From the Sector

Reset
55 results
24.02.2022

Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles

  • Renewable Carbon Initiative (RCI) published a strategy paper on the defossilisation of the chemical and material industry with eleven policy recommendations

The Renewable Carbon Initiative, an interest group of more than 30 companies from the wide field of the chemical and material value chains, was founded in 2020 to collaboratively enable the chemical and material industries to tackle the challenges in meeting the climate goals set by the European Union and the sustainability expectations held by societies around the globe.

RCI addresses the core of the climate problem: 72% of anthropogenic climate change is caused directly by extracted fossil carbon from the ground. In order to rapidly mitigate climate change and achieve our global ambition for greenhouse gas emission reductions, the inflow of further fossil carbon from the ground into our system must be reduced as quickly as possible and in large scale.

  • Renewable Carbon Initiative (RCI) published a strategy paper on the defossilisation of the chemical and material industry with eleven policy recommendations

The Renewable Carbon Initiative, an interest group of more than 30 companies from the wide field of the chemical and material value chains, was founded in 2020 to collaboratively enable the chemical and material industries to tackle the challenges in meeting the climate goals set by the European Union and the sustainability expectations held by societies around the globe.

RCI addresses the core of the climate problem: 72% of anthropogenic climate change is caused directly by extracted fossil carbon from the ground. In order to rapidly mitigate climate change and achieve our global ambition for greenhouse gas emission reductions, the inflow of further fossil carbon from the ground into our system must be reduced as quickly as possible and in large scale.

In the energy and transport sector, this means a vigorous and fast expansion of renewable energies, hydrogen and electromobility, the so-called decarbonisation of these sectors. The EU has already started pushing an ambitious agenda in this space and will continue to do so, for instance with the recently released ‘Fit for 55’ package.

However, these policies have so far largely ignored other industries that extract and use fossil carbon. The chemical and material industries have a high demand for carbon and are essentially only possible with carbon-based feedstocks, as most of their products cannot do without carbon. Unlike energy, these sectors cannot be “decarbonised”, as molecules will always need carbon. The equivalent to decarbonisation via renewable energy in the energy sector is the transition to renewable carbon in the chemical and derived materials industries. Both strategies avoid bringing additional fossil carbon from the ground into the cycle and can be summarised under the term “defossilisation”.

To decouple chemistry from fossil carbon, the key question is which non-fossil carbon sources can be used in the future. Rapid developments in biosciences and chemistry have unlocked novel, renewable and increasingly affordable sources of carbon, which provide us with alternative solutions for a more sustainable chemicals and materials sector. These alternative sources are: biomass, utilisation of CO2 and recycling. They are combined under the term “renewable carbon”. When used as a guiding principle, renewable carbon provides a clear goal to work towards with sufficient room to manoeuvre for the whole sector. It enables the industry to think out of the box of established boundaries and stop the influx of additional fossil carbon from the ground.

The systematic change to renewable carbon will not only require significant efforts from industry, but must be supported by policy measures, technology developments and major investments. In order to implement a rapid and high-volume transition away from fossil carbon, and to demonstrate its impact, a supportive policy framework is essential. The emphasis should be put on sourcing carbon responsibly and in a manner that does not adversely impact the wider planetary boundaries nor undermines societal foundations. An overarching carbon management strategy is required that also takes specific regional and application-related features into account, to identify the most sustainable carbon source from the renewable carbon family. This will allow for a proper organisation of the complex transition from today’s fossil carbon from the ground to renewable energy and to renewable carbon across all industrial sectors.

RCI has developed eleven concrete policy recommendations on renewable carbon, carbon management, support for the transformation of the existing chemical infrastructure and the transformation of biofuel plants into chemical suppliers. The policy paper “Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles” is freely available for download in both a short version and a long version.


Link for Download: https://renewable-carbon-initiative.com/media/library/

Source:

Renewable Carbon Initiative (RCI)

03.02.2022

The 2022 JEC Composites Innovation Awards: Official Finalists line up

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

  • Michel COGNET, Chairman of the Board, JEC Group
  • Christophe BINETRUY, Professor of Mechanical Engineering, EC Nantes
  • Kiyoshi UZAWA, Professor/Director, Innovative Composite Center, Kanazawa Institute of Technology
  • Jiming Sung HA, Professor, Hanyang University
  • Brian KRULL, Global Director of Innovation, Magna Exteriors Inc
  • Karl-Heinz FULLER, Manager Future Outside Materials, Mercedes Benz AG
  • Deniz KORKMAZ, CTO, Kordsa Teknik Tekstil AS
  • Henry SHIN, Head of Center, K-CARBON
  • Véronique MICHAUD, Associate Professor/ Director, EPFL – Laboratory for Processing of Advanced Composites
  • Alan BANKS, Lightweight Innovations Manager, Ford Motor Company
  • Enzo CRESCENTI, Technical Authority and Composite Expert, Airbus

Discover the finalists in each category here.

