From the Sector

Reset
359 results
nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG

Hologenix: CELLIANT® as a printed coating (c) Hologenix
18.12.2023

Hologenix: CELLIANT® as a printed coating

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

fabrics or to a new fabric to create a variety of different product applications. For brands who are seeking a smaller pattern roller for apparel, orthopedic products or other close-to-skin projects, CELLIANT Print can accommodate this. There is also a larger pattern roller for bedding and larger-scale applications. As long as the print covers 80% of the fabric’s surface, the design possibilities for the print itself are virtually endless. CELLIANT Print has undergone mechanical testing for wash tests and can be confirmed to last the useful life of the product, for 50+ washes.

By applying CELLIANT Print directly onto the fabric, brand partners are able to use CELLIANT with a higher loading of bioceramic minerals than what would otherwise be possible with an in-yarn solution. This makes it ideal for recovery and performance purposes. In fact, an example of a CELLIANT Print application on kinesiology tape, KT Tape® PRO Oxygen™ was launched in April to great success.

Source:

Hologenix, LLC

15.12.2023

National Defense Authorization Act: Boosting U.S. Textile Industry

The National Council of Textile Organizations (NCTO), spanning the entire spectrum of U.S. textiles from fiber to finished sewn products, commended Congress for passing the Fiscal Year 2024 National Defense Authorization Act (NDAA), legislation that will help preserve the Berry Amendment supply chain and direct the Department of Defense to expand its procurement of domestically-made textile goods for military use.

“We applaud the House and Senate for getting NDAA across the finish line and are pleased the legislation will now go to President Biden for his signature,” said NCTO President and CEO Kim Glas. “NCTO sincerely thanks Rep. Don Davis (D-NC) for sponsoring language expressing concern about offshoring textile manufacturing and highlighting the need for the DOD and Defense Logistics Agency (DLA) to procure more domestically-produced textile goods for military use. The language also requires the DOD to report on the feasibility of requiring American-made home textile goods to be used on military installations.”

The National Council of Textile Organizations (NCTO), spanning the entire spectrum of U.S. textiles from fiber to finished sewn products, commended Congress for passing the Fiscal Year 2024 National Defense Authorization Act (NDAA), legislation that will help preserve the Berry Amendment supply chain and direct the Department of Defense to expand its procurement of domestically-made textile goods for military use.

“We applaud the House and Senate for getting NDAA across the finish line and are pleased the legislation will now go to President Biden for his signature,” said NCTO President and CEO Kim Glas. “NCTO sincerely thanks Rep. Don Davis (D-NC) for sponsoring language expressing concern about offshoring textile manufacturing and highlighting the need for the DOD and Defense Logistics Agency (DLA) to procure more domestically-produced textile goods for military use. The language also requires the DOD to report on the feasibility of requiring American-made home textile goods to be used on military installations.”

“We also want to thank Rep. Joe Courtney (D-CT) who sponsored language expressing concern about economic factors impacting the capacity of the U.S. textile industry to meet DOD requirements and calling on the agency to assess labor shortages, contract forecasting and lack of investment in manufacturing capabilities and report back to Congress.”

Finally, this NDAA report language calls for DOD to report to Congress its assessment of the textile industry as it relates to labor shortages, contract forecasting and lack of investment in manufacturing capabilities.

“The domestic textile industry and supply chain are vital to the warm industrial base for the production of critical items that contribute to our nation’s health and safety. It is imperative that Congress and the administration continue to support this industry—a key contributor to our national defense that supplies over 8,000 products a year to our men and women in uniform—through expanded government procurement of American-made items. The NDAA is critical to supporting this manufacturing base,” Glas said.

Source:

National Council of Textile Organizations (NCTO)

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

ACTIVEYARN book (c) Suedwolle Group
05.12.2023

Suedwolle Group: New ACTIVEYARN® collection

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

The yarns in the ACTIVEYARN® collection embody the company’s six strategic pillars of innovation – sustainability, circularity, traceability, design, performance and technology – drivers of the entire process of design and production.

Jasmin GOTS Nm 2/48 (100% wool 19,5 μ X-CARE) is a natural, renewable and biodegradable yarn with GOTS certification that meets the company’s demand for sustainability. X-CARE, the innovative treatment by Suedwolle Group, uses eco-friendly and chlorine-free substances that make wool environmentally friendly and suitable for easy-care quality.

Tirano Betaspun® RWS FSC (41,5% wool 17,2 μ TEC RWS certified, 41,5% LENZING™Lyocell 1,4 dtex 17% polyamide filament 22 dtex GRS certified) is a fully traceable high performance yarn, suitable for sportswear and activewear.

