From the Sector

Reset
1599 results
23.06.2023

DOMO Chemicals publishes sustainability report

DOMO Chemicals, a global leader in polyamide-based engineered material solutions and services, has published its latest annual Sustainability Report, detailing progress on its sustainability journey, including notable reductions in greenhouse gas emissions. DOMO’s mission is to engineer polyamide solutions that contribute to a better, more sustainable world. In publishing its second annual Sustainability Report, DOMO enters a new phase in its decarbonization quest, with confidence in its long-term aspiration to set the standard for sustainability in the industry by 2030.

Notably, the Sustainability Report details DOMO’s achievements in 2022 toward realizing its 2030 sustainability goals. In terms of decarbonization and broader environmental achievements, against a 2019 baseline, the company:

DOMO Chemicals, a global leader in polyamide-based engineered material solutions and services, has published its latest annual Sustainability Report, detailing progress on its sustainability journey, including notable reductions in greenhouse gas emissions. DOMO’s mission is to engineer polyamide solutions that contribute to a better, more sustainable world. In publishing its second annual Sustainability Report, DOMO enters a new phase in its decarbonization quest, with confidence in its long-term aspiration to set the standard for sustainability in the industry by 2030.

Notably, the Sustainability Report details DOMO’s achievements in 2022 toward realizing its 2030 sustainability goals. In terms of decarbonization and broader environmental achievements, against a 2019 baseline, the company:

  • Reduced scope 1 and 2 greenhouse gas emissions by 27%, making significant progress toward its target of 40% reduction by 2030 and carbon neutrality by 2050
  • Increased renewable electricity throughout operations to 12%
  • Reduced waste by 24%
  • Lowered water intake by 4.5%

In addition, as a provider of polyamide-based sustainable and circular solutions, DOMO:

  • Achieved more than 11% of engineered materials sales based on sustainable feedstock, making excellent progress toward its 2030 target of 20%
  • Allocated 25% of research and development resources to enhanced recycling

Moreover, fostering talent and ensuring the well-being of its workforce as a responsible employer is essential for sustainable growth, and 2022 highlights include:

  • Increased share of women in senior positions from 22% in 2021 to 30% in 2022
  • Providing a safe and inclusive working environment that encourages personal and professional development as well as a global safety culture
Source:

DOMO Chemicals

23.06.2023

INDA receives United Nations Accreditation

INDA, the Association of the Nonwoven Fabrics Industry, was granted status last month as an accredited stakeholder with the United Nations Environment Programme (UNEP), which, among other privileges, will allow representatives from the association to observe the formal ongoing negotiations of the UN Global Plastics Treaty. INDA Government Affairs Director Wes Fisher was on site at the second session of the treaty negotiations formally titled the “second session of the Intergovernmental Negotiating Committee to develop an international legally binding instrument on plastic pollution, including in the marine environment.” The negotiations took place from 29 May to 2 June 2023 at the United Nations Educational, Scientific and Cultural Organization (UNESCO) Headquarters in Paris, France.

“We are excited to continue to enhance the capacity of INDA’s government affairs department to better serve the industry on a global scale,” stated Fisher. “We look forward to working with the UNEP to provide technical input regarding ongoing plastics treaty issues specific to the nonwovens industry, and engaging with other UN processes with our new status as an accredited stakeholder.”

INDA, the Association of the Nonwoven Fabrics Industry, was granted status last month as an accredited stakeholder with the United Nations Environment Programme (UNEP), which, among other privileges, will allow representatives from the association to observe the formal ongoing negotiations of the UN Global Plastics Treaty. INDA Government Affairs Director Wes Fisher was on site at the second session of the treaty negotiations formally titled the “second session of the Intergovernmental Negotiating Committee to develop an international legally binding instrument on plastic pollution, including in the marine environment.” The negotiations took place from 29 May to 2 June 2023 at the United Nations Educational, Scientific and Cultural Organization (UNESCO) Headquarters in Paris, France.

“We are excited to continue to enhance the capacity of INDA’s government affairs department to better serve the industry on a global scale,” stated Fisher. “We look forward to working with the UNEP to provide technical input regarding ongoing plastics treaty issues specific to the nonwovens industry, and engaging with other UN processes with our new status as an accredited stakeholder.”

Accreditation provides non-governmental organizations with observer status to the United Nations Environment Assembly, UNEP, and its subsidiaries. Accreditation will bring many advantages to INDA with respect to participation in the work of UNEP’s Governing Bodies, such as the United Nations Environment Assembly of UNEP and the Committee of Permanent Representatives.

UN Global Plastics Treaty negotiations have garnered significant attention from both industry and environmental groups. At least three more negotiation sessions are expected with the goal of finalizing a treaty by the end of 2024.

Photo: pixabay
21.06.2023

Bangladesh to stage climate event for fashion and textiles

Bangladesh will stage the world’s first climate conference for the fashion industry this autumn, on 12 October. The Bangladesh Climate Action Forum will convene policy makers, garment manufacturers, fashion retailers and other industry stakeholders to look at solutions for decarbonising global textile supply chains.

The event will focus on technological and financial challenges around reducing emissions. Most of the world’s leading fashion brands have now set ambitious targets for reducing supply chain emissions. These targets relate to 2030 by which time many brands aim to reduce emissions by 50 per cent, and 2050 where most fashion brands aim to be carbon neutral.

The Bangladesh Climate Forum Action will examine causes of climate crisis, its urgency, impacts we have already seen, and what we can expect under both businesses as usual and rapid decarbonisation scenarios.

Bangladesh will stage the world’s first climate conference for the fashion industry this autumn, on 12 October. The Bangladesh Climate Action Forum will convene policy makers, garment manufacturers, fashion retailers and other industry stakeholders to look at solutions for decarbonising global textile supply chains.

The event will focus on technological and financial challenges around reducing emissions. Most of the world’s leading fashion brands have now set ambitious targets for reducing supply chain emissions. These targets relate to 2030 by which time many brands aim to reduce emissions by 50 per cent, and 2050 where most fashion brands aim to be carbon neutral.

The Bangladesh Climate Forum Action will examine causes of climate crisis, its urgency, impacts we have already seen, and what we can expect under both businesses as usual and rapid decarbonisation scenarios.

Also presenting at the event will be the Government of Bangladesh, which will address Bangladesh’s actions to mitigate the impacts of the climate crisis. Bangladesh is particularly vulnerable to climate change and is ranked the seventh extreme disaster risk-prone country in the world according to a report from the Global Climate Risk Index 2021. Tropical cyclones, tornadoes, floods, coastal and riverbank erosion, droughts and landslides are the major climate-induced hazards in Bangladesh.