Source:

JEC Group

01.02.2022

EURATEX: High energy costs undermine crucial transformation of the textile and clothing industry

The current energy crisis is impacting on the competitiveness of the European textile and clothing industry. Because there are limited alternatives to the use of gas in different parts of the production process, production costs increase sharply. EURATEX asks the European Commission and Member States to urgently support the industry to avoid company closures. At the same time, we need a long term vision to move towards climate neutrality, while keeping the T&C industry internationally competitive.

EURATEX presented ten key requirements to Kadri Simson, European Commissioner for Energy, to develop such a vision:

The current energy crisis is impacting on the competitiveness of the European textile and clothing industry. Because there are limited alternatives to the use of gas in different parts of the production process, production costs increase sharply. EURATEX asks the European Commission and Member States to urgently support the industry to avoid company closures. At the same time, we need a long term vision to move towards climate neutrality, while keeping the T&C industry internationally competitive.

EURATEX presented ten key requirements to Kadri Simson, European Commissioner for Energy, to develop such a vision:

  1. The apparel and textile industry needs a safe supply with sufficient green energy (electricity and gas) at internationally competitive prices.
  2. The transformation of industry requires access to very significant amounts of renewable energy at competitive costs. Additional investments in infrastructure will also be needed to guarantee access to new renewable energy supplies.
  3. Until a global (or at least G 20 level) carbon price or other means for a global level playing field in climate protection are implemented, competitive prices for green energy must be granted at European or national levels (e.g. CCfDs, reduction on levies, targeted subsidies).
  4. As the European textile and clothing sector faces global competition mainly form countries/regions with less stringent climate ambitions, it is of utmost importance that the European textile and clothing companies are prevented form direct and indirect carbon leakage.
  5. EU-policy should support solutions, e.g. through targeted subsidies (for hydrogen, energy grids, R&D, technology roadmap studies etc.).
  6. A dedicated approach for SMEs might be appropriate as SMEs do not have the skills/know-how to further improve their energy efficiency and/or becoming carbon neutral.
  7. CAPEX and OPEX support will be necessary for breakthrough technologies, like hydrogen.
  8. The Fit-for-55-Package must support the European Textile and Clothing industry in decarbonization and carbon neutrality. The EU must therefore advocate a global level playing field more than before. The primary goal must be to establish an internationally uniform, binding CO2 pricing, preferably in the form of a standard at G-7 / G-20 level.
  9. EU-policy must not hinder solutions, e.g. we need reasonable state aid rules (compensating the gap between national energy or climate levies and a globally competitive energy price should not be seen as a subsidy).
  10. The European Textile and Clothing industry has made use of economically viable potentials to continuously improve energy efficiency over many years and decades. The obligation to implement further measures must be taken considering investment cycles that are in line with practice. Attention must be paid to the proportionality of costs without weakening the competitive position in the EU internal market or with competitors outside the EU.

Please see the attached position paper for more information.

Source:

EURATEX

ISKO champions circularity and biodiversity at the Circular Fashion Summit 2021 (c) ISKO
Denim by ISKO
24.11.2021

ISKO champions circularity and biodiversity at the Circular Fashion Summit 2021

  • The leading denim ingredient brand joins lablaco’s virtual reality Circular Fashion Summit 2021 as an Innovation Partner

ISKO continues to reaffirm its commitment towards circularity by participating as an Innovation Partner in the Circular Fashion Summit 2021 by lablaco. The summit will bring together leaders of change across design, technology and sustainability to share knowledge and take action towards creating a circular future for fashion. The event will be held in a VR version of the Grand Palais Éphémère in Paris and will take place on 9-12 December.

ISKO’s approach to circularity is built on creating a future where no virgin resources are needed to produce beautiful durable and high performing woven fabrics To achieve this, the leading denim ingredient brand is working to remove its reliance on fossil fuels and virgin materials by employing only renewable energy and by setting the challenging target of using 100% recycled or reused materials.

  • The leading denim ingredient brand joins lablaco’s virtual reality Circular Fashion Summit 2021 as an Innovation Partner

ISKO continues to reaffirm its commitment towards circularity by participating as an Innovation Partner in the Circular Fashion Summit 2021 by lablaco. The summit will bring together leaders of change across design, technology and sustainability to share knowledge and take action towards creating a circular future for fashion. The event will be held in a VR version of the Grand Palais Éphémère in Paris and will take place on 9-12 December.

ISKO’s approach to circularity is built on creating a future where no virgin resources are needed to produce beautiful durable and high performing woven fabrics To achieve this, the leading denim ingredient brand is working to remove its reliance on fossil fuels and virgin materials by employing only renewable energy and by setting the challenging target of using 100% recycled or reused materials.

This impressive goal is possible thanks to the cutting edge technologies ISKO is working with such as a one of a kind process which fully separates and recycles cotton and polyester blends at scale, and collaborative partnerships with MoRe Research that are aimed at discovering new possibilities for cellulose based materials. ISKO’s new generation of R TWO™50+ fabrics are also playing a role in moving towards this goal. E ngineered for nature’ they use a minimum of 50% pre and post consumer recycled blend reducing carbon and water footprints by 45% and 65% respectively, and are all GRS certified ISKO also believes that the transition to a circular economy cannot happen without addressing the impact on biodiversity and our ecology. Tackling the over-sourcing of raw materials is key, as the extraction of new natural resources and the impact on carbon emissions in processing them contributes to more than 90% of biodiversity loss.

