From the Sector

Reset
114 results
seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

Photo: Optima 3D
09.08.2023

Optima 3D delivers weaving technology to ASCC

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

The ASCC is certainly no stranger to advanced technology, or indeed ambitious composite projects – in 2019 it received no less than three Guinness World Records, for the world’s largest prototype polymer 3D printer, the largest solid 3D-printed object, and the largest 3D-printed boat. In its latest project it has further introduced BioHome3D – the first 3D-printed house made entirely with bio-based materials developed in a partnership with Oak Ridge National Laboratory. The 182-square-metre prototype features 3D-printed floors, walls and roof which are fully recyclable and highly insulated with 100% wood insulation and customisable R-values. Construction waste was nearly eliminated due to the precision of the printing process.

Source:

British Textile Machinery Association (BTMA)

(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

(c) Riri / Oerlikon Group
26.07.2023

Riri presents its FW 24-25 collection

Riri, which became part of Oerlikon Group on March 1, presents its FW 24-25 collection, which embraces plastic and metal trends.

Riri, which became part of Oerlikon Group on March 1, presents its FW 24-25 collection, which embraces plastic and metal trends.

Metal Trends: GALACTIC SHINE, TEXTURIZED BLACK and AMBER GLAZE
As a result of joining the Oerlikon Group, specializing in surface engineering, polymer processing, and additive manufacturing, Riri is accelerating its transition to new processes related to surface treatments, particularly the PVD (Physical Vapour Deposition) technology, a physical process that significantly reduces impacts on the environment. PVD processes can be appreciated particularly on sliders and buttons where gold and shiny black finishes stand out. Silver textures, science fiction-inspired surfaces and shapes, and glossy, brushed finishes in shades of gray and very light gold: GALACTIC SHINE brings to earth a sidereal experience, witness from a journey where the atmosphere becomes rarefied and elegance takes shape among metalized leather tapes, gold PVD pullers, organic cotton, and gleaming inox. Black also shines in the TEXTURIZED BLACK selection, in tone-on-tone contrasts that create plays of light and shadow, thanks to metallic effects, glossy black PVD treatments, tapes and galvanic in shades of black. The atmosphere becomes warmer by varying on amber tones, the absolute protagonists of the AMBER GLAZE mood, which offers a different interpretation of elegance through bright amber tones, rose gold, diamond prints and geometric patterns.

Plastic Trends: GHOSTLY ICE and SPRAY VANISHED
GHOSTLY ICE features accessories that refer to the skiing theme, offering an algid beauty made up of transparent surfaces and icy effects, a theme in which the sustainability of mono-materials coexists with the elegance of the end result. The color inspirations are totally different, but sustainability and elegance remain unchanged in the SPRAY VANISHED zipper selection, in which vibrant multicolored effects communicate joy and vitality through iridescent PVD effects and the use of recycled materials, such as the polyamide of the patented B.Lock button.

More information:
Riri Group Oerlikon collection
Source:

Riri / Oerlikon Group

Freudenberg: 3D entangled mat production in China (c) Freudenberg Performance Materials Holding GmbH
24.07.2023

Freudenberg: 3D entangled mat production in China

Freudenberg Performance Materials (Freudenberg), a global supplier of high-performance technical textiles has begun operating a new 3D entangled mat production line in Changzhou (China). It enables Freudenberg to supply customers in the APAC region with Enka®Solutions made in China for building, industrial and civil engineering applications. Freudenberg now is also able to serve customers in diverse technical markets with finished and semi-finished products.

This investment in China will significantly increase Enka®Solutions production capacity and will play a fundamental role in the development of Enka business with customers in the APAC region. Freudenberg inaugurated the new line in Changzhou at an opening ceremony on July 13th.

Freudenberg Performance Materials (Freudenberg), a global supplier of high-performance technical textiles has begun operating a new 3D entangled mat production line in Changzhou (China). It enables Freudenberg to supply customers in the APAC region with Enka®Solutions made in China for building, industrial and civil engineering applications. Freudenberg now is also able to serve customers in diverse technical markets with finished and semi-finished products.

This investment in China will significantly increase Enka®Solutions production capacity and will play a fundamental role in the development of Enka business with customers in the APAC region. Freudenberg inaugurated the new line in Changzhou at an opening ceremony on July 13th.

