdenken in vielen Bereichen. Damit in einem zunehmend dynamischen und volatilen Umfeld erfolgreiche Wirtschafts-Ökosysteme wachsen können, sind aufeinander abgestimmte, anpassungsfähige Lösungen an der Schnittstelle von Energie- und Stoffwirtschaft notwendig. Genau hier setzt das Leistungszentrum DYNAFLEX® an und entwickelt unter Federführung des Fraunhofer UMSICHT zukunftsfähige Lösungen. In Bad Langensalza entsteht zurzeit ein Pilotstandort, der als Vorreiter für cross-industrielle Netzwerke dienen soll und neue Wertschöpfungsketten erschließt.

Im Mittelpunkt aktueller Geschäftstätigkeiten und Unternehmensstrategien stehen zunehmend Technologien zur Effizienzsteigerung und zur Vermeidung von CO2-Emissionen. Eine nachhaltige und umweltschonende Wertschöpfung bedeutet zwar zunächst eine Umstellung für die Beteiligten, dient aber auch als klarer Wettbewerbsvorteil.

Um den deutschen Mittelstand im Wettbewerb gut zu positionieren und die Herausforderungen für einzelne Unternehmen zu senken, sehen Experten die Zukunft in einem gemeinsamen Vorgehen der Akteure in regionalen cross-industriellen Netzwerken. »Wertschöpfungsketten müssen künftig über die bisherigen Sektor- und Branchengrenzen hinausgehen. Warum nicht gemeinsam lokale Stoff-und Energieströme bestmöglich vor Ort verwerten? So können entscheidende Vorteile durch regionale Synergien entstehen«, erklärt Dr. Georg Janicki vom Fraunhofer UMSICHT in seiner Funktion als Manager des Leistungszentrums DYNAFLEX®. Das Leistungszentrum plant in enger Zusammenarbeit von Wissenschaft und Unternehmen zukunftsfähige Schnittstellenprojekte für die Energie- und Grundstoffwirtschaft.
Dynamische Betriebsführung

Um die lokalen Energie- und Stoffströme nachhaltig zu gestalten, muss bereits die Energieversorgung entsprechend ausgelegt sein. Die Einbindung von Strom aus erneuerbaren Energien in z. B. Produktionsanlagen unterliegt jedoch zeitlichen und standortspezifischen Schwankungen – bedingt durch Tages-/Nachtzeit und Windaufkommen. Hinzu kommen Aspekte wie eine kundenspezifische Fertigung und damit variierende Anforderungen an Produkte, die zudem just-in-time gefertigt und geliefert werden müssen. Und auch variierende Rohstoffe aufgrund von sich verändernden Rahmenbedingungen (markt- und kundenseitig) und die Umstellung auf umweltfreundlichere Rohstoffe müssen berücksichtigt werden.

In einem Gewerbegebiet im thüringischen Bad Langensalza wird ein Pilotprojekt umgesetzt, in dem ein Netzwerk mit unterschiedlichen Akteuren auf Basis von regenerativen Energien und nachhaltigen Rohstoffen implementiert wird. Das Projekt nimmt eine nationale und internationale Vorreiterrolle bei der Umsetzung klimaschonender und sektorübergreifender Technologien ein. Verschiedene Partner aus der Wirtschaft wollen mit Unterstützung des Fraunhofer UMSICHT in einem gemeinsamen Vorhaben eine Freiflächen-Photovoltaikanlage errichten. Der produzierte Strom soll durch innovative und nachhaltige Konzepte direkt in bereits bestehende und neue Wertschöpfungsketten der benachbarten Wirtschaftsunternehmen eingebunden werden. Die Konzepte tragen zur Netzstabilität bei und ermöglichen den Aufbau eines neuen Technologieclusters auf Basis nachhaltiger Rohstoffe und Energieträger. Dadurch wiederum sollen sich neue Unternehmen in der Region ansiedeln.