Source:

Menabò Group

22.11.2021

Sappi invests in Kirkniemi Mill on decarbonisation journey

Sappi has approved an investment in Kirkniemi Mill in Lohja, Finland which enables a switch in its energy sourcing to renewable bioenergy. With this investment the mill’s direct fossil greenhouse gas emissions will reduce by ca. 90 percent, which is equivalent to 230 000 tons of carbon dioxide annually.

The project, set for completion in early 2023, will contribute significantly to Sappi Europe’s decarbonisation roadmap by exiting coal at one of its last facilities partially using this fuel type. Biomass will then be used in Kirkniemi’s multi-fuel boiler, built in 2015. The move advances Sappi towards its 2025 targets which include reducing specific greenhouse gas emissions (scope 1 and 2) by 25 percent and increasing renewable energy share to 50 percent in Europe compared to 2019.

The investment will establish the equipment needed to receive, store and handle woody biomass like the bark, sawdust and wood chips used for biofuel production. Such biomass types are by-products from the forest-based industry and utilising them for energy production derives further value from the forest resource.

Sappi has approved an investment in Kirkniemi Mill in Lohja, Finland which enables a switch in its energy sourcing to renewable bioenergy. With this investment the mill’s direct fossil greenhouse gas emissions will reduce by ca. 90 percent, which is equivalent to 230 000 tons of carbon dioxide annually.

The project, set for completion in early 2023, will contribute significantly to Sappi Europe’s decarbonisation roadmap by exiting coal at one of its last facilities partially using this fuel type. Biomass will then be used in Kirkniemi’s multi-fuel boiler, built in 2015. The move advances Sappi towards its 2025 targets which include reducing specific greenhouse gas emissions (scope 1 and 2) by 25 percent and increasing renewable energy share to 50 percent in Europe compared to 2019.

The investment will establish the equipment needed to receive, store and handle woody biomass like the bark, sawdust and wood chips used for biofuel production. Such biomass types are by-products from the forest-based industry and utilising them for energy production derives further value from the forest resource.

In addition to increasing share of renewable energy, Sappi’s mills are also focused on reducing energy consumption. Sappi Kirkniemi Mill is party to Finland’s National Energy Efficiency Agreement and consistently reaches their energy saving targets. Kirkniemi’s ISO 50001 certification provides further evidence of the mill’s systematic improvement in energy efficiency.

Source:

Sappi Europe

DyStar Releases 2020 – 2021 Integrated Sustainability Report (c)dystar
Sustainability Performance Report 2020-2021
13.10.2021

DyStar Releases 2020 – 2021 Integrated Sustainability Report

DyStar is pleased to announce the release of its eleventh annual Sustainability Performance Report. The report is written in accordance with the GRI Standards: Core option, while using the Integrated Reporting <IR> framework to communicate how DyStar drives value creation across multiple stakeholder groups in six capital categories, namely financial, manufactured, intellectual, natural, human capital and social capital.

In FY2020, COVID-19 has continued to present its challenges, such as the shortage of raw materials and rising freight costs. Gloomy global demand has also resulted in some raw and product material wastage in production plants worldwide, leading to increased non-hazardous waste output for FY2020. DyStar recognizes these global factors in play and will continue to make active efforts within the organization’s capability to reduce its environmental footprint in the years ahead.

DyStar is pleased to announce the release of its eleventh annual Sustainability Performance Report. The report is written in accordance with the GRI Standards: Core option, while using the Integrated Reporting <IR> framework to communicate how DyStar drives value creation across multiple stakeholder groups in six capital categories, namely financial, manufactured, intellectual, natural, human capital and social capital.

In FY2020, COVID-19 has continued to present its challenges, such as the shortage of raw materials and rising freight costs. Gloomy global demand has also resulted in some raw and product material wastage in production plants worldwide, leading to increased non-hazardous waste output for FY2020. DyStar recognizes these global factors in play and will continue to make active efforts within the organization’s capability to reduce its environmental footprint in the years ahead.

The Group has set its sight on achieving the 2025 sustainability target of reducing its production footprint by 30% from 2011 levels for every ton of production. “We will continue to innovate and develop a wide range of products and processes that improve environmental performance and reduce carbon footprint across our value chain”, said Mr Xu Yalin, Executive Board Director of DyStar Group.

Mr Eric Hopmann, CEO of DyStar Group added: “We are also developing various projects in anticipation of future demands from customers as well as adopting more environmentally friendly technologies and improve our workflows and processes. Some of our projects include traceability programs, adopting renewable energy technologies, and digitalizing our business processes.” Understanding the importance of collaborative efforts to drive sustainability across the value chain, DyStar seeks to continually support industrial innovations and develop strategic partnerships to work towards becoming a sustainable and trusted leader in the industry.