The new production line in Changzhou complements the manufacturing operations in Obernburg (Germany) and Asheville (North Carolina, USA). With a global manufacturing presence on the three different continents Europe, Asia and America, Freudenberg can now serve markets locally and deliver Enka®Solutions products faster and efficiently. This will not only help to better meet customer needs, but also reducing the company's environmental footprint by increasing local production.

Source:

Freudenberg Performance Materials Holding GmbH

23.06.2023

Program announced for RISE® 2023

The theme for the 13th edition of RISE® (Research, Innovation & Science for Engineered Fabrics) is “A New Era in Manufacturing for Sustainability.” Technology scouts, product managers, senior scientists, development engineers, and business developers will convene September 26-27 at North Carolina State University and The Nonwovens Institute in Raleigh, NC to discover the latest nonwoven innovations.

The RISE conference program features industry leaders from these companies: American Truetzschler, Berry Global, Dilo Incorporated, Evonik Corporation, Indorama Ventures USA, MANN+HUMMEL, the National Renewable Energy Laboratory, NatureWorks, The Nonwovens Institute, Owens Corning, PCI Wood Mackenzie, PolyQuest, Reifenhäuser REICOFIL GmbH, and Simplifyber. These industry experts will discuss the future of nonwoven manufacturing, advances in filter media, rPolymer developments, and sustainable applications.

The theme for the 13th edition of RISE® (Research, Innovation & Science for Engineered Fabrics) is “A New Era in Manufacturing for Sustainability.” Technology scouts, product managers, senior scientists, development engineers, and business developers will convene September 26-27 at North Carolina State University and The Nonwovens Institute in Raleigh, NC to discover the latest nonwoven innovations.

The RISE conference program features industry leaders from these companies: American Truetzschler, Berry Global, Dilo Incorporated, Evonik Corporation, Indorama Ventures USA, MANN+HUMMEL, the National Renewable Energy Laboratory, NatureWorks, The Nonwovens Institute, Owens Corning, PCI Wood Mackenzie, PolyQuest, Reifenhäuser REICOFIL GmbH, and Simplifyber. These industry experts will discuss the future of nonwoven manufacturing, advances in filter media, rPolymer developments, and sustainable applications.

Innovations that advance the nonwovens industry will be recognized with the 2023 RISE® Innovation Award. Three finalists will present their innovative products or technologies to RISE participants, Tuesday, September 26th. The 2022 award winner was DiaperRecycle, cat litter made from recycled diapers.

RISE participants have the option of touring The Nonwovens Institute’s $65 million-plus, 60,000 square-foot facilities featuring state-of-the-art equipment, pilot lines, and analytical laboratories, as well as attending an evening reception at the Lonnie Pool Golf Course Clubhouse. During the evening reception, graduate students and faculty from North Carolina State University will feature their research and technical advances with poster presentations. The tour and reception will take place Tuesday, September 26th and the tour is limited to 40 attendees.

Source:

INDA

07.06.2023

DyStar Africa sells Manufacturing Site to Oakland Polymers

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

DyStar, a specialty chemical company with a heritage of more than a century in product development and innovation, is announcing the sale of its auxiliary manufacturing site located at Pietermaritzburg, South Africa.

Oakland Polymers Pty Ltd, a local manufacturer, has acquired DyStar’s manufacturing facility and will take over the site to expand their polymer business. Under the sale and purchase agreement, DyStar divested the entire facility, which is approximately 12,000 sqm, to Oakland Polymers and Oakland Properties. DyStar Africa’s operations will continue to lease part of the premises from Oakland for office and warehousing use.

Mr. Xu Yalin, Managing Director, and President of DyStar Group said, “The sale of the manufacturing site at DyStar Africa is part of our ongoing efforts to reconsolidate our business resources in Turkey, Africa & Middle East (TAME) region, with a focus on improving productivity and utilization rates.”

As a result of the acquisition, all employees at the manufacturing site have already been informed. Compensation packages are offered to affected colleagues as well.

Customers have also been informed of undisrupted supply to their orders during the transition period and are further assured of a seamless customer journey going forward when the acquisition is completed.

Source:

DyStar

FIDIVI Tessitura Vergnano S.p.A./ Nabucco 6075 Reale © Foto: Indorama Ventures Fibers Germany GmbH / FIDIVI Tessitura Vergnano S.p.A./ Nabucco 6075 Reale
06.06.2023

Trevira CS at the Cruise Ship Interiors Design Expo Americas in Miami

Trevira CS is exhibiting for the first time at CSI Miami (Cruise Ship Interiors Design Expo Americas). Taking place on 6 – 7 June, 2023 at the Miami Beach Convention Center, CSI will bring together buyers and suppliers involved in cruise ship interiors, including interior designers, architects, outfitters, shipyards and suppliers.
 
