From the Sector

Reset
82 results
Composite textiles by vombaur for innovations in architecture and the construction industry (c) vombaur
Low effort, low weight: Maintenance with fibre-reinforce materials
13.10.2021

Composite textiles by vombaur for innovations in architecture and the construction industry

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

In addition, fibre composites offer numerous design options for novel and exceptional new building and maintenance projects:
•    Unique variety of shapes
•    Different structures of the textiles
•    Large spectrum of colours and colour combinations
•    Translucency of the plastic matrix
Thanks to these properties, composites can be used to produce coloured, phosphorescent, thermochromic or – through the use of LEDs or light-conducting fibres permanently integrated into the matrix – luminescent components.

In addition, there are organisational benefits for planning, construction and maintenance work with fibre-reinforced materials:
•    Easier handling and assembly of the far lighter and more flexible components – compared with steel, concrete or wood
•    Faster installation
•    Shorter construction site times in road and bridge maintenance
•    Shorter delivery times
•    Ability to integrate electronic monitoring systems

Individual composite textiles – for every lightweight engineering project
The composites experts at vombaur develop and manufacture woven tapes and seamless round or shaped woven textiles from carbon, glass, flax or other high-performance fibres on special weaving lines for individually specified round and shaped woven textiles – and can therefore offer you the best possible fibre base for every lightweight construction project.

"Regardless of whether it's a new construction or a renovation project, a façade design, a bridge or a staircase – as your development partner for composite textiles, we have plenty of experience with composites for demanding tasks," emphasises Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "We develop, create samples and manufacture woven tapes and seamless round or shaped woven textiles – in collaboration with the customer enterprise development teams and individually for the respective projects." This is how novel and unique lightweight components made of high-performance textiles are created for visionary projects.

12.10.2021

DSM to showcase armor solutions made with Dyneema® at Milipol Paris 2021

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

While decreasing the load on the wearer, Dyneema® is simultaneously able to reduce the impact of material manufacturing on our planet. In line with DSM’s commitment to protect people and the environment they live in, we have developed the first-ever bio-based ultra-high molecular weight polyethylene fiber and unidirectional (UD) material. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE.

Source:

DSM Protective Materials / EMG

16.07.2021

Eruslu Nonwovens Group: Entering Biodegradable Nonwoven Market with Truetzschler Nonwovens’ Machinery

Truetzschler Nonwovens will deliver equipment to enlarge an existing spunlacing line - put into operation in 2015 at the Turkish Eruslu Nonwovens Group - into a flexible, state-of-the-art production line for various light to heavy weight sustainable nonwovens.

Last year Eruslu decided to broaden its portfolio in the wipes segment by adding biodegradable products from renewable resources. The group took full advantage of the 2015 small capacity line and went for:

  • a second NCR random and a NCA airlay card
  • fiber preparation and card feeding equipment for the two new cards
  • more hydraulic power to reliably and efficiently hydroentangle multi-layer webs
  • an extension to the dryer for increased evaporation capacity

After starting up in the second half of 2022, Eruslu will be operating an ultra-modern, highly flexible NCR-NCA-NCR spunlace line, the first of its kind in Turkey. The line is tailor-made to process virgin cotton fibers, comber noils and short fibers at high speeds. End products are top-quality, lightweight natural wipes or heavy-weight, three-layer nonwovens for cosmetic pads.

Truetzschler Nonwovens will deliver equipment to enlarge an existing spunlacing line - put into operation in 2015 at the Turkish Eruslu Nonwovens Group - into a flexible, state-of-the-art production line for various light to heavy weight sustainable nonwovens.

Last year Eruslu decided to broaden its portfolio in the wipes segment by adding biodegradable products from renewable resources. The group took full advantage of the 2015 small capacity line and went for:

  • a second NCR random and a NCA airlay card
  • fiber preparation and card feeding equipment for the two new cards
  • more hydraulic power to reliably and efficiently hydroentangle multi-layer webs
  • an extension to the dryer for increased evaporation capacity

After starting up in the second half of 2022, Eruslu will be operating an ultra-modern, highly flexible NCR-NCA-NCR spunlace line, the first of its kind in Turkey. The line is tailor-made to process virgin cotton fibers, comber noils and short fibers at high speeds. End products are top-quality, lightweight natural wipes or heavy-weight, three-layer nonwovens for cosmetic pads.