Source:

DyStar Press Info

(c) Trützschler
Ralf Helbig, R & D Engineer for Air Technology (left) and Christian Freitag, Head of Air Technology at Trützschler (right).
27.09.2021

Trützschler: TC 19i sets the benchmark for energy-efficient carding

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

The most energy-intensive elements in a carding machine are the drive, the dust suction process and the compressed air system. Permanent suction is needed to remove dust and cotton waste in key places. Smart optimization of these areas has made the intelligent card TC 19i a benchmark for energy efficiency in carding because it uses less electricity, lower suction pressure and less compressed air than other machines, while providing the highest production rates currently available on the market.

In a head-to-head comparison between the TC 19i and a high-performance card from a competitor, the TC 19i consumed at least 10 % less energy per kilogram of material produced when manufacturing rotor yarn from a cotton and cotton waste mix. The compared energy values included electric power consumption and energy required for suction and compressed air and were measured in both cards at the same production of 180 kg/h. A 10 % reduction in energy per kilogram of sliver produced, as proven here by TC 19i, can have a significant impact on a spinning mill’s profitability; annual savings worth a five-digit sum are frequently possible, depending on factors such as the output of the mill. The customer trial also showed TC 19i’s excellent reliability at the customer’s usual production rate of 180 kg/h, and even demonstrated stable performance at 300 kg/h in the same application. Because the TC 19i with T-GO gap optimizer realizes maximum production rates at no compromise in quality, manufacturers can reduce their energy demand and investment costs drastically: Less machines are needed to achieve the desired output, and energy consumption per production is reduced.

This improvement was made possible by a long and sometimes challenging innovation process involving mathematical models of air flows, as well as flow simulations and prototypes. By combining the final flowoptimized parts in the TC 19i, Trützschler’s experts have developed a card that operates with suction pressure of just -740 Pa and with an air requirement of only 4200 m³/h. This translates into 40 % less energy demand for air technology compared to the latest high-performance competitor model.

More information:
Trützschler carding technology
Source:

Trützschler

Rieter CAMPUS – Foundation Stone Laid (c) Rieter
Rieter Campus Winterthur
09.09.2021

Rieter CAMPUS – Foundation Stone Laid

  • Rieter CAMPUS strengthens innovation strategy and technology leadership position
  • Customer and technology center and administration building ready for occupancy in 2024
  • Commitment to the Winterthur site and to Switzerland as a business location

On September 8, 2021, the foundation stone was laid for the Rieter CAMPUS on the western part of the Rieter site at the Winterthur location, which includes a customer and technology center as well as an administration building. The Rieter CAMPUS will make an important contribution to the implementation of the innovation strategy and to the enhancement of the company’s technology leadership position. At the same time, the investment of around CHF 80 million is a commitment to the Winterthur site and to Switzerland as a business location. 

  • Rieter CAMPUS strengthens innovation strategy and technology leadership position
  • Customer and technology center and administration building ready for occupancy in 2024
  • Commitment to the Winterthur site and to Switzerland as a business location

On September 8, 2021, the foundation stone was laid for the Rieter CAMPUS on the western part of the Rieter site at the Winterthur location, which includes a customer and technology center as well as an administration building. The Rieter CAMPUS will make an important contribution to the implementation of the innovation strategy and to the enhancement of the company’s technology leadership position. At the same time, the investment of around CHF 80 million is a commitment to the Winterthur site and to Switzerland as a business location. 

With a floor area of over 30 000 m2, the Rieter CAMPUS offers space for around   700 ultra-modern workplaces. For this purpose, Rieter and a specialist in office architecture have developed a contemporary space concept for the “Open Space Office” that is tailored to the needs of the company, divided into meeting rooms, focus rooms and some individual offices. The underground car park provides   88 parking spaces, and a further 12 outdoor parking spaces are being created   in front of the technology center.  “In the course of its 225-year company history, Rieter has helped shape the city of Winterthur. The foundation for the future as a leading technology company is now being created with the new CAMPUS. In this way, Rieter is giving a clear indication   of its commitment to the Winterthur site and to Switzerland as a business location”, commented Bernhard Jucker, Chairman of the Board of Directors of Rieter Holding AG.

Innovation is an important part of Rieter’s strategy and crucial for the company’s success. For this reason, Rieter invests more than CHF 50 million annually in research and development. Thanks to this commitment, Rieter is making a   decisive contribution to the further development of systems for sustainable yarn production and their digitization. The Rieter CAMPUS will provide an attractive working environment that promotes creativity and innovation.  The new CAMPUS is a showcase project in terms of economic feasibility, energy efficiency and sustainability. Rieter relies on renewable energy for construction. This includes heat generation via geothermal probes and a photovoltaic system on around 1 300 m2 of roof area. “In this way, the entrepreneurial focus on sustainable and energy-efficient solutions for yarn production is reflected in the overall concept of the CAMPUS,” emphasized Rieter CEO Norbert Klapper.  The move into the new building is planned for 2024.