On the Trevira CS stand, visitors can get an idea of the wide range of flame retardant fabrics suitable for use on board cruise ships. 53 fabrics from 20 Trevira CS customers will be on display that either have IMO certification and/or have been tested to the fire safety standards (FTP Code) required in the marine sector. Trevira CS fabrics are inherently flame retardant, meaning that their flame retardant properties cannot be washed out or lost through aging or use. This is due to the chemical structure of the polyester fiber: the flame retardant properties are firmly anchored in the fiber and cannot be altered by external influences. A surface-applied flame retardant finish is therefore not necessary.

Trevira CS is exhibiting for the first time at CSI Miami (Cruise Ship Interiors Design Expo Americas). Taking place on 6 – 7 June, 2023 at the Miami Beach Convention Center, CSI will bring together buyers and suppliers involved in cruise ship interiors, including interior designers, architects, outfitters, shipyards and suppliers.
 
On the Trevira CS stand, visitors can get an idea of the wide range of flame retardant fabrics suitable for use on board cruise ships. 53 fabrics from 20 Trevira CS customers will be on display that either have IMO certification and/or have been tested to the fire safety standards (FTP Code) required in the marine sector. Trevira CS fabrics are inherently flame retardant, meaning that their flame retardant properties cannot be washed out or lost through aging or use. This is due to the chemical structure of the polyester fiber: the flame retardant properties are firmly anchored in the fiber and cannot be altered by external influences. A surface-applied flame retardant finish is therefore not necessary.

In the marine sector, the demands placed on textiles are not only high in terms of fire protection, but also with regards to light resistance and durability. This is particularly true for textiles used in outdoor applications. These must be extremely robust, as they are exposed to moisture and sunlight. To meet these requirements, Trevira CS has launched a range of 30 new spun-dyed, UV-stable filament yarns. Besides color depth and durability, spun-dyed yarns offer another advantage: They are more sustainable because the fabrics made from them can be produced in a more environmentally friendly way than textiles that are dyed in one piece or consist of brightly colored yarns. In fabric production, a large share of resource consumption goes to the dyeing and finishing of fabrics as well as the use of chemicals and water. However, with spun-dyed yarns, these processing steps are unnecessary – the yarn immediately comes out of the spinneret in the desired color, reducing the products’ environmental impact.

The topic of sustainability is also taken up in other Trevira CS products. For example, Trevira CS fabrics are available in recycled versions. They consist of fiber and filament yarns obtained in different recycling processes. Filament yarns are produced using recycled PET bottles, they contain 50% post-consumer recycled material. Recycled fibers are obtained using an agglomeration plant and in further processing steps from residual pre-consumer waste from production. They consist of 100% recycled material (pre-consumer recycling). All flame retardant recycled Trevira® products are GRS (Global Recycled Standard) certified.
Fabrics made from these yarns are marked with the Trevira CS eco trademark. The prerequisite for this is a recycled content of at least 50%. Among the fabrics presented at the Trevira CS trade fair stand are 8 fabrics bearing the Trevira CS eco brand.

The long-term goal in developing sustainable products is undoubtedly to enter a circular economy. For this new path, an innovative Trevira CS product development was launched, producing flame retardant fibers and filament yarns from chemically recycled raw material. In this case, the basic raw material for the chemical recycling was PET bottles, but essentially it could be most any other PET recyclables, such as packaging material or even textiles. Chemical recycling involves depolymerization, a sequence of chemical reactions in which the polymer chains are broken down again into their original components, i. e. the monomers. In a further processing step, impurities are removed. Before the polymerization process is initiated, a small amount of MEG (mono ethylene glycol) is added.

The same technology used to produce the original (virgin) raw material for Trevira CS is also used here. The flame retardant modification is added during polymerization. In this way, the flame retardant properties are indelibly anchored in the polymer.

By recycling valuable materials such as packaging material, waste can be avoided. The raw material obtained from the recycling process is comparable to the original material can be used again in high-quality products.