Unabhängig von fossilen Rohstoffen
Forschende des Fraunhofer UMSICHT arbeiten des Weiteren an einem Power-to-Gas-Konzept. Mit PV-Strom betriebene Elektrolyseanlagen sollen Wasserstoff erzeugen, der direkt ins Erdgasnetz eingespeist und für Produktionsprozesse verwendet werden kann. Auch kann der Wasserstoff mit CO2 zu Methan veredelt bzw. zu Basisprodukten der chemischen Industrie, Kunststoffindustrie, Düngemittelindustrie oder Treibstoffindustrie weiterverarbeitet werden.

E-world: Cross-industrielle Netzwerke spielerisch verstehen
Das Leistungszentrum DYNAFLEX® präsentiert sich auf der E-world energy & water, vom 11. bis 13. Februar 2020 in Essen. Am Messestand können anhand eines Exponats verschiedene aktuelle Aspekte und Herausforderungen in der Energie- und Grundstoffwirtschaft spielerisch erfahren werden. Angelehnt an den bekannten »heißen Draht« werden modellhaft durch unterschiedliche Verläufe zweier Drähte die Komplexität der jeweiligen Akteure und deren Herausforderungen bei einer Sektorenkopplung nachgestellt. Auf diese Weise wird die Notwendigkeit cross-industrieller Netzwerke, wie sie z. B. in Bad Langensalza geplant sind, veranschaulicht.

More information:
Dynaflex e-World
Source:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik

 

Sensorbasierte Nachrüstung einer Rundstrick-maschine der thoenes® Dichtungstechnik GmbH durch das Sächsische Textilforschungsinstitut e.V. (STFI) Foto: thoenes® Dichtungstechnik/ Textil vernetzt
Sensorbasierte Nachrüstung einer Rundstrick-maschine der thoenes® Dichtungstechnik GmbH durch das Sächsische Textilforschungsinstitut e.V. (STFI)
04.12.2019

Textile Digitalisierung KMU-like: Erfolgsstory made in Sachsen

Die thoenes® Dichtungstechnik GmbH blickt auf 140 Jahre Erfahrung bei der Herstellung von Dichtungen für Anlagen, Maschinen und Systeme. Dieser Weg ist geprägt durch innovative Ideen und Lösungen. So ist das Traditionsunternehmen aus dem Erzgebirge heute international ein Experte für Dichtungstechnik, Filtrations- und Leichtbaulösungen.

Dichtungen für Pumpen, Kesselverschlüsse und vieles mehr
Die Palette der Kunden ist breit gefächert. Von führenden Forschungseinrichtungen aus der Region bis hin zu internationalen Geschäftspartnern – knapp 1.000 zufriedene Kunden profitieren von einer Vielzahl maßgeschneiderter Lösungen. Die rund 50 Mitarbeiter der thoenes® GmbH fertigen kundenindividuell. Unter anderem führen sie Beschichtungen zur Schnittkantensicherung von Geflechten, die Konvertierung textiler Erzeugnisse oder Flechtstrukturen für Leichtbauanwendungen im Portfolio.

Die thoenes® Dichtungstechnik GmbH blickt auf 140 Jahre Erfahrung bei der Herstellung von Dichtungen für Anlagen, Maschinen und Systeme. Dieser Weg ist geprägt durch innovative Ideen und Lösungen. So ist das Traditionsunternehmen aus dem Erzgebirge heute international ein Experte für Dichtungstechnik, Filtrations- und Leichtbaulösungen.

Dichtungen für Pumpen, Kesselverschlüsse und vieles mehr
Die Palette der Kunden ist breit gefächert. Von führenden Forschungseinrichtungen aus der Region bis hin zu internationalen Geschäftspartnern – knapp 1.000 zufriedene Kunden profitieren von einer Vielzahl maßgeschneiderter Lösungen. Die rund 50 Mitarbeiter der thoenes® GmbH fertigen kundenindividuell. Unter anderem führen sie Beschichtungen zur Schnittkantensicherung von Geflechten, die Konvertierung textiler Erzeugnisse oder Flechtstrukturen für Leichtbauanwendungen im Portfolio.