Source:

Rieter Management AG

26.08.2021

Conference on CO2-based Fuels and Chemicals 2022

  • Call for Papers and Posters

More than 200 leading international experts in Carbon Capture and Carbon Utilisation (Power-to-X) together with 20 exhibitors are expected to attend the hybrid event on 23–24 March 2022, in Cologne, Germany

Main topics of the conference are strategy & policy in CCU, renewable energy and green hydrogen production, carbon capture technologies, CO2-based fuels for transport and aviation, CO2-based building blocks, bulk and fine chemicals as well as advanced CCU technologies.

Carbon Capture and Utilisation (CCU) is one essential pillar for the supply of renewable carbon besides biomass utilisation and recycling. The transition to the direct use of CO2 as one alternative carbon source is needed as a key element to substitute fossil sources, to fight climate change and to shift towards sustainable and climate-friendly production and consumption. For providing the full benefits of CCU technologies the use of renewable energy is indispensable.

  • Call for Papers and Posters

More than 200 leading international experts in Carbon Capture and Carbon Utilisation (Power-to-X) together with 20 exhibitors are expected to attend the hybrid event on 23–24 March 2022, in Cologne, Germany

Main topics of the conference are strategy & policy in CCU, renewable energy and green hydrogen production, carbon capture technologies, CO2-based fuels for transport and aviation, CO2-based building blocks, bulk and fine chemicals as well as advanced CCU technologies.

Carbon Capture and Utilisation (CCU) is one essential pillar for the supply of renewable carbon besides biomass utilisation and recycling. The transition to the direct use of CO2 as one alternative carbon source is needed as a key element to substitute fossil sources, to fight climate change and to shift towards sustainable and climate-friendly production and consumption. For providing the full benefits of CCU technologies the use of renewable energy is indispensable.

Especially the supply of green hydrogen is crucial for the production of CO2-based fuels for transportation and aviation as well as for bulk and fine chemicals.

The “Conference on CO2-based Fuels and Chemicals 2022”, 23–24 March 2022, Cologne, Germany. As a hybrid conference it combines a “live” in-person event with a “virtual” online component, www.co2-chemistry.eu.

More information:
CO2
Source:

nova-Institut GmbH

Ascend expands HiDura™ LCPA production capacity (c) Ascend Performance Materials
APMPR059
09.06.2021

Ascend expands HiDura™ LCPA production capacity

  • New capacity brought online to meet growing demand

Ascend Performance Materials has expanded production capacity for HiDura long-chain polyamides in its Greenwood, S.C., plant. The multi-million dollar expansion will help the company meet growing demand for its new product line.

Launched in Nov. 2020, Ascend’s HiDura PA610 and 612 products are used in a variety of consumer goods, industrial, renewable energy, automotive and electric vehicle applications. “Exceptional ductility, UV weatherability and hydrolysis resistance give HiDura resins and engineered plastics reliable, long-term performance in some of the harshest conditions,” said Kaan Gunes, business manager for HiDura at Ascend. Gunes cited applications in solar photovoltaic supports, battery seals and brush bristles to illustrate the versatility and durability of HiDura. “Each of these parts faces extreme conditions, whether the 25 years a solar PV installation will be exposed to the elements or the constant contact with corrosive chemicals inside a battery cell. The various grades we developed are designed to improve the reliability of our customers’ products.”

  • New capacity brought online to meet growing demand

Ascend Performance Materials has expanded production capacity for HiDura long-chain polyamides in its Greenwood, S.C., plant. The multi-million dollar expansion will help the company meet growing demand for its new product line.

Launched in Nov. 2020, Ascend’s HiDura PA610 and 612 products are used in a variety of consumer goods, industrial, renewable energy, automotive and electric vehicle applications. “Exceptional ductility, UV weatherability and hydrolysis resistance give HiDura resins and engineered plastics reliable, long-term performance in some of the harshest conditions,” said Kaan Gunes, business manager for HiDura at Ascend. Gunes cited applications in solar photovoltaic supports, battery seals and brush bristles to illustrate the versatility and durability of HiDura. “Each of these parts faces extreme conditions, whether the 25 years a solar PV installation will be exposed to the elements or the constant contact with corrosive chemicals inside a battery cell. The various grades we developed are designed to improve the reliability of our customers’ products.”

Ascend, which is the largest fully integrated producer of polyamide 66 resin, used its extensive polymerization knowledge to expand capacity at its Greenwood facility. “We have been polymerizing PA66 in Greenwood for decades,” said Michael Walters, senior site director for Ascend in Greenwood. “Our people understand how to consistently produce high-performance, high-quality materials safely and were excited to see the success of HiDura build off their work.” Ascend continues to expand its HiDura grades to meet the growing needs of its customers.

Source:

EMG

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing

07.01.2021

TATA Communications recognised for leadership in Sustainability by CDP

Tata Communications, a global digital ecosystem enabler, has been recognised by global environmental non-profit organisation, Carbon Disclosure Project (CDP) with the distinguished ‘A-’ leadership score for implementing current best practices in sustainability for climate change. Tata Communications score is higher than the global average of ‘C’ and higher than the Asia region average of ‘D’. The Company scores the highest global score for playing a leading role in Climate Change governance, value chain management, energy efficiency, risk and opportunity disclosures in CDP 2020 reporting.