The Bangladesh Climate Forum Action will also look at approaches towards decarbonization, including NetZero goals and timelines. Speakers will discuss globally recognised pathways for electricity/transportation/industry decarbonisation.

Renewable energy will also be under discussion. If fashion brands are to hit climate targets, it is imperative that supply chains switch to renewable energy and away from gas and fossil fuels. The event will look at challenges around the de-carbonisation of the electricity grid in Bangladesh, as well as the rate of transition toward renewable resources by garment factories, including solar power.

A key element of the event will be evaluation of practical solutions for Bangladesh’s RMG industry. It will profile specific solutions such as energy efficiency, machine upgrades, the electrification of thermal loads, direct power purchase agreements and biomass fed thermal systems. It will also discuss the challenges faced in the industry including business climate (and cycles), pricing, financing challenges, target setting and execution, policy opportunities, knowledge gaps and availability/scaling of solutions.

Financial challenges around decarbonisation of supply chains are significant, and it is far from clear who will pay for the technological upgrades required. While some investment support systems exist – such as lower interest financing – these are not always available, accessible or affordable for the majority of the RMG companies.

The event will explore financial options, changes to business/pricing models, opportunities for de-risking/underwriting investments, direct investment and other tools that need to emerge to address financial challenges and plug the funding gap. The event will also explore opportunities to decouple climate action from business cycles so that the 2030 targets can be met.

Source:

Bangladesh Apparel Exchange

21.06.2023

Renewcell achieves Recycled Claim Standard certification

CIRCULOSE® production at Renewcell 1, Ortviken has been certified to Recycled Claim Standard (RCS) version 2.0. The RCS is an international, voluntary standard that sets requirements for third-party certification of recycled input and chain of custody. The primary goal of the RCS is to increase the use of recycled materials.

Building off previous RCS certification of the CIRCULOSE® pulp at the Kristinehamn recycling plant, this achievement further solidifies Renewcell’s mission to change the global textile industry and make it circular and sustainable.

The CIRCULOSE® pulp process conforms to the RCS 100 standard developed by Textile Exchange, a global non-profit organization advancing preferred fibers and materials.

A recycled content claim can only be made for materials that have been recovered or otherwise diverted from the solid waste stream. The certification process requires partners to comply with standards at every step of the supply chain, starting with the raw material (or recycling) suppliers and ending with the end seller in a business-to-consumer transaction.

CIRCULOSE® production at Renewcell 1, Ortviken has been certified to Recycled Claim Standard (RCS) version 2.0. The RCS is an international, voluntary standard that sets requirements for third-party certification of recycled input and chain of custody. The primary goal of the RCS is to increase the use of recycled materials.

Building off previous RCS certification of the CIRCULOSE® pulp at the Kristinehamn recycling plant, this achievement further solidifies Renewcell’s mission to change the global textile industry and make it circular and sustainable.

The CIRCULOSE® pulp process conforms to the RCS 100 standard developed by Textile Exchange, a global non-profit organization advancing preferred fibers and materials.

A recycled content claim can only be made for materials that have been recovered or otherwise diverted from the solid waste stream. The certification process requires partners to comply with standards at every step of the supply chain, starting with the raw material (or recycling) suppliers and ending with the end seller in a business-to-consumer transaction.

Source:

Re:NewCell AB

21.06.2023

Fashion for Good welcomes new partners to its Sorting for Circularity USA Project

The Sorting for Circularity USA consortium project welcomes new partners and expands its North American geographical scope. Fashion for Good is pleased to announce the addition of lululemon as an external brand partner, joining the existing seven brand partners. They also welcome their new implementation partners Helpsy, United Southern Waste Material, Goodwill Industries International Inc., and its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Additionally, Fashion for Good is pleased to recognise adidas as the project's lead sponsor, facilitating the complete realisation of the project scope.

The Sorting for Circularity USA consortium project welcomes new partners and expands its North American geographical scope. Fashion for Good is pleased to announce the addition of lululemon as an external brand partner, joining the existing seven brand partners. They also welcome their new implementation partners Helpsy, United Southern Waste Material, Goodwill Industries International Inc., and its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Additionally, Fashion for Good is pleased to recognise adidas as the project's lead sponsor, facilitating the complete realisation of the project scope.

Fashion for Good, together with Resource Recycling Systems, launched the Sorting for Circularity USA consortium project in January 2023. The project will conduct an extensive consumer survey to map the journey of a garment from closet to end of use, and present a comprehensive snapshot of textile waste composition generated in the United States. The insights gained from this 18-month project will help to scale collection, sorting, and recycling innovations and inform decisions on necessary investments and actions.

Within the first 6 months, the project has expanded to cover 6 key states: California, Texas, Florida, New York, New Jersey and Colorado. Additional implementation partners have also signed on to support the fibre composition data analysis: Secondary Materials and Recycled Textiles (SMART) Association, Helpsy, United Southern Waste Material, and Goodwill Industries International Inc., with its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Resource Recycling Systems will drive the dissemination and analysis of the consumer survey together with New York State Center for Sustainable Materials Management and Syracuse University Center for Sustainable Community Solutions, and execute the textile composition analysis using Matoha’s near infrared devices with advisory support from Circle Economy.

Demonstrating the importance of pre-competitive collaboration in tackling the industry’s biggest challenges, lululemon joins Eastman, H&M and Nordstrom as key project partners, together with Fashion for Good corporate partners adidas, Inditex, Levi Strauss & Co., and Target. Adidas' lead sponsorship ensures a deeper analysis of USA textile waste infrastructure and the identification of valuable opportunities for advancement.

In the USA, textile waste is the fastest-growing segment of the country's waste stream, with 85% of discarded textiles ending up in landfills*. Understanding the composition of material, volume and location of used textiles is crucial for capturing them and sorting them for the best and highest quality end use. Moreover, the range of national and regional geographies within the Sorting for Circularity project series enables for nuanced cross-country comparisons - revealing differences in the textile waste generated and infrastructure required.

Sorting for Circularity, a framework co-developed by Fashion for Good and Circle Economy, aims to (re)capture textile waste by unlocking the feedstock potential for recycling, expedite the implementation of game changing automated sorting technologies such as near-infrared spectroscopy and advanced textile-to-textile recycling, and drive circularity within the fashion value chain. The project builds on the success of Sorting for Circularity Europe and India, which revealed insights on material composition, volume, and location of used textiles and provided a solid foundation to accelerate textile recycling in those respective geographical locations.