Source:

Indorama Ventures Fibers Germany GmbH

(c) Beaulieu International Group
22.05.2023

B.I.G. Yarns launches Sustainable Yarns at Clerkenwell Design Week

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

For its EqoYarn Bulk Continuous Filament (BCF) production process, B.I.G. Yarns has selected the few best-in-class partners that have made major steps forward in terms of sustainability, and reduced their greenhouse gas emissions thanks to continuous investments in process efficiency, green energy, heat optimization and waste reduction. The result is EqoYarn with a carbon footprint of 4 kg CO2 eq/kg yarns, which is a CO2 reduction of up to 50% compared to conventional PA yarns.

EqoBalance PA6 yarns enable customers to reach an even higher CO2 reduction of up to 75%. Manufactured with polymers made from renewable resources such as organic waste from cooking oil instead of virgin or fossil feedstock, these yarns have a carbon footprint of 1.98 kg CO2 eq./ kg yarns. They help carpet manufacturers to create products with an extremely low carbon footprint.

EqoCycle PA6 yarns are fully recyclable and incorporate 75% recycled content originating from recycled and regenerated PA6 granules. With a carbon footprint of 4.64 kg CO2 eq./ kg yarns, they deliver the same high-quality performance of virgin PA6 yarn with the benefit of 37% CO2 reduction. EqoCycle yarns offer carpet manufacturers a sustainable alternative to help reduce the ecological footprint of their products and move towards a circular economy without jeopardizing the end-product quality.

In addition to the different CO2-reducing options, B.I.G. Yarns’ customers can access an unlimited colour range to elevate their designs. Its BCF technology for polyamide yarns, twisted and heat-set yarns, one-colour to multi-colour, between 650 and 15000 dTex, along with its colour studio, are available to support their creation of customised collections.

Source:

Beaulieu International Group

(c) FET
FET Melt Spinning system
05.05.2023

FET exhibits at ITMA 2023

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

For the first time at ITMA, the new FET Spunbond range will feature. This system provides opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents. Recent customers to benefit from FET spunbond systems include the University of Leeds and an integrated metlblown / spunbond system at the University of Erlangen-Nuremberg in Germany.

FET’s established expertise remains in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

A major theme at ITMA will again be sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials. “This year we are celebrating FET’s 25th anniversary” says FET Managing Director Richard Slack “and we look forward to meeting customers at ITMA, where we can discuss their fibre technology needs.”

Source:

Fibre Extrusion Technology Ltd

Photo: EREMA/Wakolbinger
Manfred Hackl, CEO EREMA Group GmbH
28.04.2023

EREMA Group ends financial year 2022/23

Around EUR 355 million in overall turnover, 350 extruders delivered creating an additional recycling capacity for 1.6 million tons of recycled pellets as a result - these are the figures with which the EREMA Group was able to close the 2022/23 financial year in March.

"With demand for recycled plastics remaining high, the past financial year brought many challenges that we needed to handle," says Manfred Hackl, CEO of EREMA Group GmbH. The challenges included persistent delays in the supply chain and unexpected supplier outages. Logistics and production processes had to be adapted several times as a result. The situation has improved significantly meantime as a result of these measures and more stable supply chains.

Around EUR 355 million in overall turnover, 350 extruders delivered creating an additional recycling capacity for 1.6 million tons of recycled pellets as a result - these are the figures with which the EREMA Group was able to close the 2022/23 financial year in March.

"With demand for recycled plastics remaining high, the past financial year brought many challenges that we needed to handle," says Manfred Hackl, CEO of EREMA Group GmbH. The challenges included persistent delays in the supply chain and unexpected supplier outages. Logistics and production processes had to be adapted several times as a result. The situation has improved significantly meantime as a result of these measures and more stable supply chains.

The production locations in Austria manufactured 270 extruders and delivered them to customers around the globe. Taking the whole group into consideration, this figure rises to 350 including the extruders from PLASMAC, the Italian subsidiary. The recycled pellet production capacity of all extrusion systems delivered in financial year 2022/23 adds up to around 1.6 million tonnes per year. On top of that there are around 130 additional components and modules such as filter systems and ReFresher anti-odour units.