Source:

Trützschler Nonwovens & Man Made Fibers GmbH

(c) Autoneum
14.07.2021

Autoneum: Carpets even more eco-friendly

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Lightweight, textile-based carpet technologies such as Di-Light or Relive-1 significantly improve the environmental performance of carpets. For example, Di-Light-based carpets consist of up to 97% recycled PET; aside from that, they are around 20% lighter than conventional needlepunch carpets, thus contributing to lower fuel consumption and CO2 emissions from vehicles. In addition, Autoneum needlepunch carpets are now even more sustainable thanks to the innovative ABC process, which uses a thermoplastic adhesive instead of latex in the backcoating: Unlike latex, thermoplastic adhesives can be heated and melted down together with the carpet components made of pure PET at the end of the product life cycle, which facilitates recycling considerably. Furthermore, since the fibers of the thermoplastic mono-material are easier to open, carpet cut-outs can be reclaimed more easily, thereby reducing the consumption of natural resources as well as waste volumes and thus CO2 emissions. The environmental  performance of Autoneum’s needlepunch carpets, which already contain a high proportion of recycled PET, is thus further improved.

Moreover, backcoatings without latex improve the sustainability of carpets not only thanks to better recyclability at the end of the product life cycle. Since the application of the thermoplastic adhesive using the innovative ABC process consumes significantly less energy than the production of latexbased backcoatings and does not require any water at all, the environmental impact can already be minimized in the manufacturing process. Additionally, thermoplastic adhesives developed in-house by Autoneum will open up new possibilities in the future for adapting backcoatings to the individual needs of vehicle manufacturers in terms of their acoustic performance, stiffness and abrasion resistance.

Models from various customers in Europe and North America are already equipped with latex-free needlepunch carpets from Autoneum. In the near future, backcoatings with thermoplastic adhesives will also be used for Autoneum’s tufted carpets. Production of the new, even more sustainable generation of tufted carpets is scheduled to start in early 2022.

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

Avgol invests in new capabilities at Russian facility (c) Avgol
28.06.2021

Avgol invests in new capabilities at Russian facility

  • New high-capacity line enables diversification to meet growing demand

Avgol, a global leader in the manufacture of high performance non-woven fabric solutions, has announced it is investing in a new high-speed, high-capacity flexible multiple beam production line at its facility in Uzlovaya, Russia.

“The addition of this new line enables us to have greater production capacity for growing regional markets and support the release of new Avgol technologies,” said Tommi Bjornman, CEO of Avgol.
“Serving the growing baby diaper, adult incontinence and feminine hygiene markets along with satisfying sustained demand for meltblown filtration and medical materials, this investment enables Avgol to deliver an improved degree of service across the entire area while consolidating and strengthening our existing position,” he said.

  • New high-capacity line enables diversification to meet growing demand

Avgol, a global leader in the manufacture of high performance non-woven fabric solutions, has announced it is investing in a new high-speed, high-capacity flexible multiple beam production line at its facility in Uzlovaya, Russia.

“The addition of this new line enables us to have greater production capacity for growing regional markets and support the release of new Avgol technologies,” said Tommi Bjornman, CEO of Avgol.
“Serving the growing baby diaper, adult incontinence and feminine hygiene markets along with satisfying sustained demand for meltblown filtration and medical materials, this investment enables Avgol to deliver an improved degree of service across the entire area while consolidating and strengthening our existing position,” he said.

Avgol, an Indorama Ventures Limited company, leads the global hygiene market with the most comprehensive range of ultra-lightweight spun-melt nonwoven fabrics. This new line at the company’s Uzlovaya facility, in the Tula Oblast region of Russia, will see Avgol investing in new Reicofil 5 (RF5) technology. The third line for this location will include biocomponent and corresponding high-loft capabilities thus producing materials for applications that meet the needs of upper tier products for Hygiene customers.

As part of the investment, Avgol is including new capacity for meltblown production with a dedicated line, ensuring a continuous supply of this critical material for the region. One other aspect of the investment, and a new inhouse capability for Avgol, includes the addition of cutting-edge lamination capabilities. These capabilities will allow Avgol to offer enhanced performance products into the existing markets the company serves, as well as allowing the company to explore new opportunities in other markets. “The RF5 line, meltblown line and lamination capabilities will provide us a powerful set of platforms as a base from which to provide high-value products for our customers,” said Mr. Bjornman.  “It will enable us to further diversify the Avgol innovation portfolio while remaining true to our roots.”

Mr. Bjornman further commented that the investment will also significantly support further sustainable product development in Avgol, under its innovative FIT™ (Forward Innovative Thinking) strategy. “Avgol is committed to the future of nonwoven fabrics with a particular focus on bringing polyolefins forward as viable resins in single use articles,” he said. “We are excited to bring new assets, new capabilities, and new technologies that will challenge customer expectations of the nonwoven fabric industry.” This investment will move the Russian production facility to the second largest site for Avgol (the largest facility remains the Mocksville site in North Carolina, USA).