Fitnesskur für Oldie
Zum Maschinenpark des sächsischen Dichtungsbetriebes gehört eine Rundstrickmaschine für Kunststoffgestricke. Diese finden z. B. Anwendung im Fahrzeugbau, zur Reduktion von Druckluftgeräuschen. Wichtige produktionsrelevante Daten dieser Maschine wie Laufzeit, Geschwindigkeit und Verarbeitungsmenge konnten jedoch bislang nicht an das Produktionssteuerungssystem übergeben werden. Aufgrund des Alters der Maschine gab es keine Schnittstellen zur Datenweiterleitung. Das kostete Zeit und Geld im Prozessmanagement der Fertigung.

Innovationen stellen seit Beginn der Unternehmensgeschichte einen entscheidenden Antrieb im Unternehmen dar. Somit war klar, dass kompetente Hilfe notwendig würde. Die Zusammenarbeit zwischen der thoenes® GmbH und dem Sächsischen Textilforschungsinstitut e.V. (STFI) im Rahmen des Mittelstand 4.0-Kompetenzzentrum Textil vernetzt-Projektes brachte die zukunftsorientierte Lösung.

Mit dem Ziel, Ausfallzeiten zu reduzieren und effizientere Prozesse zu gestalten, sorgte das Textil vernetzt-Team für eine sensorbasierte Nachrüstung (Retrofit) der Rundstrickmaschine.

©thoenes Dichtungstechnik/ Textil vernetzt
23.10.2019

Überwachung einer Rundstrickmaschine mittels Sensorik: Abschluss des Projektes mit der thoenes® Dichtungstechnik GmbH

Betriebsdaten sinnvoll nutzen und Ausfallzeiten reduzieren: Das waren nur einige der Ziele, die die Textil vernetzt-Kollegen vom Sächsischen Textilforschungsinstitut (STFI) beim Retrofitting einer Rundstrickmaschine bei der thoenes® Dichtungstechnik GmbH aus dem sächsischen Klipphausen erreicht haben.

Betriebsdaten sinnvoll nutzen und Ausfallzeiten reduzieren: Das waren nur einige der Ziele, die die Textil vernetzt-Kollegen vom Sächsischen Textilforschungsinstitut (STFI) beim Retrofitting einer Rundstrickmaschine bei der thoenes® Dichtungstechnik GmbH aus dem sächsischen Klipphausen erreicht haben.

Die Rundstrickmaschine produziert Kunststoffgestricke, die unter anderem im Fahrzeugbau zum Einsatz kommen, um Druckluftgeräusche zu reduzieren. Die derzeit erhobenen Daten werden in Ermangelung an Schnittstellen momentan noch nicht an übergeordnete Systeme übergeben und weiterverarbeitet. Das Team vom STFI hat nun eine sensorbasierte Nachrüstung der Maschine vorgenommen. Dazu haben sich die Kollegen in mehreren Workshops einen Überblick verschafft, welche Anforderungen in der laufenden Produktion anfallen. Im Mittelpunkt standen die Messung der Drehzahl und die Bestimmung des Spulendurchmessers, um Laufzeit, Geschwindigkeit und Verarbeitungsmenge an der Maschine zu erfassen. Hierzu verbaute thoenes einen Hallsensor an der Maschine, der zur Drehzahlmessung genutzt wurde. Am STFI wurden zudem weitere Erfassungsmethoden erprobt. Die Programmierung der Controller-Systeme erfolgte in der Programmiersprache C und für die Vorauswertung der Sensordaten kam das grafische Programmierwerkzeug Node-RED zum Einsatz. Dieses nutzt das Unternehmen zudem, um mobil Störungsmeldungen zu erfassen.