OTW® Midway GRS Nm 2/60 (60% wool 23,5 μ X-CARE, 40% polyamide 3,3 dtex GRS certified) comes from the recycling of pre-consumer polyamide and thus is a perfect example of circular production. Suitable for weaving, it combines the added performance that comes from our OTW® patented technology applied to a high durability blend, ideal for active garments.

Wallaby Betaspun® Nm 1/60 (87,5% wool 18,4 μ TEC, 12,5% polyamide filament 22 dtex) is the result of application of latest-generation Betaspun® technology to a natural fibre like wool, allowing production of fine yarns with extra strength and abrasion resistance, ideal for seamless and wrap knitting.

Banda TEC X-Compact Nm 2/47 (100% wool 17,2 μ TEC) is a 100% natural, renewable and biodegradable yarn benefitting from the innovative X-Compact, permitting production of particularly linear yarns ideal for clean design and fabrics appropriate for today’s fashions.

Caprera GRS Nm 1/60 (45% wool 19,3 μ Non mulesed X-CARE 55% COOLMAX® EcoMade polyester 2,2 dtex GRS certified) increases the performance of the wool-based non mulesed fibre through combination with COOLMAX® EcoMade polyester. This is a material coming from recycling of post-consumer PET bottles, dyeable at low temperatures, that aids evaporation of moisture from the skin to maintain stable body temperature, enhancing the comfort of activewear and urban garments.

Source:

Suedwolle Group

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

Devan Chemicals Photo Devan Chemicals
27.11.2023

DEVAN REPEL: A new brand in the water repellency market

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

  • Superior Performance: The technology offers outstanding water repellency performance, ensuring that textiles remain dry. Whether it's rain and outdoor wear, outdoor furnishing, shower curtains or multiple technical textiles, the new solution can handle it, making it a strong choice for industries where water resistance is paramount.
  • Flexibility: The versatility of this technology can be applied to a wide range of materials, with especially good results on polyester and its blends, offering flexibility for various applications across industries.
  • Enhanced Sustainability: This technology is free from perfluorinated compounds (PFCs), and free from isocyanates.
  • Longevity: Products treated with this water repellency technology are protecting from the elements for a longer lifespan.

Performance, particularly on effect durability, can be boosted to meet different requirements with new DEVAN EXTENDER GEN3. This extender is free of Isocyanate, Butanone-oxime and 2-dimethylpyrazole.

17.11.2023

Cinte Techtextil China 2024 taking place in September 2024

Cinte Techtextil China 2024, one of Asia’s leading technical textiles and nonwovens trade fair, will take place from 19 – 21 September 2024 at the Shanghai New International Expo Centre. In its capacity as a well-established platform for the latest textiles, nonwovens, and equipment, the 18th edition of the fair will offer business opportunities across the industry supply chain. With the previous edition attracting 467 exhibitors from 13 countries and regions across 40,000 sqm, the organisers are looking to build on that success at next year’s show.

With next year’s fair expected to again see strong domestic and international participation, the previous edition featured the return of the Taiwan Pavilion, the 40-exhibitor strong European Zone, and seven Chinese regional pavilions. At every edition, multiple fringe events enhance business connections and provide insights to fairgoers. In 2023, key highlights included the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various marine textile and rope netting events, and the “Kingsafe Dangs” University Students’ Showcase.

Cinte Techtextil China 2024, one of Asia’s leading technical textiles and nonwovens trade fair, will take place from 19 – 21 September 2024 at the Shanghai New International Expo Centre. In its capacity as a well-established platform for the latest textiles, nonwovens, and equipment, the 18th edition of the fair will offer business opportunities across the industry supply chain. With the previous edition attracting 467 exhibitors from 13 countries and regions across 40,000 sqm, the organisers are looking to build on that success at next year’s show.

With next year’s fair expected to again see strong domestic and international participation, the previous edition featured the return of the Taiwan Pavilion, the 40-exhibitor strong European Zone, and seven Chinese regional pavilions. At every edition, multiple fringe events enhance business connections and provide insights to fairgoers. In 2023, key highlights included the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various marine textile and rope netting events, and the “Kingsafe Dangs” University Students’ Showcase.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Limited

Decathlon launched Ski Socks with CELLIANT® infrared technology (c) Decathlon
08.11.2023

Decathlon launched Ski Socks with CELLIANT® infrared technology

Making outdoor sports accessible to as many people as possible since 1976 through quality, innovative gear, powerhouse sporting goods brand Decathlon has launched the first product of its long-term partnership with CELLIANT® infrared technology from Hologenix® – Adult Ski Socks. They are introduced in its Wedze range of ski and snowboarding socks (“wed’ze” means ‘“a small turn on the snow” in the Savoyard dialect in the Alps where this brand is headquartered).  