*United States Environmental Protection Agency (2019). National Overview: Facts and Figures on Materials, Wastes and Recycling.

Source:

Fashion for Good 

Dr. Dirk Textor, Vorsitzender des bvse-Fachverband Kunststoffrecycling Foto bvse
Dr. Dirk Textor, Vorsitzender des bvse-Fachverband Kunststoffrecycling
21.06.2023

bvse: "Brutaler Preiskampf zwischen Neuware und Kunststoffrecyclaten"

"Der Markt für Altkunststoffe und Recyclate steckt in einer tiefen Krise. Die Nachfrage ist niedrig, die Produktion wird eingeschränkt oder stillgelegt und der Lagerbestand wächst stetig", erklärte Dr. Dirk Textor, Vorsitzender des bvse-Fachverband Kunststoffrecycling Anfang Juni beim 25. Internationalen Altkunststofftag in Dresden.

Im Pressegespräch berichtet er von einem brutalen Preiskampf der zwischen Neuware und Kunststoffrecyclaten tobt. Derzeit verdränge die billige Neuware die Recyclate auf allen Ebenen. Der Absatz von Mahlgütern, Regranulaten und Compounds stockt. Textor: "Die Kunststoffrecycler laufen im Input mit Verarbeitungsware voll und finden für ihre Produkte im Warenausgang keine Abnehmer."

"Der Markt für Altkunststoffe und Recyclate steckt in einer tiefen Krise. Die Nachfrage ist niedrig, die Produktion wird eingeschränkt oder stillgelegt und der Lagerbestand wächst stetig", erklärte Dr. Dirk Textor, Vorsitzender des bvse-Fachverband Kunststoffrecycling Anfang Juni beim 25. Internationalen Altkunststofftag in Dresden.

Im Pressegespräch berichtet er von einem brutalen Preiskampf der zwischen Neuware und Kunststoffrecyclaten tobt. Derzeit verdränge die billige Neuware die Recyclate auf allen Ebenen. Der Absatz von Mahlgütern, Regranulaten und Compounds stockt. Textor: "Die Kunststoffrecycler laufen im Input mit Verarbeitungsware voll und finden für ihre Produkte im Warenausgang keine Abnehmer."

Eine Besserung dieser Situation sei derzeit nicht in Sicht. Man befürchte, dass der dauerhafte wirtschaftliche Betrieb der Recyclinganlagen kaum noch möglich sei. Dabei verweist Textor auch auf die kürzlich erfolgten Werksschließungen, wie zum Beispiel der Veolia PET Germany in Rostock oder der FVH Folienveredelung in Schwerin. "Wir sehen eine bedrohliche Situation, die das gesamte Recycling gefährdet." Textor erklärte, dass Recyclinganlagen kontinuierlich betrieben werden müssen, um die benötigten Mengen in geeigneten Qualitäten darstellen zu können. Man dürfe nicht annehmen, dass einmal stillgelegte Anlagen innerhalb kurzer Zeit wieder hochgefahren werden können.

Verschiedene Gründe führten zu der gegenwärtig Situation: Hier nannte Textor insbesondere den Preisverfall der Neuware. Diesen Preisverfall können die Recyclathersteller aufgrund der höheren Prozesskosten nicht mitgehen. Hohe Kosten für Energie und Transport, gestiegene Löhne und Nebenkosten, wie Versicherungen, Wartung, Ersatzteile, Maschinen und Anlagen, seien kaum mehr zu verkraften.

Hauptverantwortlich für die Misere sei jedoch ein anderer Grund. Dr. Dirk Textor: "Die Unternehmen der kunststoffverarbeitende Industrie setzen auf billige Neuware mit großem CO2-Rucksack und pfeifen auf die klimafreundlichen Recyclate. Wir erwarten daher, dass sich alle Beteiligten der Kunststoffkette endlich ihrer Verantwortung stellen. Hier sind in erster Linie die Kunststoffverarbeiter, Verpacker und Inverkehrbringer in der Pflicht. Recyclate sind ein integraler Bestandteil der Kunststoffherstellung und der Kunststoffverarbeitung. Die kunststoffverarbeitenden Unternehmen sollten aus purem Eigeninteresse sehr genau ihr derzeitiges Marktverhalten überprüfen und sich schleunigst auf den Weg zu mehr Kreislaufwirtschaft und Klimaschutz machen", forderte der Vorsitzende des bvse-Fachverband Kunststoffrecycling.

Source:

bvse

19.06.2023

AkzoNobel launches online energy savings calculator for powder coatings

An openly accessible online energy savings calculator for all users of powder coatings has been launched by AkzoNobel.

All powder coatings customers can instantly calculate the energy and carbon reduction they could achieve with the company’s Interpon products and related services.

It's the latest example of how the company is continuing to work towards its ambition of reducing carbon emissions across the full value chain by 50% by 2030. “Sustainability is critical for all of us and helping customers to reduce energy is one of the many ways we can work with – and for – them in order to meet our shared ambitions,” says Jeff Jirak, Director of AkzoNobel’s Powder Coatings business.

An openly accessible online energy savings calculator for all users of powder coatings has been launched by AkzoNobel.

All powder coatings customers can instantly calculate the energy and carbon reduction they could achieve with the company’s Interpon products and related services.

It's the latest example of how the company is continuing to work towards its ambition of reducing carbon emissions across the full value chain by 50% by 2030. “Sustainability is critical for all of us and helping customers to reduce energy is one of the many ways we can work with – and for – them in order to meet our shared ambitions,” says Jeff Jirak, Director of AkzoNobel’s Powder Coatings business.

To make using the tool as easy as possible, the calculator – currently only available in Europe – is supported by a detailed guide, which helps customers better understand how even making small changes in the powder coating process can have a big impact in terms of becoming more energy efficient. These include checking for leakages in compressed air systems, improving insulation and ensuring all process equipment is regularly serviced and maintained. Customers also receive expert support from Interpon’s technical service team.

Source:

AkzoNobel

(c) adidas AG
19.06.2023

Over one million people came together to adidas’ Move For The Planet

Over 1.2 million people came together to Move For The Planet, a new global initiative by adidas that harnessed the collective activity of sporting communities across the world.

Over 173 million active minutes were tracked overall across countries in the adidas Running app with adidas pledging to donate €1 to Common Goal for every 10 minutes of activity logged across 34 sports between June 1-12 – up to €1.5m.