Am Chemnitzer Schaufenster des STFI ist nun die Realisierung eines Retrofit-Demonstrators geplant. Hieran sollen weitere Lösungsansätze gezeigt werden, zugleich wird dieser anderen interessierten Unternehmen als Leihgabe zur Verfügung stehen.

Source:

Mittelstand 4.0-Kompetenzzentrum Textil vernetzt

(c) AZL Aachen GmbH
04.03.2019

AZL demonstrates new Ultra-Fast Consolidator Machine at JEC World in Paris

After many years of successful cooperation on JEC World since 2015, the Aachen Center for Integrative Lightweight Production (AZL) renewed the cooperation with the JEC Group for 2019:

At the dedicated exhibition area called “Composites in Action - JEC Group in partnership with AZL” (Hall 5A, D17), AZL and its 9 Partner Institutes of RWTH Aachen University present their latest research and development results. The innovations covering the whole composite value chain including research results of AZL, Fraunhofer Institute for Production Technology IPT and Fraunhofer Institute for Laser Technology ILT, the Institute of Plastics Processing (IKV) in Industry and the Skilled Crafts as well as RWTH Aachen University institutes including the Laboratory for Machine Tools and Production Engineering (WZL), the Welding and Joining Institute (ISF), the “Institut für Textiltechnik” (ITA), the Institute for Automotive Engineering (IKA), the Institute of Structural Mechanics and Lightweight Design (SLA). Following companies are sponsoring partners of this booth and will present their latest products and services: Hille Engineering, Maru Hachi, TELENE and Textechno.

After many years of successful cooperation on JEC World since 2015, the Aachen Center for Integrative Lightweight Production (AZL) renewed the cooperation with the JEC Group for 2019:

At the dedicated exhibition area called “Composites in Action - JEC Group in partnership with AZL” (Hall 5A, D17), AZL and its 9 Partner Institutes of RWTH Aachen University present their latest research and development results. The innovations covering the whole composite value chain including research results of AZL, Fraunhofer Institute for Production Technology IPT and Fraunhofer Institute for Laser Technology ILT, the Institute of Plastics Processing (IKV) in Industry and the Skilled Crafts as well as RWTH Aachen University institutes including the Laboratory for Machine Tools and Production Engineering (WZL), the Welding and Joining Institute (ISF), the “Institut für Textiltechnik” (ITA), the Institute for Automotive Engineering (IKA), the Institute of Structural Mechanics and Lightweight Design (SLA). Following companies are sponsoring partners of this booth and will present their latest products and services: Hille Engineering, Maru Hachi, TELENE and Textechno.

This year, AZL is very proud to present a new machine system development at their booth:
The real machine setup of the “Ultra-Fast Consolidator Machine” will be shown at the AZL booth (Hall 5A, D17) which is one of three finalists for the JEC AWARD 2019 in the category “Industry and Equipment”.

More information:
SMC, AZL, RWTH Aachen AZL
Source:

AZL Aachen GmbH

The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light. (c) ITA
The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light.
22.02.2019

Smart Textiles Micro Factory brings Smart Textiles into series production at Texprocess 2019

The study "Technologies, Markets and Players" by E-Textiles 2018-2028 predicts a 2 billion dollar growth of the smart textile market. This growth can only be achieved by replacing the existing approaches, mostly manual production, with series production. With the Smart Textiles Micro Factory, the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be demonstrating for the first time on the Texprocess stand, stand number C02, in the transition from Halls 4.1 and 5.1 how a smart textile can be manufactured from design to finished product together with various partners by producing a smart cushion.

The product and the manufacturing process are the result of co-innovation. In the future, co-innovation for smart textiles is to be implemented via the GeniusTex platform. As part of the German Federal Ministry of Economic Affairs and Energy's major strategic project for the “Smart Service World”, ITA is working with partners from industry and research to develop the online platform for smart textile innovation.