Making outdoor sports accessible to as many people as possible since 1976 through quality, innovative gear, powerhouse sporting goods brand Decathlon has launched the first product of its long-term partnership with CELLIANT® infrared technology from Hologenix® – Adult Ski Socks. They are introduced in its Wedze range of ski and snowboarding socks (“wed’ze” means ‘“a small turn on the snow” in the Savoyard dialect in the Alps where this brand is headquartered).  

Decathlon was attracted to CELLIANT’s ability to convert body heat into infrared energy, improving local circulation and cellular oxygenation to support stronger performance and faster recovery. Skiers who often suffer from muscle fatigue in the calf area will appreciate the infrared infusion and light compression attributes that were specifically chosen with this in mind. The sock was also thoughtfully designed for minimum thickness, allowing for a comfortable fit within the ski boot, without sacrificing warmth or durability. Anti-friction thread on the sole and toes helps limit irritation, and seams are intentionally positioned to eliminate discomfort. The socks are offered in a Asphalt Blue color in a variety of sizes, both online and in retail stores worldwide.

Source:

Hologenix, LLC

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Polartec PS Photo Polartec
09.10.2023

Polartec: Plant-based nylon resulting in a 50% lower carbon footprint vs. virgin nylon

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Ramesh Kesh, Senior Vice President – Government & Defense and Polartec at Milliken & Company said, “For a long time, many thought that sustainable options meant a loss in performance, like durability, Polartec has proved that this is not the case. Challenging a technology already considered to be at the pinnacle of performance was a big ask yet the team at Polartec rose to that challenge and we believe we have created a new standard in sustainability for performance fabrics.” 

More information:
Polartec Biolon nylon
Source:

Abi Youcha (Akimbo Communication)

(c) Schoeller Textil AG
05.10.2023

Schoeller Textil presents FLEX SHIELD collection at A+A

Modern lifestyles require more than just functionality. Consumers are seeking products that offer a perfect balance between protection and comfort. The FLEX SHIELD collection offers a range of textiles that provide these functions without compromising on freedom of movement to maximize the wearer’s experience.

The Flex Shield Collection reflects Schoeller’s commitment to creating textiles that empower individuals to embrace their activities with confidence, knowing their gear will not fail and is designed for challenging conditions.

Every article in the collection is equipped with at least one of Schoeller’s pioneering textile technologies. These innovations ensure breathability, thermal regulation, as well as wind and water resistance.

Modern lifestyles require more than just functionality. Consumers are seeking products that offer a perfect balance between protection and comfort. The FLEX SHIELD collection offers a range of textiles that provide these functions without compromising on freedom of movement to maximize the wearer’s experience.

The Flex Shield Collection reflects Schoeller’s commitment to creating textiles that empower individuals to embrace their activities with confidence, knowing their gear will not fail and is designed for challenging conditions.

Every article in the collection is equipped with at least one of Schoeller’s pioneering textile technologies. These innovations ensure breathability, thermal regulation, as well as wind and water resistance.

One highlight is the schoeller®-ceraspaceTM technology, which owes its outstanding protective properties to a unique composition of special ceramic particles anchored in a polymer matrix. The ceramic particles are nearly as hard as diamonds and are firmly attached as a 3-dimensional coating to the textile. A textile with schoeller®-ceraspaceTM abrasion resistance performs significantly better than high-quality leather in terms of abrasion resistance. A fabric equipped with schoeller®-ceraspaceTM can also be more engineered to fulfill the required stretch properties, and its production process results in significantly less waste material compared to leather.

Source:

Schoeller Textil AG

One-third increase in exhibitors at Cinte Techtextil China 2023 (c) Messe Frankfurt (HK) Ltd
04.10.2023

One-third increase in exhibitors at Cinte Techtextil China 2023

Since the rapid growth brought about by the pandemic, the technical textiles and nonwovens markets are stabilising towards a new normal – one in which technological innovation, sustainable development, and intelligent manufacturing are the most sought-after qualities. Held from 19 – 21 September 2023 at the Shanghai New International Expo Centre, the fair amplified this new industry direction, both through its fringe programme and across the booths of the 40,000 sqm show floor. With a nearly one-third increase from 2021, 467 exhibitors representing 13 countries and regions engaged a significantly international visitor flow, numbering 15,542 total visits from 52 countries and regions. Suppliers showcased up-to-date products for multiple application areas, with various equipment, technical textiles and nonwovens for agriculture, automotive, protective apparel, and medical and hygiene especially prevalent.