Recycling innovations for high-quality pellets
K 2022 - the highlight trade fair of the past financial year - saw the EREMA Group launch seven
new recycling systems and components. These included the new INTAREMA® TVEplus® DuaFil® Compact recycling system and the EcoGentle® plasticising unit, which was also newly developed. Thanks to their gentle polymer treatment and significantly lower melt temperature, both extrusion innovations deliver effective advantages in terms of the quality of the melt, recycled pellets, and final product, as well as impressive energy efficiency in post consumer and PET recycling applications. The significance of these innovations for plastics recycling is underlined by the nomination of the DuaFil® Compact technology for one of this year's Plastics Recycling Awards Europe in the category Recycling Machinery Innovation of the Year.
The same applies to the READYMAC 1109 TVE machine made to stock by EREMA Group subsidiary UMAC, as well as to the new ALPHA XS edge trim recycling machine for the inhouse recycling segment made by PLASMAC. The market launch of the deinking system presented at K 2022 by the EREMA Group company KEYCYCLE delivering a throughput of 1,200 kilograms per hour has been a success, as has the commissioning of a further unit sold to a film manufacturer.

40 years of EREMA
The beginning of the new financial year falls almost to the day on EREMA's 40th anniversary. On 14 April 1983, Helmut Bacher, Helmuth Schulz and Georg Wendelin founded EREMA Engineering Recycling Maschinen und Anlagen GesmbH, laying the foundation for the 40-year success story. In celebration, the comapny will hold the event EREMA Discovery Day at the company headquarters on the 1st of June. This event with live insights into the latest post consumer and PET recycling technologies will also see the official opening of the newly built research and development centre.

Source:

EREMA Group GmbH

30.03.2023

Avantium and Kvadrat: Offtake agreement for the development of PEF for interior textiles

Avantium N.V., a leading technology provider in renewable chemistry, announces that it has signed an offtake agreement with Kvadrat A/S, a leader in design innovation, producing quality contemporary textiles and textile related products for architects, designers, and private consumers across the world.

Kvadrat will purchase the 100% plant-based and fully recyclable polymer PEF (polyethylene furanoate) from Avantium’s FDCA (furandicarboxylic acid) Flagship Plant, currently under construction in Delfzijl (the Netherlands) and with commercial production set to start in 2024.

The offtake agreement shall offer Kvadrat the advantage of being first mover in creating PEF-based textiles for both commercial and residential interiors.

Avantium N.V., a leading technology provider in renewable chemistry, announces that it has signed an offtake agreement with Kvadrat A/S, a leader in design innovation, producing quality contemporary textiles and textile related products for architects, designers, and private consumers across the world.

Kvadrat will purchase the 100% plant-based and fully recyclable polymer PEF (polyethylene furanoate) from Avantium’s FDCA (furandicarboxylic acid) Flagship Plant, currently under construction in Delfzijl (the Netherlands) and with commercial production set to start in 2024.

The offtake agreement shall offer Kvadrat the advantage of being first mover in creating PEF-based textiles for both commercial and residential interiors.

More information:
Kvadrat Avantium polymer PEF
Source:

Avantium N.V.

24.03.2023

Carbios: Scientific publication on enzymatic degradation of plastics

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

To read the article in Chemical Reviews, click here.

Source:

Carbios

(c) RadiciGroup
17.03.2023

RadiciGroup: 100% naturally sourced yarn made from castor oil

RadiciGroup presented Biofeel® Eleven, a yarn of natural origin, at the Performance Days trade fair (from March 15-16 in Munich). Biofeel® Eleven is sourced from castor oil and is suitable for obtaining bio-polymer. It can be used for fabrics and fine garments in many sectors, from fashion to sports, from automotive to home textiles.

Today, 80% of the world's castor-oil plantations are in India, particularly in the Gujarat region, due to its favourable climatic conditions. In this area, local people can earn an additional income by cultivating semi-arid land that does not compete with food production, and by applying the skills they have acquired over time to this work. Over the years, thanks to research, development and innovation in the value chain, the seeds from which the oil is produced have been selected and certified to ensure the finest quality, also in terms of end uses.

Castor beans contain around 45% oil, rich in ricinolein, from which the bio-polymer polyamide 11 is derived. This is the polymer RadiciGroup uses for its Biofeel® Eleven yarn. What remains after the first pressing is a highly effective bio-fertiliser that is returned to the soil.

RadiciGroup presented Biofeel® Eleven, a yarn of natural origin, at the Performance Days trade fair (from March 15-16 in Munich). Biofeel® Eleven is sourced from castor oil and is suitable for obtaining bio-polymer. It can be used for fabrics and fine garments in many sectors, from fashion to sports, from automotive to home textiles.