Source:

PHD Marketing Ltd

ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China (c) ANDRITZ
High-speed TT card combined with the JetlaceEssentiel hydroentanglement unit in operation at Kingsafe
18.05.2021

New Order for ANDRITZ

  • ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China

International technology Group ANDRITZ has received an order from Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd. in Hezhou, China, to supply a complete new neXline spunlace line. The line is scheduled for installation and start-up during the second quarter of 2022.

This high-capacity spunlace eXcelle line will process either 100% biodegradable fibers or blends of polyester and viscose. It is dedicated to the production of hygiene and medical fabrics. The final products will have fabric weights ranging from 30 to 100 gsm, and the annual production capacity will be up to 18,000 tons.

ANDRITZ will deliver a complete line, from web forming to drying, also integrating two high-speed TT cards, the well-known JetlaceEssentiel hydroentanglement unit and the neXdry through-air dryer equipped with a neXecodry S1 system for energy saving. This combination is becoming the market benchmark for the production of lightweight spunlace fabrics dedicated to the hygiene market.

  • ANDRITZ receives an additional order for a high-speed spunlace line from Zhejiang Kingsafe, China

International technology Group ANDRITZ has received an order from Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd. in Hezhou, China, to supply a complete new neXline spunlace line. The line is scheduled for installation and start-up during the second quarter of 2022.

This high-capacity spunlace eXcelle line will process either 100% biodegradable fibers or blends of polyester and viscose. It is dedicated to the production of hygiene and medical fabrics. The final products will have fabric weights ranging from 30 to 100 gsm, and the annual production capacity will be up to 18,000 tons.

ANDRITZ will deliver a complete line, from web forming to drying, also integrating two high-speed TT cards, the well-known JetlaceEssentiel hydroentanglement unit and the neXdry through-air dryer equipped with a neXecodry S1 system for energy saving. This combination is becoming the market benchmark for the production of lightweight spunlace fabrics dedicated to the hygiene market.

“We are proud to operate ANDRITZ nonwoven lines, which are very reliable and efficient. It helps us a lot in producing top-of-the-range, nonwoven roll goods, thus enabling us to be recognized as a key player among nonwovens producers worldwide,” says Kingsafe’s president, Mr. Huarong Yan.

Zhejiang Kingsafe Hygiene Materials Technology Co., Ltd., founded in 1987, is one of the largest companies in China producing spunlace and spunbond nonwoven roll goods, with several spunlace lines already in operation. The final products are exported all over the world and used in many fields, such as the medical sector, health care, high-tech agriculture, and high-quality consumer and household products.

The new line is now the ninth spunlace line supplied by ANDRITZ and the third with high-speed TT cards, thus confirming the successful, long-term partnership between ANDRITZ and Zhejiang Kingsafe. The order also proves that the solution provided by ANDRITZ is recognized as the benchmark for production of premium spunlace roll goods and contains the perfect combination for wipes converting machines.

DSM/MKU Ltd: High-performance, lightweight ballistic protection in Brazil (c) DSM Protective Materials: DSMPMPR007
26.04.2021

DSM/MKU Ltd: High-performance, lightweight ballistic protection in Brazil

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, announced that, together with armor manufacturing partner, MKU Ltd, has provided next generation armor technology with Dyneema® unidirectional (UD) material to support the Sao Paulo police.

The Sao Paulo police, which is comprised of more than 100,000 officers, is the first law enforcement agency in Brazil to initiate a tender for personal protective equipment based on the latest National Institute of Justice (NIJ) .06 standards for body armor, which provide comprehensive and rigorous compliance for the performance and testing of ballistic materials. In addition to NIJ .06 certification, the tender set extremely lightweight requirements for level IIIA soft armor vests.

Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, announced that, together with armor manufacturing partner, MKU Ltd, has provided next generation armor technology with Dyneema® unidirectional (UD) material to support the Sao Paulo police.

The Sao Paulo police, which is comprised of more than 100,000 officers, is the first law enforcement agency in Brazil to initiate a tender for personal protective equipment based on the latest National Institute of Justice (NIJ) .06 standards for body armor, which provide comprehensive and rigorous compliance for the performance and testing of ballistic materials. In addition to NIJ .06 certification, the tender set extremely lightweight requirements for level IIIA soft armor vests.