Tata Communications is among the top 34% companies globally to have received the leadership score for best practices out of 9,600+ companies that reported environmental disclosures this year. The scores are attributed basis a comprehensive peer benchmarking and sustainability performance.

Tata Communications, a global digital ecosystem enabler, has been recognised by global environmental non-profit organisation, Carbon Disclosure Project (CDP) with the distinguished ‘A-’ leadership score for implementing current best practices in sustainability for climate change. Tata Communications score is higher than the global average of ‘C’ and higher than the Asia region average of ‘D’. The Company scores the highest global score for playing a leading role in Climate Change governance, value chain management, energy efficiency, risk and opportunity disclosures in CDP 2020 reporting.

Tata Communications is among the top 34% companies globally to have received the leadership score for best practices out of 9,600+ companies that reported environmental disclosures this year. The scores are attributed basis a comprehensive peer benchmarking and sustainability performance.

The company made some strategic shifts in implementing several energy efficiency measures and this recognition reaffirms its focus on sustainability. In fiscal 2020, Tata Communications sourced approximately 15 million units of renewable energy and implemented emission reduction initiatives resulting in energy savings to the tune of 0.8 million units.

Tata Communications Sustainability strategy is based on the three facets of environment, social and governance (ESG) principles. The Company’s objective is to drive value creation for its stakeholders and drive sustainable business growth by managing risks and embracing opportunities, implementing robust governance practices and optimising the economic, environmental and social performance.

Source:

Harvard Engage! Communications

Lenzing Logo (c) Lenzing Group
29.09.2020

Lenzing is founding partner of the Renewable Carbon Initiative

Eleven leading companies from six countries founded the Renewable Carbon Initiative (RCI) in September 2020 under the leadership of nova-Institute (Germany). The aim of the initiative is to support and speed up the transition from fossil carbon to renewable carbon for all organic chemicals and materials.

Besides Lenzing, these ten companies are founding members of the RCI, which also form the Core Advisory Board: Beiersdorf (Germany), Cosun Beet Company (The Netherlands), Covestro (Germany), Henkel (Germany), LanzaTech (USA), NESTE (Finland), SHV Energy (The Netherlands), Stahl (The Netherlands), Unilever (UK) and UPM (Finland).

Eleven leading companies from six countries founded the Renewable Carbon Initiative (RCI) in September 2020 under the leadership of nova-Institute (Germany). The aim of the initiative is to support and speed up the transition from fossil carbon to renewable carbon for all organic chemicals and materials.

Besides Lenzing, these ten companies are founding members of the RCI, which also form the Core Advisory Board: Beiersdorf (Germany), Cosun Beet Company (The Netherlands), Covestro (Germany), Henkel (Germany), LanzaTech (USA), NESTE (Finland), SHV Energy (The Netherlands), Stahl (The Netherlands), Unilever (UK) and UPM (Finland).

The Renewable Carbon Initiative (RCI) addresses the core problem of climate change, which is extracting and using additional fossil carbon from the ground. The vision is stated clearly: By 2050, fossil carbon shall be completely substituted by renewable carbon, which is carbon from alternative sources: biomass, direct CO2 utilisation and recycling. The founders are convinced that this is the only way for chemicals, plastics and other organic materials to become sustainable, climate-friendly and part of the circular economy – part of the future.

Robert van de Kerkhof, Chief Commercial Officer of the Lenzing Group: „We at Lenzing believe that we need to create strategic partnerships to implement systemic change. Therefore, we support the Renewable Carbon Initiative. First of all, because it is the right thing to do and, second, it is also fully aligned with our corporate strategy. Therefore, we are part of the RCI from the beginning and its commitment to start acting now.”

Michael Carus, CEO of nova-Institute and head of the Renewable Carbon Initiative: “This is about a fundamental change in the chemical industry. Just as the energy industry is being converted to renewable energies, so renewable carbon will become the new foundation of the future chemical and material industry. The initiative starts today and will be visibly present from now on. We want to accelerate the change.”

The main avenues on which the initiative wants to deliver change are threefold. One, the initiative strives to create cross-industry platforms that will demonstrate feasibility of renewable carbon in tangible activities. Two, one main target will be to advocate for legislation, taxation and regulation changes to give renewable carbon a level commercial playing field to play on. Finally, the third avenue will be to create a wider pull for sustainable options by raising awareness and understanding of renewable carbon level amongst the business community and the wider public.

The Renewable Carbon Initiative has made a powerful start with eleven international member companies and the personal support of more than 100 industry experts. The initiative hopes to gain many additional members and supporters in the upcoming months to keep the strong momentum of the initiative. Working together, RCI will support and accelerate the transition from fossil to renewable carbon for all organic chemicals and materials.

In the end, the aim is as complex as it is simple: renewable energy and renewable carbon for a sustainable future. Within the RCI Lenzing will especially focus on further greening up the textile and nonwoven businesses. Here we will promote this concept and encourage our partners to become a part of this vision.

More information about the Renewable Carbon Initiative can be found on www.renewable-carbon-initiative.com.