Today, 80% of the world's castor-oil plantations are in India, particularly in the Gujarat region, due to its favourable climatic conditions. In this area, local people can earn an additional income by cultivating semi-arid land that does not compete with food production, and by applying the skills they have acquired over time to this work. Over the years, thanks to research, development and innovation in the value chain, the seeds from which the oil is produced have been selected and certified to ensure the finest quality, also in terms of end uses.

Castor beans contain around 45% oil, rich in ricinolein, from which the bio-polymer polyamide 11 is derived. This is the polymer RadiciGroup uses for its Biofeel® Eleven yarn. What remains after the first pressing is a highly effective bio-fertiliser that is returned to the soil.

Biofeel® Eleven can also be solution dyed, i.e. dyed at the yarn production stage, saving a great deal of water and energy and also providing greater colour stability.

Source:

RadiciGroup

(c) NatureWorks
15.02.2023

New Ingeo™️ PLA Biopolymer Manufacturing Facility in Thailand

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

NatureWorks, the manufacturer of low-carbon polylactic acid (PLA) biopolymers made from renewable resources, hosted a cornerstone laying ceremony to celebrate construction of their new Ingeo™️ PLA manufacturing complex in Thailand. The ceremony which took place on February 1st, 2023 commemorated the progress made to date on the new fully integrated biopolymer facility. The day also featured a ceremonial groundbreaking that mirrored the ceremony held in Blair, Nebraska, USA in 2000 when NatureWorks began construction on the world’s first commercial scale PLA manufacturing facility.

The new manufacturing facility located on the Nakhon Sawan Biocomplex (NBC) in Nakhon Sawan Province, Thailand is designed to be fully integrated including production sites for lactic acid, lactide, and polymer. With completion expected in the second half of 2024, the manufacturing site will have an annual capacity of 75,000 tons and will produce the full portfolio of Ingeo biopolymer grades.

The expanded global production of Ingeo biopolymer will support growth in markets including 3D printing and hygiene as well as compostable coffee capsules, tea bags, flexible packaging, and food serviceware that demand sustainable, low-carbon biomaterials and require the high-performance attributes that Ingeo is uniquely suited to deliver.

“This ceremony is a meaningful milestone for the entire NatureWorks team,” said Rich Altice, president and CEO of NatureWorks. “For the last three decades, we have not only been building a company and manufacturing facilities, but also a whole new industry and market for low-carbon, renewable biomaterials that are revolutionizing the sustainability and safety of packaging and product materials used in our everyday lives.”

More information:
NatureWorks PLA biopolymer
Source:

NatureWorks

09.02.2023

Oerlikon: More services for customers in the USA

The American subsidiary of the Swiss Oerlikon Group, Oerlikon Textile Inc., is expanding and moving into new, modern premises tailored to future needs just a few kilometers away from its previous location in Charlotte, North Carolina. A new service center for the polymer processing industry will be created on approximately 4500 m² of office and commercial space latest by the middle of this year.
Oerlikon expands service offering for customers in the USA

"We are the preferred technology partner in the field of man-made fiber production in the USA and not only want to remain so, but also to further expand our services for our customers. However, the previous premises no longer offered any opportunities for expansion," explains Chip Hartzog, President of Oerlikon Textile Inc., the logical step.

The American subsidiary of the Swiss Oerlikon Group, Oerlikon Textile Inc., is expanding and moving into new, modern premises tailored to future needs just a few kilometers away from its previous location in Charlotte, North Carolina. A new service center for the polymer processing industry will be created on approximately 4500 m² of office and commercial space latest by the middle of this year.
Oerlikon expands service offering for customers in the USA

"We are the preferred technology partner in the field of man-made fiber production in the USA and not only want to remain so, but also to further expand our services for our customers. However, the previous premises no longer offered any opportunities for expansion," explains Chip Hartzog, President of Oerlikon Textile Inc., the logical step.

All processes will be optimized in the new buildings. Incoming goods, warehouse and dispatch will be merged, inventory control will be strengthened. On top, the range of services in the repair area will be expanded. "In addition to our services in the area of filament and carpet yarn systems, we will also be able to offer our customers repair services for staple fiber components such as crimpers or nonwoven systems in the future," says Chip Hartzog. This will further strengthen the market position for the Oerlikon Barmag, Oerlikon Neumag and Oerlikon Nonwoven brands.