The hybrid vest solution developed MKU, a global leader in defense and homeland security solutions, for the Sao Paulo police utilizes predominantly Dyneema® UD material to reach new levels of performance and protection while simultaneously enhancing user comfort and mobility. Dyneema®, a strong and light fiber, is the one of leading global brands for ultra-high molecular weight polyethylene (UHMwPE) fiber, UD and fabrics, offering ballistic solutions for personal and vehicle armor that combine maximum strength with minimum weight.

In soft armor applications, Dyneema® offers up to 35 percent weight reduction when compared to competitive materials, while still protecting against both legacy and emerging threats.

In addition to the lightweight armor requirement, the vests were also thoroughly tested to ensure performance with NIJ ballistic reports, NIJ certification and in-house ballistic testing both during the tender process and after the vests were received.

In line with DSM’s commitment to protect people and the environment they live in, one of the world’s first ever bio-based HMPE fibers was introduced in 2020.

Swiss weaving machinery manufacturers are in the forefront of novel application development ©Stäubli
Multilayer Aramid
17.03.2021

Swiss weaving: Fabrics of the future

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

These glimpses of the outlook for modern weavers are among the highlights of developments now being pioneered by Swiss textile machinery companies. All weaving markets require innovation, as well as speed, efficiency, quality and sustainability. Member firms of the Swiss Textile Machinery Association respond to these needs at every point in the process – from tightening the first thread in the warp to winding the last inch for fabric delivery. They also share a common advantage, with a leading position in the traditional weaving industry as well as the expertise to foster new and exciting applications.

Technology and research cooperation
The concept of a ‘textile calculator’ was developed by Jakob Müller Group, in cooperation with the textile research institute Thuringen-Vogtland. Müller’s patented MDW® multi-directional weaving technology is able to create the meander fields which allow calculator functions to be accessed at a touch. A novel and useful facility, which suggests limitless expansion.

Today, the latest woven shoes are appreciated for their precise and comfortable fit. They score through their durability, strength and stability, meeting the requirements of individual athletes across many sports, as well as leisurewear. Stäubli is well known as a leading global specialist in weaving preparation, shedding systems and high-speed textile machinery. Its jacquard machines offer great flexibility across a wide range of formats, weaving all types of technical textiles, lightweight reinforcement fabrics – and shoes.

It’s possible to weave new materials such as ceramics, mix fibers such as aramid, carbon and other, and produce innovative multi-layers with variable thicknesses. Such applications put special demands on weaving machines which are fulfilled by Stäubli high-performance TF weaving systems.

Great weaving results are impossible without perfect warp tension, now available thanks to the world-leading electronic warp feeding systems of Crealet. Some market segments in weaving industry today demand warp let-off systems which meet individual customer requirements. For example, the company has recognized expertise to understand that geotextile products often need special treatment, as provided by its intelligent warp tension control system. Individual and connective solutions are designed to allow external support via remote link. Crealet’s warp let-off systems are widely used in both ribbon and broadloom weaving, for technical textiles applied on single or multiple warp beams and creels.

Functional, sustainable, automated
Trends in the field of woven narrow fabrics are clearly focused on functionality and sustainability. The Jakob Müller Group has already embraced these principles – for example using natural fibers for 100% recyclable labels with a soft-feel selvedge. It also focuses as much as possible on the processing of recycled, synthetic materials. Both PET bottles and polyester waste from production are recycled and processed into elastic and rigid tapes for the apparel industry.

For efficient fabric production environments, it is now recognized that automated quality solutions are essential. Quality standards are increasing everywhere and zero-defect levels are mandatory for sensitive applications such as airbags and protective apparel.

Uster’s latest generation of on-loom monitoring and inspection systems offers real operational improvements for weavers. The fabric quality monitoring prevents waste, while the quality assurance system significantly improves first-quality yield for all applications. Protecting fabric makers from costly claims and damaged reputations, automated fabric inspection also removes the need for slow, costly and unreliable manual inspection, freeing operators to focus on higher-skilled jobs.

Smart and collaborative robotics (cobots) offer many automation possibilities in weaving rooms. Stäubli’s future oriented robotics division is a driver in this segment with first effective installations in warp and creel preparation.

Control and productivity
Willy Grob’s specialized solutions for woven fabric winding focus on reliable control of tension, keeping it constant from the start of the process right through to the full cloth roll. Continuous digital control is especially important for sensitive fabrics, while performance and productivity are also critical advantages. In this regard, the company’s large-scale batching units can provide ten times the winding capacity of a regular winder integrated in the weaving machine.

The customized concept by Grob as well as design and implementation result in great flexibility and functionality of the fabric winding equipment – yet another example of Swiss ingenuity in textile machinery.  
There is even more innovation to come in weaving – and in other segments – from members of the Swiss Textile Machinery Association in future! This confident assertion is founded on an impressive statistic: the 4077 years of experience behind the creative power of the association’s member firms. It’s proof positive that their developments grow out of profound knowledge and continuous research.