The study "Technologies, Markets and Players" by E-Textiles 2018-2028 predicts a 2 billion dollar growth of the smart textile market. This growth can only be achieved by replacing the existing approaches, mostly manual production, with series production. With the Smart Textiles Micro Factory, the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be demonstrating for the first time on the Texprocess stand, stand number C02, in the transition from Halls 4.1 and 5.1 how a smart textile can be manufactured from design to finished product together with various partners by producing a smart cushion.

The product and the manufacturing process are the result of co-innovation. In the future, co-innovation for smart textiles is to be implemented via the GeniusTex platform. As part of the German Federal Ministry of Economic Affairs and Energy's major strategic project for the “Smart Service World”, ITA is working with partners from industry and research to develop the online platform for smart textile innovation.

Bushing heated via induction of the novel glass fibre production line (c) ITA
Bushing heated via induction of the novel glass fibre production line
21.02.2019

ITA at JEC World 2019: newly constructed induction heated glass fibre production line among other exhibits

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

  1. Innovative glass fibre research at ITA
    The newly constructed induction heated glass fibre production line enables increased flexibility in research. For the first time, glass fibres will be produced live at the ITA booth at JEC World. One of the innovations of the system is the inductively heated bushing. It features a flexible design and consists of a platinum/rhodium alloy (Pt/Rh20) for use in high-temperature glasses.
    The glass fibre production line was designed in such a way that new concepts and ideas can be tested quickly. The modular design allows a high flexibility, the induction system a significantly faster operability.
    Research and development projects can therefore be carried out faster and more cost-effectively.
     
  2. DrapeCube - Forming of textile semi-finished products
    The DrapeCube offers a cost-effective design for the production of fibre preforms from textile semi-finished products. It is used in the production of preforms for prototypes and in small series and is suit-able for companies active in the production of fibre-reinforced plas-tics (FRP).
    In the production of FRP components, the preforming process de-fines a large part of the subsequent component costs. In small- and medium-sized enterprises, this process step is often still carried out manually. This results in high quality fluctuations and component prices. Especially in the case of highly stressed structural components, the fluctuation in quality leads to oversizing of the components.
    Thus, the lightweight construction potential of fiber-reinforced plastics is underused. One solution is offered by the stamp forming process adapted from the sheet metal forming industry for shaping rein-forcing textiles. The textile is inserted between two mould halves (male and female) and automatically formed. Due to high plant and tooling costs, this process is used almost exclusively in large-scale production.
    The ITA has developed the DrapeCube forming station which offers a cost-effective alternative and is able to completely reproduce the current state of the art for forming textile half branches. The process steps will be demonstrated in a video at the booth.
     
  3. Carbon fibre reinforced plastic (CFRP) preform
    The CFRP preform consists of carbon multiaxial fabrics formed by expanded polystyrene (EPS) to optimise draping quality. Preforms of increased quality can be produced by gentle, textile-compatible forming with foam expansion. For the first time, foam expansion was used to form preforms in such a way that the draping quality is improved compared to classic stamp forming.
    The advantages of the CFRP preform lie in the savings in plant costs, as the investment is much lower. In addition, the proportion of waste is reduced because near-net-shape production is possible. In addition, rejects are reduced, as fewer faults occur in the textile.
     
  4. Embroidered preform with integrated metal insert
    The 12k carbon fibre rovings are shaped into a preform using Tai-lored Fibre Placement (TFP) which is a technical embroidery pro-cess. For the further layer build-up, a fastener is not only integrated under the roving layers but also fixed by additional loops. The highly integrative preforming approach offers the possibility of reducing weight and process steps as well as increasing mechanical perfor-mance.
    Until now, inserts were glued or holes had to be drilled in the com-ponent. Bonded fasteners are limited by the adhesive surface. The bonding of fasteners into drilled holes results in high drill abrasion and thus high tool wear.
    The advantages of the embroidered preform with integrated metal fasteners are the reduction of scrap due to TFP preforming and the increase in the specific pull-out force. In addition, it is possible to automatize the production of integrative preforms. This makes the preform with integrated metal fasteners interesting for the automotive and aerospace industries.
Source:

Institut für Textiltechnik of RWTH Aachen University

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Source:

Institut für Textiltechnik of RWTH Aachen University

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum (c) TU Dresden
05.11.2018

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

„Sachsen verfügt in der Schlüsseltechnologie Werkstoff-, Material- und Nanowissenschaft über hervorragende Rahmenbedingungen und hoch motivierte Wissenschaftler an Hochschulen und Forschungseinrichtungen, die in dieser Spezialisierung weltweit ihresgleichen suchen“, erklärt dazu Staatsministerin Dr. Stange. „Beinahe alle Materialklassen von Metallen, Polymeren, Keramiken bis hin zu Verbund- und Naturwerkstoffen werden auf international hohem Niveau bearbeitet. Dabei greifen Grundlagen- und Angewandte Forschung in zahlreichen Feldern eng ineinander und bilden geschlossene Entwicklungsketten bis zu einem Transfer in die Wirtschaft – regional, national und international.“

Der Prorektor für Forschung der TU Dresden, Prof. Gerhard Rödel, ergänzt: „Mit dem Carbonfaser-Technikum ist im Research Center Carbon Fibers eine weltweit einzigartige Anlage entstanden, die völlig neue Möglichkeiten eröffnet. Es geht darum, Fasern mit einem möglichst hohen Individualisierungsgrad zu designen – je nach Bedarf und Einsatzbereich.“

Auf der derzeit installierten, einzigartigen Anlage erforschen Wissenschaftler des RCCF unter Reinraum-Bedingungen die Grundlagen für maßgeschneiderte Kohlenstofffasern und erschließen deren hohes Innovationspotential. Dabei greifen die Forscher auf einzelne Anlagenmodule zur Stabilisierung und Carbonisierung mit industrienahem Ofendesign und individuell einstellbaren Parameterkombinationen zurück. Durch den außerordentlichen Reinheitsgrad sind die Carbonfasern für die Anforderungen der Luft-/Raumfahrt- und der Automobilindustrie maßgeschneidert.

„Die Carbonfaser ist der Stahl des 21. Jahrhunderts“, führt Prof. Hubert Jäger, Sprecher des Instituts für Leichtbau und Kunststofftechnik (ILK), aus. „Ganze Branchen erfinden sich derzeit durch diesen Werkstoff neu und erreichen mit ihren Produkten nie gedachte Dimensionen. Das Problem ist jedoch die Verfügbarkeit. Wir werden mit dem Carbonfaser-Technikum einen Beitrag dazu leisten, dass aus Sachsen heraus dieser Werkstoff nicht nur leichter verfügbar, sondern auch besser und maßgeschneidert einsetzbar wird für Anwendungen in der Luft- und Raumfahrt, Fahrzeugbau, Architektur und Hochleistungselektronik.“

„Mit der Inbetriebnahme des Carbonfaser-Technikums unter Reinraumbedingungen am RCCF gelingt es uns, die Prozesskette zur Fertigung maßgeschneiderter Kohlenstofffasern signifikant zu erweitern. Die notwendigen Maschinentechniken des ITM einschließlich der bereits gewonnenen Erfahrungen bei Prozessoptimierungen zur Herstellung von Precursorfasern, dem Ausgangsmaterial für die neuen Stabilisierungs- und Carbonisierungslinien, stehen in künftigen Forschungsvorhaben den Wissenschaftlern des RCCF zur Verfügung. Somit geben wir am exzellenten Forschungsstandort Dresden die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern“, ergänzt Prof. Chokri Cherif, Direktor des ITM und Inhaber der Professur für Textiltechnik.