The contributions will support projects around the globe that educate and engage communities through sport. One such organisation selected by adidas and Common Goal is the ISF Cambodia (ISF), a charity with 16 years of experience using education and sport to change lives.

The specific project will enable the installation of solar panels to light their football fields – creating safer spaces for girls and the wider community to practice in whilst at the same time, using renewable energy.

Over 1.2 million people came together to Move For The Planet, a new global initiative by adidas that harnessed the collective activity of sporting communities across the world.

Over 173 million active minutes were tracked overall across countries in the adidas Running app with adidas pledging to donate €1 to Common Goal for every 10 minutes of activity logged across 34 sports between June 1-12 – up to €1.5m.

The contributions will support projects around the globe that educate and engage communities through sport. One such organisation selected by adidas and Common Goal is the ISF Cambodia (ISF), a charity with 16 years of experience using education and sport to change lives.

The specific project will enable the installation of solar panels to light their football fields – creating safer spaces for girls and the wider community to practice in whilst at the same time, using renewable energy.

In addition to the solar panels, together with Football for Future and Common Goal, adidas is facilitating education on environmental sustainability through sport for ISF with a focus on helping the organization to raise awareness of environmental action in the community.

This will complement ISF workshops on environmental protection, the use of single use-plastic and waste management processes, enabling the children and young adults involved to be positive role models for their community.

Move For The Planet is part of adidas’ wider sustainability initiatives as the company continues its mission to make what’s best for the athlete. Earlier this year, adidas announced that it is ahead of schedule in its journey to replace virgin polyester with recycled polyester in its products wherever possible by the end of 2024. In 2022, 96% of all the polyester adidas used was recycled.

Source:

adidas AG

Photo: Pulcra Chemicals
19.06.2023

Pulcra Chemicals and Inditex develop Dyeing Process

Pulcra Chemicals and Inditex develop Sustineri Coloring, a combined pretreatment and dyeing process for cotton and polyester/cotton resulting in water, time and energy savings. This process is the result of a joint research between Pulcra Chemicals and Inditex with the goal to mitigate the impact of standard dyeing processes and to reduce the use of natural resources.

Sustineri Coloring is based on newly engineered process chemicals which allow a one bath pretreatment and dyeing process for dark, medium and light shades of cotton and polyester/cotton fabrics by exhaust method. This results in shorter processing time and less use of water and energy.

The process is already used by selected mills and it showed that Sustineri Coloring is reducing in pretreatment and dyeing the processing time by up to 60 % and the water and energy consumption by up to 80 and 60% respectively. The state-of-the-art products allow a one bath treatment which is the key in saving resources.

Pulcra Chemicals and Inditex develop Sustineri Coloring, a combined pretreatment and dyeing process for cotton and polyester/cotton resulting in water, time and energy savings. This process is the result of a joint research between Pulcra Chemicals and Inditex with the goal to mitigate the impact of standard dyeing processes and to reduce the use of natural resources.

Sustineri Coloring is based on newly engineered process chemicals which allow a one bath pretreatment and dyeing process for dark, medium and light shades of cotton and polyester/cotton fabrics by exhaust method. This results in shorter processing time and less use of water and energy.

The process is already used by selected mills and it showed that Sustineri Coloring is reducing in pretreatment and dyeing the processing time by up to 60 % and the water and energy consumption by up to 80 and 60% respectively. The state-of-the-art products allow a one bath treatment which is the key in saving resources.

Source:

Pulcra Chemicals

(c) Messe Düsseldorf GmbH
19.06.2023

A+A Expert Talk: Focus on sustainability and the circular economy

  • The A+A Expert Talks head into their third round

On 20 June 2023 between 10.00 am and 11.30 am experts from the fields of sustainability, circular economy, environmental protection as well as corporate fashion and product management will be presenting lectures and discussing the topics of sustainability in supply chains, standardisation and quality seals as well as the associated challenges and solutions in cooperation with German Fashion. They will thereby provide a platform for the exchange of knowledge, experience and innovative approaches.

The focus on sustainability and the circular economy reflects the growing relevance of these topics in the world of work. More and more companies recognise the need to make their business practices more sustainable and optimise the use of resources.

This Expert Talk will be presented by Irina Olm, In-House Lawyer & Counsel of GermanFashion Modeverband Deutschland e.V. and Expert for Circular Economy and CSR, who will contribute her know-how on the European level.  

  • The A+A Expert Talks head into their third round

On 20 June 2023 between 10.00 am and 11.30 am experts from the fields of sustainability, circular economy, environmental protection as well as corporate fashion and product management will be presenting lectures and discussing the topics of sustainability in supply chains, standardisation and quality seals as well as the associated challenges and solutions in cooperation with German Fashion. They will thereby provide a platform for the exchange of knowledge, experience and innovative approaches.

The focus on sustainability and the circular economy reflects the growing relevance of these topics in the world of work. More and more companies recognise the need to make their business practices more sustainable and optimise the use of resources.

This Expert Talk will be presented by Irina Olm, In-House Lawyer & Counsel of GermanFashion Modeverband Deutschland e.V. and Expert for Circular Economy and CSR, who will contribute her know-how on the European level.  

Benjamin Helfritz, Head of Quality in Digital and Green Transformation, DIN – German Institute for Standardisation, will introduce participants to the new standards for the Green Transition.  
The Digital Product Passport (DPP) is needed for both the green and digital transition. However, it will only achieve its full added value if interoperability is ensured between existing and emerging systems. The use of the DPP promotes more sustainability and digital progress.

Henk Vanhoutte, Secretary General, European Safety Federation (ESF) and Lucia Mendori, Regulatory Affairs Associate / Chair ESF Working Group Sustainability will present practical examples and concrete application factors for sustainable PPE as well as solutions for sustainable jobwear. They will provide an overview of survey results from their members regarding various sustainability aspects – pointing to how the industry is treating this important topic but also flagging up the limits to the sustainability of PPE.

Lena Bay Høyland, Product Director of the Swedish workwear manufacturer Fristads Kansas will share the sustainability strategy of her company which has committed to minimise its environmental impact by targets and effective measures. The progress made by Fristads Kansas was measured using concrete figures and audits. This is a use case highlighting the innovations and challenges associated with sustainable jobwear.