15.02.2021

Hexcel’s HexPly® XF Surface Technology for Blade Surface Finishing Process

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Easy to handle and supplied in a ready to use roll form, HexPly XF can be quickly applied by hand or with semi-automated layup equipment. It features one self-adhesive, surface finishing side - indicated by a removable protective foil. This side of the prepreg is placed against a release agent treated mold surface. Once the material has been positioned, the lay-up of the blade shell structure can start immediately, and the laminate can be infused. After curing, the blade is de-molded with the manufacturer benefitting from a pinhole-free surface that needs minimal preparation before painting.

HexPly XF material is less than half the weight of a typical gel coat per square meter, reducing the overall weight of the blade. Additionally, the consistent areal weight and thickness of the prepreg film provide a completely uniform surface coating, ensuring blade weight distribution and balance are maintained, which is critical as rotor diameters continue to increase. With no need to handle or mix liquid chemicals as in the gel coat process, HexPly® XF also improves the health and safety working conditions on the shop floor.

The material has a shelf life of six weeks at ambient temperature, which also minimizes cold storage requirements and helps to reduce scrap.

Source:

100% Marketing

Sorpol Ltd. brings American antiviral technology to Israel (c) Ascend Performance Materials, APMPR055
19.01.2021

Ascend Performance Materials: Sorpol Ltd. brings American antiviral technology to Israel

Sorpol Ltd., a leading importer and distributor of industrial raw materials in Israel, has launched a website to sell Acteev Protect™ masks, made in the USA by polyamide manufacturer Ascend Performance Materials. The two companies also plan to partner in the distribution of Acteev surgical masks, N95 respirators, nonwoven media and textile fabrics as they become available.

Laboratory tests have demonstrated Acteev fabric effective at deactivating 99.9% of the viruses SARS-CoV-2, the cause of COVID-19, and H1N1, a flu virus. Acteev technology also eliminates bacteria and fungi.

Ofer Soreq, Sorpol’s marketing director, said the Acteev Protect line fits in neatly with the mission of the company.

Sorpol Ltd., a leading importer and distributor of industrial raw materials in Israel, has launched a website to sell Acteev Protect™ masks, made in the USA by polyamide manufacturer Ascend Performance Materials. The two companies also plan to partner in the distribution of Acteev surgical masks, N95 respirators, nonwoven media and textile fabrics as they become available.

Laboratory tests have demonstrated Acteev fabric effective at deactivating 99.9% of the viruses SARS-CoV-2, the cause of COVID-19, and H1N1, a flu virus. Acteev technology also eliminates bacteria and fungi.

Ofer Soreq, Sorpol’s marketing director, said the Acteev Protect line fits in neatly with the mission of the company.

Recent testing on Acteev fabric completed at the University of Cambridge has demonstrated that Acteev technology deactivates the virus that causes COVID-19, SARS-CoV-2, with 99.9% efficacy on contact. Ascend has submitted several masks designs to the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration to obtain the appropriate regulatory clearances to make specific claims regarding the technology’s antiviral properties in the United States.

In addition to antiviral, antifungal and antibacterial protection, the washable, reusable masks are lightweight, breathable and odor-fighting, making them comfortable to wear during a long shift at work or for outdoor workouts.

Acteev Protect shows promise for use beyond masks, according to Ascend. The technology was originally developed for workout wear, and now the company is working on textile applications ranging from gloves to scrubs to high-end athleisure

Source:

EMG / Ascend Performance Materials

14.01.2021

Hologenix and Kelheim Fibres launch Celliant Viscose

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Hologenix, creators of Celliant®, infrared responsive technology, and Kelheim Fibres, a world-leading manufacturer of viscose specialty fibers, have partnered to launch Celliant Viscose at ISPO Munich 2021. Celliant Viscose is a finalist in Best Products by ISPO and will be showcased in the Fibers & Insulations Category for ISPO Textrends, where realistic views and 3-D simulations will be available for each material.

The introduction of nature-based Celliant Viscose will be the first in-fiber infrared sustainable solution on the market and meets a consumer demand for more environmentally friendly textiles. An alternative to synthetic fibers and extremely versatile, Celliant Viscose blends beautifully with cotton, micromodal, lyocell, wool varieties including cashmere. It also has many applications across industries as it is ideal for performance wear, luxury loungewear, casual wear and bedding.