Das Carbonfaser-Technikum umfasst einen mehr als 300 m² großen Reinraum der Klasse ISO 8. Neben den beiden auf etwa 30 Metern aufgestellten Stabilisierungs- und Carbonisierungslinien sind weitere Flächen für künftige Erweiterungen der Gesamtanlage vorgesehen, zum Beispiel ein weiterer Hochtemperaturofen, in dem Carbonfasern bis zu Temperaturen über 2000°C graphitierbar sind oder unikale Beschichtungsanlagen zur Oberflächenaktivierung.

Die RCCF-Wissenschaftler ergründen die Wechselwirkungen zwischen Prozessparametern, Faserstruktur und weiteren mechanischen, thermischen und elektrischen Eigenschaften bei der Herstellung von Carbonfasern, um die Fähigkeiten des Hightech-Werkstoffes weiter zu steigern. Zusätzlich nehmen die Forscher die Entwicklung multifunktionaler Fasern mit neuartigen Eigenschaftsprofilen wie hohe Leitfähigkeit bei hoher Festigkeit oder ausgeprägter Verformbarkeit sowie die Nutzung erneuerbarer Ausgangsstoffe in den Fokus ihrer Arbeiten.

Ein weiterer Schwerpunkt der RCCF-Aktivitäten ist die tiefgreifende studentische Ausbildung im Bereich der Carbonfaser-Herstellung. Den Studierenden werden dabei fundierte Kenntnisse in Herstellung und Weiterverarbeitung von Carbonfasern vermittelt, damit sie in diesem Bereich der Zukunftstechnologien dem sächsischen und deutschen Arbeitsmarkt zur Verfügung stehen. Etwa 15 Studierende werden pro Jahr in Forschungsbereiche wie die Prozessführung, -modellierung und -überwachung sowie die Entwicklung, Fertigung und Charakterisierung neuer Carbonfasern und Verbundwerkstoffe einbezogen.

More information:
TU Dresden Carbonfaser
Source:

Technische Universität Dresden  - Fakultät Maschinenwesen   
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

 

Concrete bar stool with hybrid carbon reinforcement for fast, cost-efficient part production (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA at the Composites Europe 2018 in Stuttgart

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the ITA, the two industrial partners Albani Group GmbH & Co. KG and DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH developed a new hybrid reinforcement with integrated spacer. This hybrid reinforcement reduces the time required to position the reinforcement by up to 60 percent and thus makes the material significantly more

The new, cost-effective hybrid reinforcement contains an integrated spacer and thus faciliates the positioning of dry and coated reinforcements. The integrated spacer allows several layers of reinforcement to be stacked quickly, allowing the desired degree of reinforcement to be set. The hybrid reinforcement consists of a carbon or glass fibre grid joined with a permeable polyamide mat and will be available in roll form from industrial partners in the near future.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University

Barhocker aus Beton mit hybrider Carbon-Bewehrung zur schnellen, kosteneffizienten Positionierung der Textilbewehrung (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA auf der Composites Europe 2018 in Stuttgart

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Am ITA wurde gemeinsam mit den beiden Industriepartnern Albani Group GmbH & Co. KG und DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH eine neue Hybridbewehrung mit integriertem Ab-standshalter entwickelt. Diese Hybridbewehrung senkt die erforderliche Zeit zur Positionierung der Bewehrung um bis zu 60 Prozent und macht den Werkstoff damit deutlich wettbewerbsfähiger.

Die kostengünstige, hybride Bewehrung enthält einen integrierten Abstandshalter und ermöglicht damit die einfache Positionierung von trockenen und beschichteten Bewehrungen. Durch den integrierten Abstandhalter lassen sich schnell mehrere Bewehrungslagen stapeln, wodurch der gewünschte Bewehrungsgrad einstellbar ist. Die Hybridbewehrung besteht aus einem Carbon- oder Glasfasergitter, das mit einer durchlässigen Matte aus Polyamid gefügt ist und in naher Zukunft bei den Industriepartnern als Rollenware erhältlich ist.

More information:
Composites AZL
Source:

Institut für Textiltechnik of RWTH Aachen University