By organising the Expert Talks the leading international trade fair A+A jointly with its strategic partners from the German Federal Association for Occupational Safety and Health (Basi), Fraunhofer IPA, German Fashion (Modeverband Deutschland e.V.), DGUV (Germany Statutory Accident Insurance), BAuA (Federal Agency for Occupational Safety and Health), BMAS (Ministry of Labour and Social Affairs), IVPS Interessenverbund Persönliche Schutzausrüstung e.V. (PPE Stakeholder Association) as well as IFA (Institute for Occupational Safety) will provide its community with a networking and information platform.

(c) Sappi Europe
19.06.2023

Sappi Gratkorn’s increases share of renewable energy

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

“Our 2025 roadmap identifies the path we have embarked on towards a carbon-neutral future,” explains Sarah Price, Director Sustainability of Sappi Europe. The objective is to reduce emissions of specific greenhouse gases (Scope 1 and 2) by 25 per cent and to increase the share of renewable energy in Europe to 50 per cent by 2025 (compared to 2019). Additionally, Sappi’s 2030 science-based target is to reduce carbon emissions by 41.5% per ton of product. “We’re already making good progress towards these targets, with a large number of projects already well-underway or completed”.

Source:

Sappi Europe

(c) Autoneum
16.06.2023

Autoneum: Sustainable sound absorption for underbody shields

Silence and resource efficiency are the order of the day in the development and optimization of electric vehicles. On the one hand, ever stricter emissions regulations worldwide are increasing demand for components that reduce noise pollution while helping vehicle manufacturers meet their sustainability targets. On the other hand, the absence of noise from the combustion engine in e-cars amplifies the disruptive effects of other noise sources in the passenger compartment. With Ultra-
Silent Tune, Autoneum now presents a new lightweight and environmentally friendly technology for underbody shields that reduces tire rolling noise both outside and inside the vehicle, thus improving not only acoustic performance but also driver comfort in electric cars.

Silence and resource efficiency are the order of the day in the development and optimization of electric vehicles. On the one hand, ever stricter emissions regulations worldwide are increasing demand for components that reduce noise pollution while helping vehicle manufacturers meet their sustainability targets. On the other hand, the absence of noise from the combustion engine in e-cars amplifies the disruptive effects of other noise sources in the passenger compartment. With Ultra-
Silent Tune, Autoneum now presents a new lightweight and environmentally friendly technology for underbody shields that reduces tire rolling noise both outside and inside the vehicle, thus improving not only acoustic performance but also driver comfort in electric cars.

Autoneum's Ultra-Silent Tune technology owes its sound-absorbing performance to acoustic chambers of different shapes and sizes. The chambers are created by applying an embossed polyester foil to the side of the Ultra-Silent underbody shield facing away from the noise source: they capture the sound waves emitted by the car tires, modulate them according to their respective geometry and reflect them back onto the porous carrier material. Compared to conventional single-layer underbody shields, whose acoustic performance is mainly determined by the noise-reducing properties of the product side facing the tires, Ultra-Silent Tune exploits both sides of the component, which significantly improves its acoustic absorption. Autoneum thus makes innovative use of the proven concept of traditional chamber absorbers, reducing exterior tire rolling noise.

Moreover, Ultra-Silent Tune combines optimized acoustic performance with the sustainability benefits of Autoneum's Pure technology Ultra-Silent. In addition to the high proportion of recycled PET fibers, underbody shields made from Ultra-Silent Tune can be manufactured from 100% polyester and thus be fully recycled at the end of vehicle life. Furthermore, the thickness of the multilayer construction can be flexibly adapted to the packaging spaces of different vehicle models. Underbody shields made from Autoneum's new Ultra-Silent Tune technology are already in pre-development at various vehicle manufacturers in Europe.

Source:

Autoneum Management AG

(c) ITM/TUD
Herr Philipp Weigel, Preisträger des ITMA Sustainable Innovation Award - Research & Innovation Excellence  Award, auf dem Messestand des ITM auf der ITMA 2023
16.06.2023

Philipp Weigel erhält 1. Preis des ITMA Research & Innovation Excellence Award

Im Rahmen der diesjährigen ITMA 2023, der internationalen Textilmaschinenausstellung und Plattform für die gesamte Textilmaschinenbranche, die vom 08. bis 14. Juni 2023 in Mailand stattfand, wurde Herr Dipl.-Ing. Philipp Weigel für seine am ITM angefertigte exzellente Studienarbeit "Numerische Simulation des Struktur- und Auszugverhaltensparametrisch generierter profilierter Carbonpolymergarne" mit dem ITMA Sustainable Innovation Award in der Kategrie "Research & Innovation Excellence Award" ausgezeichnet. Er erhielt hierfür den 1. Preis, der mit 10.000 EUR dotiert ist.
 
Die Arbeit ist von großem wissenschaftlichen Interesse für die Entwicklung hochleistungsfähiger, ressourcenschonender Carbonbetonbauteile mit höchster Materialeffizienz und Nachhaltigkeit sowie für die simulative Beschreibung und digitale Auslegung der Bewehrungsstruktur.

CEMATEX-Präsident Ernesto Maurer überreichte das Preisgeld und Urkunde an die glücklichen Gewinner:nnen während der ITMA 2023 in Mailand, Italien.

Der 2. und 3. Preis ging an Absolventen des Instituts für Textiltechnik der RWTH Aachen.

Im Rahmen der diesjährigen ITMA 2023, der internationalen Textilmaschinenausstellung und Plattform für die gesamte Textilmaschinenbranche, die vom 08. bis 14. Juni 2023 in Mailand stattfand, wurde Herr Dipl.-Ing. Philipp Weigel für seine am ITM angefertigte exzellente Studienarbeit "Numerische Simulation des Struktur- und Auszugverhaltensparametrisch generierter profilierter Carbonpolymergarne" mit dem ITMA Sustainable Innovation Award in der Kategrie "Research & Innovation Excellence Award" ausgezeichnet. Er erhielt hierfür den 1. Preis, der mit 10.000 EUR dotiert ist.
 
Die Arbeit ist von großem wissenschaftlichen Interesse für die Entwicklung hochleistungsfähiger, ressourcenschonender Carbonbetonbauteile mit höchster Materialeffizienz und Nachhaltigkeit sowie für die simulative Beschreibung und digitale Auslegung der Bewehrungsstruktur.

CEMATEX-Präsident Ernesto Maurer überreichte das Preisgeld und Urkunde an die glücklichen Gewinner:nnen während der ITMA 2023 in Mailand, Italien.

Der 2. und 3. Preis ging an Absolventen des Instituts für Textiltechnik der RWTH Aachen.