Celliant Viscose features natural, ethically sourced minerals embedded into plant-based fibers to create infrared products that capture and convert body heat into infrared, increasing local circulation and improved cellular oxygenation. This results in stronger performance, faster recovery and better sleep.

Celliant Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as fiber enhancements from Celliant infrared technology. Celliant’s proprietary blend of natural minerals allows textiles to capture and convert body heat into full-spectrum infrared energy, resulting in stronger performance, faster recovery and better sleep. In addition, Celliant is durable and will not wash out, lasting the useful life of the product it powers.

An Affordable, Long-lasting Solution with Diverse Applications
As opposed to other IR viscose products which are coatings based, Celliant Viscose’s in-fiber solution increases wearability and longevity with a soft feel, durability from washing and longer life. The combination of Kelheim’s distinctive technology and the Celliant additives creates this unique fiber that provides full functionality without the need for any additional processing step — a new standard in the field of sustainable IR viscose fibers. This single processing also makes Celliant Viscose more cost-effective and time-efficient than coatings.

In addition, Kelheim’s flexible technology allows targeted interventions in the viscose fiber process. By modifying the fiber’s dimensions or cross sections or by incorporating additives into the fiber matrix, Kelheim can precisely define the fiber’s properties according to the specific needs of the end product.

Highly Sustainable
Celliant Viscose is a plant and mineral-based solution for brands seeking an alternative to synthetic fibers. It contains natural raw materials that are from the earth and can return safely to the earth.

Nature-based Celliant Viscose is certified by FSC® or PEFC™, which guarantees the origin in sustainably managed plantations, and is part of the CanopyStyle initiative to protect ancient and endangered forests. The production of Celliant Viscose takes place exclusively at the Kelheim facilities in Germany, complying with the country’s strict environmental laws and guaranteeing an overall eco-friendly product.

Backed by Science
Celliant is rigorously tested by a Science Advisory Board composed of experts in the fields of physics, biology, chemistry and medicine. The Science Advisory Board has overseen 10 clinical, technical and physical trials, and seven published studies that demonstrate Celliant’s effectiveness and the benefits of infrared energy.

For more information, visit www.celliant.com/celliant-viscose/

Source:

Kelheim Fibres GmbH

Flax for Composites: Woven tapes made of natural fibres by vombaur (c) Elke Wetzig, Wikimedia
Lightweight, firm, sustainable: Flax tape by vombaur
02.12.2020

Flax for Composites: Woven tapes made of natural fibres by vombaur

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Circular Economy
Circular Economy – this also works in lightweight design. The number of recycling cycles without loss of quality is higher for natural fibre reinforced plastics than for glass or carbon fibre reinforced plastics: the thermoplastic matrix of the composite can be melted and recycled after a product life cycle. The natural fibres can "live on" in other products – injection moulded products for example.

Versatile applications
"Composites from our flax tapes are used to reinforce high-tech skis as well as for extruding state-of-the-art window sections – the applications are countless," explains Tomislav Josipovic, Sales Manager with vombaur. "As a development partner, we support applications for the automotive, wind energy, construction, sports and many other industries with our composite textiles."

More information:
vombaur Naturfasern Composites
Source:

stotz-design.com

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

vombaur: Composites for Aviation and Automotive (c) vombaur
Pioneering tech tex
04.11.2020

vombaur: Composites for Aviation and Automotive

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

  • Composite textiles for modern mobility
  • Extremely lightweight, high tensile components by vombaur

In the snow, on a plane, in an electric vehicle or on a bicycle: no matter where and how we are on the road – composite textiles by vombaur ensure that we make good progress. With materials that are both extremely light and extremely reliable.

Lightweight components for modern mobility
Modern mobility relies on high-tech lightweight components Narrow textiles by vombaur are woven from high-performance fibres. On looms that are specially made for particularly demanding composite textiles: the textile company uses special machines to produce high-tech woven tapes with closed selvedges and elasticated UD tubulars that retain their 0° orientation over the entire length of the component – regardless of the diameter. Since they do not exhibit undesired break points caused by seams or welding, they not only have a particularly high bursting strength, they are also extremely reliable and durable.

Challenging applications
"From snowboards to aerospace – the applications for our composite textiles are demanding; the mechanical, chemical and thermal requirements are extreme," explains COO Christoph Schliefer. "As a development partner, we at vombaur are therefore often involved in product development at an early stage. We specify our woven tapes and tubulars individually for each project to suit the specific task at hand."

High quality raw materials, wide variety of geometries
The variety of shapes is virtually unlimited. vombaur manufactures 3D fabrics for composites in individual special shapes from carbon, aramid, glass or hybrids. Curves, edges, tubulars, spiral fabrics – the shape of the 3D fabrics, like the material itself, depends entirely on the task at hand. Powder or non-woven coatings create additional important properties.