More information:
Lenzing Group nova Institute
Source:

Lenzing Group

Digitak services always in fashion with Mimaki sublimation and direct printing (c) Mimaki
Filippo Taccani, founder and owner at Digitak, in the company’s production department, surrounded by an arsenal of Mimaki’s printing solutions.
01.07.2020

Digitak services always in fashion with Mimaki sublimation and direct printing

  • Specialised in dye-sublimation printing, the Italian company has conquered the heights of the high fashion sector with its top-quality printed fabrics.
  • With its recent investment in a direct-to-fabric printing line, Digitak is preparing to expand its range of printed products, focusing on fabric differentiation.

Dye sublimation printing of high fashion designs is the beating heart of Digitak, an Italian company specialised in digital textile printing. Operating in the textile district of Lombardy, Italy, the company has established itself among the main suppliers in the world of high fashion and sportswear in just under 15 years.

  • Specialised in dye-sublimation printing, the Italian company has conquered the heights of the high fashion sector with its top-quality printed fabrics.
  • With its recent investment in a direct-to-fabric printing line, Digitak is preparing to expand its range of printed products, focusing on fabric differentiation.

Dye sublimation printing of high fashion designs is the beating heart of Digitak, an Italian company specialised in digital textile printing. Operating in the textile district of Lombardy, Italy, the company has established itself among the main suppliers in the world of high fashion and sportswear in just under 15 years.

Making production versatility one of the cornerstones of its philosophy, Digitak has continued to invest in technology, as well as research and development its product portfolio. This forward-thinking approach has enabled the company to guarantee innovative, personalised products with meticulous attention to detail, with the highest – almost obsessive – standards of quality and maximum design flexibility. Over the years, the extensive experience gained by the company’s management in the field of sublimation with traditional and digital techniques, combined with their investment decisions have allowed Digitak to enhance its production performance, gradually implementing higher quality standards and differentiating itself from the competition in the complex and competitive sector of high fashion. An important feat, which has not, however, dampened its enthusiasm and willingness to continue growing and exceeding its goals. The company’s latest investment in a direct-to-fabric digital printing line with pigment ink propels the company into a new and promising production dimension.

Sublimation printing specialists

Since Digitak’s establishment, Filippo Taccani, the founder and current owner of the company, had set himself a clear and ambitious objective: “I wanted to take up the challenge of operating digitally - printing fabrics using this innovative technology to create products on a par with those  I had achieved with traditional sublimation textile printing methods during my previous work experience.”

The purchase of a Mimaki JV4 plotter, one of the first to be installed in Italy, marked the beginning of Digitak’s adventure. “To start the business, I needed a printing system that could operate with dispersed inks to print on polyester and I found the JV4 to be the best option,” explains Taccani. “It was an excellent decision, because I used these plotters to build the company and its success.”

The first Mimaki plotter was in fact followed by a second and a third. When it bought the fifth, the company moved to an industrial unit in Tradate (Varese) – Digitak’s current site – which now houses around fifteen Mimaki JV33 plotters, in addition to three Mimaki TS500-1800 wide-format sublimation printers, and a Mimaki TS300P-1800 high-speed sublimation printer. This Mimaki powered production facility – which is one of the company’s core strengths – was recently expanded with the addition of a Mimaki TX300P-1800B belt-type hybrid printing system, together with a Mimaki TR300-1850C textile coater and a Mimaki Tiger-1800.

“Naturally, over the years, we have also tested printing systems from other suppliers, but we have always returned to Mimaki. With high fashion as our key market, we need to guarantee our customers the highest levels of quality and, to date, we have never found solutions that beat the quality of this Japanese brand’s technology.”

According to Taccani, the difference lies in the “calligraphy” of Mimaki’s machines, that is the line of the ink on the fabric: “Unlike its competitors, Mimaki has focused on the ‘waveforms’, i.e. the electronics associated with the print heads. This attention paid to the way the ink jet is managed from the print head has allowed Mimaki to achieve unparalleled levels of accuracy, an aspect that has given my company a clear competitive edge.”

Moreover, at Digitak, quality comes before quantity: “We prefer to dedicate an extra day to production to guarantee the customer a final product that fully meets requirements and expectations. Mimaki’s technology not only suits this business model bult on top quality, but it crucially enables it.”

Operational and creative flexibility

Digitak currently prints around 2,000 linear metres of fabric per day. Its portfolio ranges from clothing and scarves, to beach and swimwear, with related personalised accessories, to sportswear, with technical properties such as breathability, comfort, resistance to external agents. The company have even added customised outdoor furniture to their offering of diverse and creative products.
The company’s machines operate continuously, 24/7. During the day, the machines are mainly used to develop and produce samples and colour proofs, while the actual production is carried out at night. “Thanks to our technology, we have developed an extraordinary operational flexibility. The fact that we have so many plotters allows us to work on multiple designs at the same time and to launch projects that are also very different from one another,” explains Taccani. “There are also some other crucial factors that have contributed, and continue to contribute, to increasing our production efficiency. The reliability of Mimaki’s solutions and the remote monitoring option offered is key. Once the standard start-up monitoring has been carried out and the machines are found to be printing correctly, we can let them work overnight without an operator. This is a great benefit for people who, like us, manage such a large and diverse fleet of machines.”