Since the rapid growth brought about by the pandemic, the technical textiles and nonwovens markets are stabilising towards a new normal – one in which technological innovation, sustainable development, and intelligent manufacturing are the most sought-after qualities. Held from 19 – 21 September 2023 at the Shanghai New International Expo Centre, the fair amplified this new industry direction, both through its fringe programme and across the booths of the 40,000 sqm show floor. With a nearly one-third increase from 2021, 467 exhibitors representing 13 countries and regions engaged a significantly international visitor flow, numbering 15,542 total visits from 52 countries and regions. Suppliers showcased up-to-date products for multiple application areas, with various equipment, technical textiles and nonwovens for agriculture, automotive, protective apparel, and medical and hygiene especially prevalent.

Speaking at the fair’s close, Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd, had an optimistic outlook for the future of the sector: “Sustainability and innovation often go hand-in-hand, and walking through the various halls, zones, and pavilions these past few days the evidence for this was widespread. With environmental protection more important than ever, and buyers across application areas increasingly sourcing eco-friendly solutions, our exhibitors were well-placed to meet that demand. This fair is consistently at the leading edge of technological progress, and with the global and domestic markets showing signs of improving further, we are already looking forward to what we can offer at next year’s edition.”  

With many overseas exhibitors making a comeback, this year’s fair was marked by the return of the Taiwan Pavilion and the 40-exhibitor strong European Zone. Beyond the international areas, domestic pavilions were organised by Beijing Guanghua, China Hang Tang Group, Funing, Jiujing, Shenda, Tiantai, Xianto, and Xiqiao, showcasing nonwovens for various sub-sectors, including filtration and medical. Valuable insights were exchanged at multiple fringe events, including the 11th China International Nonwovens Conference, the Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum, various events covering marine textiles and rope netting, and the “Kingsafe Dangs” National University Students' Nonwovens Development and Applications Showcase. Visitors, meanwhile, were pleased with the innovation on show across the entire platform.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

26.09.2023

ECHA: More than 5 600 comments on PFAS restriction proposal

More than 4 400 organisations, companies and individuals submitted comments and information on the proposal to restrict per- and polyfluoroalkyl substances (PFAS) in the European Economic Area.

At the end of the consultation on 25 September, ECHA had received more than 5 600 comments from more than 4 400 organisations, companies and individuals.

The comments will be checked by ECHA's scientific committees for Risk Assessment (RAC) and Socio-Economic Analysis (SEAC), and those providing relevant evidence-based information will be considered in the opinion making process.

The five countries who prepared the initial proposal will also review the consultation input and may update their initial proposal based on it.

Many comments submitted during the consultation are already published on ECHA’s website. Information indicated as confidential by the consultee is not made public. Comments received very close to the deadline are currently being processed and will be published shortly.

More than 4 400 organisations, companies and individuals submitted comments and information on the proposal to restrict per- and polyfluoroalkyl substances (PFAS) in the European Economic Area.

At the end of the consultation on 25 September, ECHA had received more than 5 600 comments from more than 4 400 organisations, companies and individuals.

The comments will be checked by ECHA's scientific committees for Risk Assessment (RAC) and Socio-Economic Analysis (SEAC), and those providing relevant evidence-based information will be considered in the opinion making process.

The five countries who prepared the initial proposal will also review the consultation input and may update their initial proposal based on it.

Many comments submitted during the consultation are already published on ECHA’s website. Information indicated as confidential by the consultee is not made public. Comments received very close to the deadline are currently being processed and will be published shortly.

Next steps
RAC and SEAC are evaluating the proposed restriction and considering the relevant information received through the consultation. The committees develop their independent, scientific opinions over a series of meetings, where draft opinions are discussed. Attention is given to all aspects and impacted sectors.

ECHA will deliver the final opinions to the European Commission in the shortest possible timeframe, while ensuring proper scrutiny by the scientific committees. Once the committees adopt their opinions, they will be communicated to the public.

The Commission, together with the EU Member States, will decide on the restriction.

Background
The restriction proposal was prepared by authorities in Denmark, Germany, the Netherlands, Norway and Sweden. It was submitted to ECHA on 13 January 2023. It aims to reduce PFAS emissions into the environment and make products and processes safer for people. The six-month consultation ran from 22 March to 25 September 2023.