Der ITMA Sustainable Innovation Award wurde von CEMATEX ins Leben gerufen, um die gemeinsamen Anstrengungen der globalen Textilindustrie zur Förderung der Nachhaltigkeit von Unternehmen durch innovative Lösungen und zur Förderung herausragender branchenspezifischer Forschung zu würdigen.
Der Preis umfasst zwei Kategorien: einen Industry Excellence Award für Textil- und Bekleidungshersteller und einen Research & Innovation Excellence Award, der für Master-Studenten offen ist.

Source:

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) - TU Dresden

(c) HUGO BOSS
14.06.2023

HeiQ launches new BOSS x HeiQ AeoniQ™ Polo Shirt

HeiQ announces the next launch of the previously ISPO-awarded BOSS x HeiQ AeoniQ™ polo shirt during the BOSS OPEN tennis tournament in Stuttgart.

The BOSS x HeiQ AeoniQ™ polo shirt is crafted from 87% HeiQ AeoniQ™, a cellulosic yarn derived from certified wood pulp with performance attributes rivaling polyester fabrics’. This seamless garment, manufactured in Europe and born from a collaboration between HUGO BOSS and Swiss innovator HeiQ, is as disruptive as its cellulosic fibers. The polo shirt is available for purchase in the BOSS OPEN pop-up store, as well as online.

The first BOSS x HeiQ AeoniQ™ polo shirt has just been acknowledged with the ISPO AWARD 2023, setting new standards in the field of more sustainable performance apparel.

HeiQ announces the next launch of the previously ISPO-awarded BOSS x HeiQ AeoniQ™ polo shirt during the BOSS OPEN tennis tournament in Stuttgart.

The BOSS x HeiQ AeoniQ™ polo shirt is crafted from 87% HeiQ AeoniQ™, a cellulosic yarn derived from certified wood pulp with performance attributes rivaling polyester fabrics’. This seamless garment, manufactured in Europe and born from a collaboration between HUGO BOSS and Swiss innovator HeiQ, is as disruptive as its cellulosic fibers. The polo shirt is available for purchase in the BOSS OPEN pop-up store, as well as online.

The first BOSS x HeiQ AeoniQ™ polo shirt has just been acknowledged with the ISPO AWARD 2023, setting new standards in the field of more sustainable performance apparel.

More information:
HeiQ Hugo Boss Shirt Ispo Award
Source:

HeiQ

12.06.2023

Circular Polymers by Ascend launches Cerene™

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

“Customers around the globe are seeking consistent and reliable post-consumer recycled materials,” said Maria Field, business director of Circular Polymers by Ascend. “Cerene is mechanically recycled using a process that minimizes our carbon footprint and environmental impact.”

Circular Polymers by Ascend converts post-consumer carpet into fiber and pellets. The company uses a proprietary process in its California-based facilities to achieve high efficiency in recycling, successfully providing a new life for virtually every component of the carpet and backing. The company has redirected 85 million pounds of carpet from landfills into new goods since 2018.

Source:

Circular Polymers by Ascend

09.06.2023

Archroma and COLOURizd™ collaborate to make fashion more sustainable

Archroma, a leader in specialty chemicals towards sustainable solutions, is teaming up with COLOURizd™, an innovator specializing in sustainable textile dyeing technologies, to set a new standard for the eco-friendlier production of sustainable textiles.

The new collaboration will enable fabric mills and brands to combine Archroma pigment coloration solutions with the COLOURizd™ QuantumCOLOUR™ yarn-coloring technology to produce high-quality, high-performance textiles with maximum consumer appeal and minimal environmental impact.

Conventional fiber-reactive methods of dyeing cellulosic and synthetic yarns are multi-step resource-intensive processes that use up to 95 liters of water per kilograms of colored yarn and discharge approximately 94 liters of effluent.

Archroma, a leader in specialty chemicals towards sustainable solutions, is teaming up with COLOURizd™, an innovator specializing in sustainable textile dyeing technologies, to set a new standard for the eco-friendlier production of sustainable textiles.

The new collaboration will enable fabric mills and brands to combine Archroma pigment coloration solutions with the COLOURizd™ QuantumCOLOUR™ yarn-coloring technology to produce high-quality, high-performance textiles with maximum consumer appeal and minimal environmental impact.

Conventional fiber-reactive methods of dyeing cellulosic and synthetic yarns are multi-step resource-intensive processes that use up to 95 liters of water per kilograms of colored yarn and discharge approximately 94 liters of effluent.

In contrast, the innovative QuantumCOLOUR™ process injects pigment and a binder directly into the yarn, using only 0.95 liters of water per kilograms of colored yarn while producing zero effluent. This represents an unprecedented reduction of 98% in water consumption alongside zero wastewater discharge, zero discharge of harmful chemicals, 73% decrease in carbon footprint and 50% reduction in energy use.*

With Archroma, textile manufacturers and apparel brands can add further value to the QuantumCOLOUR™ process with tailor-made system solutions, including JUST COLOR. This formaldehyde-free** pigment coloration system is based on Archroma’s revolutionary Printofix® pigment dispersions and Helizarin® binders to deliver exceptionally soft fabrics with high fastness and durability, while also enabling energy and chemical savings and higher productivity.

* As tested by Peterson Control Union
** Below limits of detection according to industry standard test methods

Source:

Archroma

(c) TfS
07.06.2023

SCTI™ and TfS collaborate to accelerate sustainability journey

Sustainable Chemistry for the Textile Industry (SCTI™) and Together for Sustainability (TfS) are teaming up to support and accelerate the leather and textile industry's sustainability journey through sustainable chemistry. Together they will collaborate in driving convergence in standards and methodologies and inspire industry action for a better future.

SCTI is an alliance of leading chemical companies that strives to empower the textile and leather industries to apply sustainable, state-of-the-art chemistry solutions that protect factory workers, local communities, consumers and the environment.

TfS is a member-driven initiative, raising Corporate Social Responsibility (CSR) standards throughout the chemical industry. TfS members are chemical companies committed to making sustainability improvements within their own – and their suppliers’ – operations. TfS has also launched a comprehensive program to foster defossilization of chemical value chains, providing standardization tools to enable effective Scope 3 management based on primary data and launching the TfS Guideline to determine Product Carbon Footprint (PCF).

Sustainable Chemistry for the Textile Industry (SCTI™) and Together for Sustainability (TfS) are teaming up to support and accelerate the leather and textile industry's sustainability journey through sustainable chemistry. Together they will collaborate in driving convergence in standards and methodologies and inspire industry action for a better future.