Oerlikon Textile Inc. has been active in the manmade fibers business in the USA for over 55 years. In addition to the sale of Staple Fiber, BCF, IDY, POY, FDY and texturing plants, the product portfolio also includes upgrades and modernization of old plants, service and training offers as well as repair services and spare parts supplies.

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

Photo CHT Gruppe
16.01.2023

CHT TEXTILE SOLUTIONS - Smart approaches to energy cost reduction and climate protection

Within its TEXTILE SOLUTIONS, the CHT Group has developed solution approaches for manufacturing companies in the textile value chain that have to use a lot of energy for their production. This is intended to compensate high energy costs and make a positive contribution to climate protection.Application specialists work with customers to develop individual savings potentials that are specifically tailored to the production facilities and requirements. Thus, depending on the process, fabric and machine, energy savings of up to 30% can be achieved with the use of innovative CHT textile auxiliaries, dyes/pigments and the corresponding process optimisations. In addition, the numerous concepts and optimally matched products can minimise water consumption or shorten the process time.


Energy-efficient cold bleaching instead of pad-steam bleaching processes in continuous pretreatment and the 4SUCCESS process for energy-efficient and resource-saving pretreatment and dyeing of cotton help to save energy. Likewise, the use of polymer binders, which do not require energy-intensive fixation, saves energy.

Within its TEXTILE SOLUTIONS, the CHT Group has developed solution approaches for manufacturing companies in the textile value chain that have to use a lot of energy for their production. This is intended to compensate high energy costs and make a positive contribution to climate protection.Application specialists work with customers to develop individual savings potentials that are specifically tailored to the production facilities and requirements. Thus, depending on the process, fabric and machine, energy savings of up to 30% can be achieved with the use of innovative CHT textile auxiliaries, dyes/pigments and the corresponding process optimisations. In addition, the numerous concepts and optimally matched products can minimise water consumption or shorten the process time.


Energy-efficient cold bleaching instead of pad-steam bleaching processes in continuous pretreatment and the 4SUCCESS process for energy-efficient and resource-saving pretreatment and dyeing of cotton help to save energy. Likewise, the use of polymer binders, which do not require energy-intensive fixation, saves energy.

Efficient pretreatment with the new polymer technology CPT (Comb Polymer Technology) achieves good cleaning effects even with low liquor ratios and thus less water to heat up. To save costs for energy-consuming heating, there is also the gentle low-temperature fixation in the easy care finishing. The OrganIQ EMS Jeans system enables jeans finishing with a reduced application temperature compared to standard processes.

With TIME BOOST, a process for fast polyester dyeing processes, not only significant energy but also time savings are achieved by omitting pre-washing and by shortening heating and migration times. SHORT CUT also leads to shorter process times when dyeing polyamide.

To avoid cost-intensive intermediate drying, the CHT Group offers the SCREEN-2-SCREEN with PRINTPERFEKT S2S which facilitates printing in a wet-on-wet technology.

In addition to numerous other products, the CHT Group also offers its customers digital tools to optimally support process optimizations. The "BEZAKTIV Soaping Advisor" calculation program within the CHT Textile Dyes app can be used to evaluate and improve dyeing and soaping processes in a simple and target-oriented way.

Source:

CHT Group

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

(c) SANITIZED AG
Dr. Martin Čadek, CTO SANITIZED AG
02.12.2022

SANITIZED AG stärkt Innovationskompetenz mit neuem CTO

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

Swiss-based SANITIZED AG is increasing its innovation expertise by appointing a new CTO, Dr. Martin Čadek, who will oversee global technological activities for the specialist antimicrobial hygiene brand. Dr. Čadek will lead the company’s Competence Centre for Technology Innovation and will focus on breaking new ground to develop innovations in sustainability.

Dr. Čadek is a graduate physicist with a master’s degree in polymer science with many years’ experience in the industry working with polymers, fibres, industrial textiles, and extruded polymers. He is joining SANITIZED AG from his most recent role as Managing Director for German subsidiary the Flint Group. His previous roles include the Global Head of Innovation for Energy and Polymer Systems at Evonik/Orion, the Head of Extrusion Technology Business Unit in Europe for Emerell AG, and work with the SGL Group.

The Competence Centre for Technology & Innovation will provide services to all three of SANITIZED’s business units: Textiles, Polymer Additives, and Coatings and Preservation. It will be built on top of SANITIZED’s TecCenter for Analytics, Microbiology and Applications and its regulatory department.

More information:
Sanitized AG CTO Hygiene
Source:

SANITIZED AG