Pioneering tech tex
"Developments in the field of modern mobility are happening at a rapid pace," emphasizes Schliefer. "With our composite textiles for extremely lightweight and high tenacity components, we at vombaur are also pushing these developments forward."

Bandagenband (c) JUMBO Textil
20.10.2020

JUMBO-Textil: Narrow textiles with a function

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Applications
Development teams in numerous industries leverage these properties for their products. For example, for flexible machine parts in mechanical engineering, for switch contacts in electrical engineering, for oscillation-capable locking systems in the construction industry, for noise- and vibration-free seating systems in the automotive sector or for grip rings in the toys industry.

Tasks
Particularly en vogue today, when we are spending more time than usual in our own homes: applications for narrow textiles in the furniture industry. They go far beyond the area of legacy home textiles: as tensioning elements in armchairs, sofas and chairs, as hinge solutions in cupboards, as fixation elements in extendable or folding tables. Narrow textiles are used for gripping tasks almost everywhere in the living room.

"JUMBO-Textil specialises in precisely implementing the individual requirements for defined force-elongation values of elasticated narrow textiles: we adapt the technical properties of our products precisely to the specific task and the respective raw materials," explains Werner Thiex, Sales Director Automotive. "Precise technical specification plus sustainable raw materials – this is a crucial combination in the 21st century".

Source:

stotz-design.com

10.06.2020

“Autoneum Pure.”: new sustainability label for products

Technologies with an excellent environmental performance throughout the entire product life cycle – that is what “Autoneum Pure.” stands for. In future, components that meet the highest standards in terms of sustainability and eco-friendliness can be identified at a glance under this label. This also includes the innovation “Mono-Liner” for wheelhouse outer liners.

As innovation leader in acoustic and thermal management, Autoneum continuously invests in the development and production of resource-saving components that make cars lighter and thus more climate-friendly. In view of an increasing sustainability awareness and the correspondingly greater information needs on environmentally-friendly vehicle components, the Company has now launched Autoneum Pure. The label determines particularly sustainable technologies, thereby guiding car manufacturers in product selection for future models.

Technologies with an excellent environmental performance throughout the entire product life cycle – that is what “Autoneum Pure.” stands for. In future, components that meet the highest standards in terms of sustainability and eco-friendliness can be identified at a glance under this label. This also includes the innovation “Mono-Liner” for wheelhouse outer liners.

As innovation leader in acoustic and thermal management, Autoneum continuously invests in the development and production of resource-saving components that make cars lighter and thus more climate-friendly. In view of an increasing sustainability awareness and the correspondingly greater information needs on environmentally-friendly vehicle components, the Company has now launched Autoneum Pure. The label determines particularly sustainable technologies, thereby guiding car manufacturers in product selection for future models.

Autoneum Pure is based on a comprehensive set of criteria assessing the sustainability performance of a product in all four phases of its life cycle: material procurement, production, use and end of life. For example, components with a high content of recyclable materials or those that achieve significant weight savings compared to comparable standard components qualify for the “Autoneum Pure.” label. Autoneum already offers various multifunctional technologies that meet the high standards for Autoneum Pure products: Ultra-Silent for underbody systems or battery undercovers, Di-Light for carpet systems, Prime-Light and IFP-R2 for inner dashes and floor insulators as well as Hybrid-Acoustics PET for e-motor encapsulations and engine-mounted parts, which was launched in fall 2019.

With Mono-Liner, the latest innovation for wheelhouse outer liners is also included in the Autoneum Pure portfolio. Among other things, the Mono-Liner-based components convince thanks to their lightweight construction, thereby contributing to lower vehicle weight with correspondingly less fuel consumption and emissions. The excellent life cycle assessment is also based on their particularly resource-saving manufacturing: Production cut offs of the components, which consist to a large extent of recycled PET fibers, can be processed into pellets and completely returned to the manufacturing process as fibers. An SUV and a crossover model from a US vehicle manufacturer already benefit from Mono-Liner wheelhouse outer liners.

Anahid Rickmann, Head of Corporate Communications & Responsibility, explains: “With Autoneum Pure we are the first automotive supplier to establish a sustainability label in the field of acoustic and thermal management. Autoneum Pure is part of the Company's Advance Sustainability  Strategy 2025 and sets industry standards in product communication.”