SCTI is an alliance of leading chemical companies that strives to empower the textile and leather industries to apply sustainable, state-of-the-art chemistry solutions that protect factory workers, local communities, consumers and the environment.

TfS is a member-driven initiative, raising Corporate Social Responsibility (CSR) standards throughout the chemical industry. TfS members are chemical companies committed to making sustainability improvements within their own – and their suppliers’ – operations. TfS has also launched a comprehensive program to foster defossilization of chemical value chains, providing standardization tools to enable effective Scope 3 management based on primary data and launching the TfS Guideline to determine Product Carbon Footprint (PCF).

Both TfS and SCTI share the mission to drive transformational change, and intend to collaborate on advancing the industry’s sustainability goals, leveraging the TfS Scope 3 greenhouse gas emissions (GHG) program.

Source:

Sustainable Chemistry for the Textile Industry (SCTI™) / Together for Sustainability (TfS)

© Fraunhofer UMSICHT
Im Projekt Power2C4 haben die Forschenden u.a. ein neues Katalysatorsystem auf Basis eines synthetischen Saponiten identifiziert und anschließend synthetisiert.
06.06.2023

Nachhaltigere und emissionsärmere Syntheseroute für Polymere

Butadien ist eine wichtige Plattformchemikalie, um Polymere – u.a. für die Produktion von Autoreifen – herzustellen. Bislang wird das Monomer aber meist auf Basis von Erdöl gewonnen. Eine alternative Syntheseroute haben Forschende des Fraunhofer UMSICHT im Rahmen des Projektes Power2C4 untersucht. Im Fokus: ein katalytisches Verfahren unter Einsatz regenerativ erzeugten Stroms.

»Butadien spielt eine wichtige Rolle bei der Herstellung von Polymeren«, ordnet UMSICHT-Wissenschaftler Marc Greuel ein. Neben Polybutadien, das in Autoreifen Anwendung findet, können Polytetrahydrofuran (PTHF), Polybutylenterephtalat (PBT) und Polybutylensuccinat (PBS) aus dem Monomer erzeugt werden. »Der Haken: Aktuell wird Butadien zu 95 Prozent als Nebenprodukt beim thermischen Zersetzen von Rohbenzin zu Ethen gewonnen – unter Ausstoß von Kohlendioxid. Zudem werden die Preise für Butadien perspektivisch ansteigen, da sich die Rohstoffbasis für Ethen immer mehr in Richtung Schiefergas verschiebt und dadurch die Produktionskapazität für Butadien sinkt.« Das Interesse an einem alternativen Herstellungsprozess ist also nicht nur aus Klimaschutzgründen groß.

Butadien ist eine wichtige Plattformchemikalie, um Polymere – u.a. für die Produktion von Autoreifen – herzustellen. Bislang wird das Monomer aber meist auf Basis von Erdöl gewonnen. Eine alternative Syntheseroute haben Forschende des Fraunhofer UMSICHT im Rahmen des Projektes Power2C4 untersucht. Im Fokus: ein katalytisches Verfahren unter Einsatz regenerativ erzeugten Stroms.

»Butadien spielt eine wichtige Rolle bei der Herstellung von Polymeren«, ordnet UMSICHT-Wissenschaftler Marc Greuel ein. Neben Polybutadien, das in Autoreifen Anwendung findet, können Polytetrahydrofuran (PTHF), Polybutylenterephtalat (PBT) und Polybutylensuccinat (PBS) aus dem Monomer erzeugt werden. »Der Haken: Aktuell wird Butadien zu 95 Prozent als Nebenprodukt beim thermischen Zersetzen von Rohbenzin zu Ethen gewonnen – unter Ausstoß von Kohlendioxid. Zudem werden die Preise für Butadien perspektivisch ansteigen, da sich die Rohstoffbasis für Ethen immer mehr in Richtung Schiefergas verschiebt und dadurch die Produktionskapazität für Butadien sinkt.« Das Interesse an einem alternativen Herstellungsprozess ist also nicht nur aus Klimaschutzgründen groß.

Die Frage, wie eine nachhaltigere, emissionsärmere und auch günstige Syntheseroute aussehen kann, stand im Zentrum des Projektes Power2C4. Angesiedelt im Kompetenzzentrum »Virtuelles Institut – Strom zu Gas und Wärme« hat es Expertinnen und Experten des Fraunhofer UMSICHT, des Gas- und Wärme-Instituts Essen e.V., des Energiewirtschaftlichen Instituts an der Universität zu Köln, des Forschungszentrums Jülich, der Ruhr-Universität Bochum, des Wuppertal-Instituts und des ZBT Duisburg zusammengeführt. Ihre Zielsetzung: Flexibilitätsoptionen vor dem Hintergrund der Energiewende zu untersuchen. Im Fokus des Teilprojekts Power2C4 stand ein neues katalytisches Herstellungsverfahren unter Einsatz regenerativ erzeugten Stroms. Ausgangspunkt ist Ethanol, das zum Beispiel im Zuge einer Hydrierungsreaktion aus CO2 und elektrolytisch erzeugtem Wasserstoff gewonnen wird. Dieses Ethanol dient in einem zweiten Schritt zur Synthese von Butadien mittels des sogenannten Lebedev-Prozesses.

Vielversprechendes Katalysatorsystem identifiziert
Da der erste Schritt bereits Gegenstand zahlreicher Forschungsaktivitäten ist, konzentrierten sich Wissenschaftlerinnen und Wissenschaftler auf die Weiterveredlung des Ethanols zu Butadien und die Verfahrenskopplung beider Schritte. »Wir haben u.a. ein neues Katalysatorsystem auf Basis eines synthetischen Saponiten identifiziert und anschließend synthetisiert«, erklärt Dr. Barbara Zeidler-Fandrich vom Fraunhofer UMSICHT. Die Testung der katalytischen Aktivität erfolgte in einer eigens konstruierten Versuchsanlage. »Aufbauend auf einem ersten Screening haben wir aussichtsreiche Materialien weiter optimiert. Das Ergebnis: Verglichen mit dem unmodifizierten Ausgangsmaterial lässt sich die Butadien-Selektivität im Rahmen der Katalysatoroptimierung deutlich erhöhen. Allerdings ist auch klar geworden, dass noch weiteres Potenzial zur Verbesserung der Katalysatorperformance besteht.«