Digitak takes the same approach to customer service. Faced with an increasingly demanding market in terms of creativity, precision and completeness of service, the company wants to guarantee flexibility and customisation. “We decided to set up a department dedicated to the pre-press stage, in charge of preparing and checking the files supplied by customers. Seldom do our teams not need to do some editing of the files supplied, even if it’s only to make small changes that are essential for the print document to be as suitable as possible and to achieve the best final result.”

Technologies of the future

With a view to further enhancing production and customer service, Taccani has chosen to take on a new challenge, switching things up with some of the most recent investments.

While maintaining the focus on dye sublimation printing, Taccani has focused on technological diversification by installing a direct-to-fabric digital printing line. This consists of a Mimaki TX300P-1800B printing system with pigment inks and a TR300-1850C coater from Mimaki’s TR series. “The market continues to evolve and now requires even more flexibility regarding both processes and the fabrics supplied. This means that great opportunities exist for a print shop capable of simultaneously producing the same design – with minimal colour adjustment – on different fabrics, guaranteeing similar and accurate results. And this is precisely the path we are taking,” says Taccani. “Why have we opted for Mimaki again? Well, I had an opportunity to try out their new pigment inks and I immediately realised that they are a generation ahead of the other pigments available on the market. The cyan is very clean, the black is deep and there is a very interesting fullness of colour, suitable not only for furnishings, but also for other applications in the clothing sector.”

With its pigment inks, the new direct-to-fabric printing line allows Digitak to explore other related market segments. Thanks to the innovative automatic belt system, the TX300P-1800B guarantees good productivity and high-quality results. A standard of quality that is also boosted by the TR300-1850C fabric pre-treatment system: “This coater is essential for ensuring the best possible preparation of fabrics for printing. In fact, we are able to treat fabrics to make them suitable for the type of print they are intended for, sanitise them for specific applications and, in some cases, even dye them, with excellent quality.”

According to Taccani, another beneficial factor of direct-to-fabric pigment printing technology is the eco-sustainability of the process and its lower environmental impact. “We are proud to be able to offer our customers excellent printing results using little water and printing in ‘green mode’, with both the technologies we have available. I consider them winning technologies for the future, as both dye sublimation printing and direct-to-fabric printing with pigment inks use little water while mainly requiring the use of energy. Therefore, if you use renewable energy, then you’re done.”

Digitak’s other trump card is the Tiger-1800 installed in 2019. With this industrial printing system, the company aims to increase production volumes while maintaining its high-quality standards and further optimising costs. “We are excited to have these promising technologies available to us in-house. We are currently experimenting with these solutions, testing new opportunities and evaluating which paths to take to stay ahead of the game,” concludes Taccani.

 

Source:

Mimaki Europe B.V.

(c) JEC group
14.11.2019

JEC Asia 2019: Winners of The JEC Innovation Awards Revealed

The JEC innovation awards is a long-established and worldwide program with three simple goals: identify, promote, and reward the most innovative composite solutions in the world. Over the past 15 years, the JEC Innovation Program has involved 1,800 companies worldwide; 177 companies and 433 partners have been rewarded for the excellence of their composite innovations. The JEC Innovation Awards reward composites champions, based on criteria such as partner involvement in the value chain, technicality, or commercial applications of innovations.

« Every year, JEC rewards the best cutting-edge and ingenious projects using composites to their full potential in different categories. The JEC Innovation Awards program is emblematic and recognizes pioneers in composite innovation continuously reinventing the composites of tomorrow», says Franck GLOWACZ, Innovation Content Leader at JEC Group.

The winners have been rewarded for their innovative solutions, in 10 categories:

The JEC innovation awards is a long-established and worldwide program with three simple goals: identify, promote, and reward the most innovative composite solutions in the world. Over the past 15 years, the JEC Innovation Program has involved 1,800 companies worldwide; 177 companies and 433 partners have been rewarded for the excellence of their composite innovations. The JEC Innovation Awards reward composites champions, based on criteria such as partner involvement in the value chain, technicality, or commercial applications of innovations.

« Every year, JEC rewards the best cutting-edge and ingenious projects using composites to their full potential in different categories. The JEC Innovation Awards program is emblematic and recognizes pioneers in composite innovation continuously reinventing the composites of tomorrow», says Franck GLOWACZ, Innovation Content Leader at JEC Group.

The winners have been rewarded for their innovative solutions, in 10 categories:

  • Aerospace
  • Automotive - Exterior
  • Automotive - Structural
  • Electrical, Electronics & Appliances
  • Industrial Equipment
  • Marine
  • Railway
  • Renewable Energy
  • Smart Composites
  • Sports & Leisure

The awards ceremony took place place on November 14, 2019, at 5:30 pm at the Startup Branch, COEX. Ben Bassat, President and CEO of Plataine Avner opened the ceremony with a keynote about “The 4th industrial revolution: implementing IIOT and AI to composite materials and manufacturing”.