Source:

Autoneum Holding AG

Start of 3-years Interreg cross-border project AACOMA  is kicked-off (c) AMAC GmbH
AMAC-Standortkarte
13.05.2020

Start of 3-years Interreg cross-border project AACOMA is kicked-off

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

  • AACOMA - Accelerate advanced composite manufacturing
  • EMR Region Belgium, the Netherlands & Germany area hot spot for the future of lightweight materials and technologies

The Euregio Meuse-Rhine provides a huge potential with its many highly innovative, leading companies and especially SMEs which are active in the area of advanced material manufacturing in many industrial sectors, such as Automotive, Aerospace, Electronics, Building and Infrastructure, etc. The advanced material sector is growing, with a consolidated offer, ranging from raw material producers over technology development to production, research and development as well as industrial OEMs.

Interreg Euregio Meuse-Rhine invests EUR 96 million from the European Regional Development Fund (ERDF) in the period 2014-2020. Through the investments in cross-border projects, the European Union invests in the economic development, innovation, territorial development and social inclusion and education of this region.

Project

The Euregio Meuse-Rhine is a potential hot-spot for the further development of advanced material and process technologies. Technical Centers and Institutes around Aachen/Germany, Liège/Belgium and Eindhoven/The Netherlands were awarded with this new project AACOMA.

Innovative material design and advanced manufacturing provide large opportunities for SMEs. The AACOMA project kick-off took place in Aachen at the Campus of the RWTH University of technology in 1 Q 2020. The aim of the project, which is running for 3 years until 2023 with a budget of €3 Mio, is to connect SMEs with innovation hot-spots like institutes and technical centers.
Seven partners from all three regions will carry the project out: Centexbel is the project leader and gets support by University of Liège, Sirris and Flanders Make from Belgium, as well as Fontys University of Applied Science and AMIBM of Maastricht University in the Netherlands and AMAC in Germany.

Statements

Bernard Paquet, Project Coordinator from Centexbel/ Belgium stated:
“Centexbel, with a strong experience in textile and composites, will identify with its Interreg partners and an advisory board of international experts several demonstrators which will enable an accelerated advanced manufacturing of composite parts. This could include new materials and intermediates, high performance additives, bio-based products and new composites by additive manufacturing”.

Michael Effing, Managing Director of AMAC/ Germany said:
“The major goal of the project is to connect around 200 innovative SMEs with each other and establish the links to the world-class institutes in the EMR region. We will facilitate 6 roadshow events, addressing key topics like automated manufacturing, additive manufacturing or bio-based material systems combined with match making and training events. The first roadshow will be held on September 24, 2020 at the Aachen Campus of the RWTH University of Technology.”

Prof. Gunnar Seide from the AMIBM/The Netherlands continued:  
“Our AMIBM offers already an international master program on bio-based materials. The AACOMA project will be an important element for transborder research and will identify new players in the value chain coming from the EMR region. Innovative companies find markets for their new bio-based building blocks, chemicals and polymers. Their success stories and upcoming technological breakthroughs are needed for a sustainable future.”

 

Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany (c) SGL Carbon
Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany
07.02.2020

JEC World 2020: SGL Carbon presents new solutions

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

  •    Composite battery enclosures for e-mobility
  •    Flexible new leaf spring generation for rear axles
  •    Innovative component designs for passenger airplanes, helicopters and air taxis
  •    Extremely lightweight and stable transfer beam for mechanical engineering

Selective applications with focus on serial production
In the field of automotive applications, SGL Carbon will present at the JEC World composite battery enclosures as a promising new application driven by increasing demand for electric vehicles and the resulting new flexible chassis platforms. The company demonstrates a prototype of a battery enclosure based on carbon fibers. However, hybrid composites with a mixture of glass and carbon fibers are also possible.

In the aerospace sector, SGL Carbon is also expanding its portfolio of realized projects and expertise relying on the trend to use more efficient materials and processes in this industry too.
In the area of primary structure components, the company will present a demo exhibit for the door frame of a passenger airplane realized in collaboration with external partners and based on 50k carbon fiber from the SGL Carbon, which is suitable for serial production.

Live simulations and intense exchange at the booth
Visitors can experience live how their ideas can be implemented both sustainably and cost-effectively in composites thanks to simulations. Experts from the company’s own Lightweight and Application Center demonstrate the path from the concept to virtual prototypes using simulation software, with the result visible either to the entire audience or just individual visitors. To prepare, interested parties can contact the team now at the following link: https://www.sglcarbon.com/anmeldung-jec.

On March 4, 2020, the SGL Carbon stand will host its traditional get-together for customers and friends starting at 4 p.m. – no registration necessary.
 

More information:
SGL Carbon JEC World
Source:

SGL Carbon