Nachhaltigkeitsbewertung des Power-to-Butadien-Prozesses
Wie nachhaltig dieser Power-to-Butadien-Prozess wirklich ist, haben Dr. Markus Hiebel und Dr. Daniel Maga vom Fraunhofer UMSICHT in einer Life Cycle Analysis (LCA) untersucht. Beleuchtet haben sie dabei – neben unterschiedlichen Katalysatoren – die Herstellungsmethode von Ethanol und die Relevanz der eingesetzte Energiequelle. »Wir konnten zeigen, dass der Lebedev-Prozess je nach verwendeter Ethanol- und Energiequelle das Potenzial hat, Butadien und damit auch Styrol-Butadien-Kautschuk aus biobasiertem Ethanol oder CO2-basiertem Ethanol herzustellen und CO2-Emissionen zu reduzieren«, so Daniel Maga. »Damit ermöglicht der Power2C4-Prozess die Nutzung alternativer Kohlenstoffquellen.« Besonders die Nutzung von Ethanol aus Restbiomasseströmen wie Bagasse oder Stroh eröffne Wege, Treibhausgasemissionen von Butadien deutlich zu reduzieren. Zudem führe ein Strommix mit immer höheren Anteilen an erneuerbaren Energien zur Möglichkeit, Treibhausgasreduktionen über Carbon-Capture-and-Utilization-Prozesse (CCU) zu realisieren.
 
FÖRDERHINWEIS
Das Kompetenzzentrum »Virtuelles Institut – Strom zu Gas und Wärme« wird gefördert durch das »Operationelle Programm zur Förderung von Investitionen in Wachstum und Beschäftigung für Nordrhein-Westfalen aus dem Europäischen Fonds für regionale Entwicklung« (OP EFRE NRW) sowie durch das Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.

06.06.2023

GOTS, European Space Agency and Marple: Remote monitoring in organic cotton certification

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

Integrated with existing GOTS measures, this project will enable GOTS to further enhance the integrity of organic cotton by developing advanced risk assessment technology for organic certification and preventing fraud from the beginning of the supply chain. “It is an honour and very exciting to be a partner in this ESA Demonstration Project, and it is living up to our claim to be pioneers serving the sustainable textile sector to enable continuous improvement. Technologies like this will be a game changer regarding the integrity and promotion opportunities of organic cotton.” says Claudia Kersten, Managing Director of GOTS.

The project's anticipated impact extends beyond identifying certified organic cotton fields. It is expected to also empower GOTS to recognise cotton fields that have not yet obtained organic certification but possess the potential for a seamless transition to organic cultivation, thanks to their utilisation of traditional and ecologically friendly farming practices. This would enable GOTS to bring a greater number of farmers – particularly those of a smaller size – into the certified organic sector and supply chains, creating new economic opportunities for small-scale farmers and their communities while also helping the textile sector to meet growing consumer demand for organic cotton. Guillaume Prigent, Business Development and Partnerships Officer at the European Space Agency, adds: “This project highlights how space solutions can have a positive impact on the world and is the kind of innovation that ESA supports through its Business Applications and Space Solutions programme.”

The project will run across the distinct cotton growing regions in India, with first results expected by the end of 2023.

India project builds on successful Uzbekistan feasibility pilot
The project is co-financed by GOTS and ESA, in collaboration with Marple GmbH, a German software development firm that developed the CoCuRA (Cotton Cultivation Remote Assessment) software with ESA BASS and successfully piloted it in a feasibility project in 2021 in Uzbekistan.

That venture showed how the trained AI was able to accurately differentiate cotton fields from other crops using only satellite images and sensor data, as well as whether the cotton fields were cultivated organically.

This spurred considerable interest from GOTS, which has committed to the development of cutting-edge technologies that can improve the integrity of the organic textile sector, especially cotton. Dr David Scherf, co-founder of Marple, said: “All our projects strive to leverage advanced technology for a positive impact on the environment and society. We are therefore delighted that our CoCuRA technology, which emerged from a moonshot research project, is being applied in a practical and impactful way. We are excited about the opportunity to work with the exceptional team at GOTS and further strengthen our successful partnership with ESA.”

More information:
GOTS AI cotton India
Source:

GOTS Global Organic Textile Standard

05.06.2023

Resource-efficient dyeing solutions for sustainable PA fibers

CHT and Fulgar have collaborated to support the goal of reducing the carbon footprint with an effective and sustainable solution for the textile market.

Combining FULGAR’s circular economy ready yarns with CHT’s resource-saving dyeing techniques significantly reduces the usage of natural resources and leads to lower environmental impact and ultimately a lower carbon footprint. The combined process needs less water, uses less energy, and saves time while meeting the color fastness standards for finished textile products.

The combination of 100 % biobased polyamide EVO® by FULGAR yarns with CHT sustainable dyeing application can save water up to 64 %, energy use up to 50 % and process time up to 50 %, when compared to standard dyeing processes. Sustainable dyeing of EVO® is promoted using CHT’s soy-based dyeing auxiliary SARABID TS 300. SARABID TS 300 has accredited a C2C Certified Material Health Certificate at Gold level and USDA Certified Biobased Product Certification.

CHT and Fulgar have collaborated to support the goal of reducing the carbon footprint with an effective and sustainable solution for the textile market.

Combining FULGAR’s circular economy ready yarns with CHT’s resource-saving dyeing techniques significantly reduces the usage of natural resources and leads to lower environmental impact and ultimately a lower carbon footprint. The combined process needs less water, uses less energy, and saves time while meeting the color fastness standards for finished textile products.

The combination of 100 % biobased polyamide EVO® by FULGAR yarns with CHT sustainable dyeing application can save water up to 64 %, energy use up to 50 % and process time up to 50 %, when compared to standard dyeing processes. Sustainable dyeing of EVO® is promoted using CHT’s soy-based dyeing auxiliary SARABID TS 300. SARABID TS 300 has accredited a C2C Certified Material Health Certificate at Gold level and USDA Certified Biobased Product Certification.

EVO® by FULGAR, the totally renewable yarn based on castor plants, does not require high amounts of water - 4 times less compared to cotton. In addition to the sustainable aspect, EVO® by FULGAR offers characteristics like lower fiber weight, particular moisture management and higher stretch often without the need for elastomer fiber. This helps to avoid material mixes for better recycling opportunities. EVO® provides greater user comfort, mainly for performance and casual apparel.

More information:
CHT Evo by Fulgar Fulgar
Source:

CHT Germany GmbH