Further information
•    Consultation comments
•    Restriction on the manufacture, placing on the market and use of PFAS
•    Topical page on PFAS
•    REACH restriction process

More information:
ECHA PFAS
Source:

ECHA

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours Photo: AGU
Jumbo-Visma team winning at Vuelta a España with AGU’s HeiQ Smart Temp cycling kits
22.09.2023

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Source:

HeiQ Materials AG

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

Cinte Techtextil China 2023 with different zones (c) Messe Frankfurt (HK) Ltd
14.09.2023

Cinte Techtextil China 2023 with different zones

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Other domestic exhibitors, such as Shanghai Shenda Kebao New Materials, SIJIA New Material (Shanghai), Zhejiang Hailide New Material, and Zhejiang Jinda New Materials, will showcase products for applications in outdoor advertising, tents, boats, vehicles, environmental engineering, and much more.

Supplementing the fairground’s wide variety of domestic suppliers will be a much-increased showing of international exhibitors, with many to be found within hall E1’s European Zone. Several global industry leaders are featured in their categories below:

Nonwovens equipment

  • Autefa Solutions, Germany: solutions provider for nonwovens lines and machines for carded-crosslapped needlepunching lines, spunlace lines and thermobonding lines.
  • Dilo, Germany: in addition to offering general services, Dilo supplies opening and blending equipment, carding and airlay machines, and crosslapping and needling machines.
  • Groz-Beckert, Germany: provider of industrial machine needles, precision parts and fine tools, as well as systems and services for the production and joining of textile fabrics.
  • Reifenhäuser Reicofil, Germany: provider of innovative technologies and components for plastics extrusion, producing blown films, cast films, sheets as well as nonwovens.

Weaving equipment

  • Itema, Italy: provider of advanced weaving machines, spare parts, and integrated services, specifically for rapier, air jet and projectile weft insertion technologies.
  • Lindauer DORNIER, Germany: the company manufactures weaving machines, film stretching lines, and composite systems, also offering technical support and spare parts supply.
  • Picanol, Belgium: producer and servicer of high-tech air jet and rapier weaving machines, with around 2,600 weaving mills utilising their systems worldwide.

Coating and lamination

  • BRÜCKNER Textile Technologies, Germany: manufacturer of machines and lines for the coating and finishing of apparel fabric, technical textiles, nonwovens, glass fabrics and floor coverings.
  • ROWA Lack, Germany: developer of high-quality materials and product solutions for the polymer industry, with applications including automotive, electrical engineering, construction, technical textiles, and medical technology.
  • Stahl, the Netherlands: the Dutch company provides high quality coatings, dyes and process chemicals for leather, flexible coated substrates, textiles, films and foils, paper, and related products.

Fibre

  • Monosuisse, Switzerland: with production sites in Switzerland, Poland, Romania, Mexico, and Germany, Monosuisse manufactures various precise, high-quality polymer monofilaments from 19µm to 3.00 mm in diameter.
  • Perlon, Germany: specialised in the manufacture of synthetic filaments in diverse application areas, including paper machine clothing, dental care, and advanced technical textiles for agriculture, 3D printing, sports and leisure, home, and more.

Meanwhile, first-time exhibitors include Rökona (Germany), showcasing RE:SPACE, their range of recycled technical textiles; Testex AG (Switzerland), the official OEKO-TEX® representative in multiple countries including China; Hohenstein (Germany), the renowned testing laboratory and research institute; and zwissTEX (Germany), the knitted fabrics and lamination specialists. In addition, the returning Taiwan Pavilion is set to feature the debut of Shinih Enterprise Co Ltd (Taiwan China).

Beyond the innovation displayed at the booths, the fair’s programme is set to welcome global experts from various technical textile and nonwoven sub-sectors to offer specific insights and unveil innovations. Highlighted events include:

The 11th China International Nonwovens Conference
14 sessions cover topics such as the quality control of medical supplies; green development in technology and applications in the nonwovens industry; and the development and application of flashspun nonwovens in China.

Marine textiles and rope netting events
Events specific to this zone include the Top 10 Suppliers in the China Rope Net Industry; Conference on Textile Applications for Marine Engineering and Fisheries; and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting

"Nonwovens, Creating a Better Life” Innovation Showcase
Product display area showcasing around 100 nonwovens products with applications in five areas: medical and health, quality of life, human habitat, sustainable development, and innovative design.

Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum
Includes presentations from multiple key players in the technical textile industry, including Mr Steven Liu, Commercial Manager of Polymer Additives Business of Sanitized (China) Ltd.

Source:

Messe Frankfurt (HK) Ltd

OCSiAl: New Graphene nanotube facility in Europe (c) OCSiAl Group
13.09.2023

OCSiAl: New Graphene nanotube facility in Europe

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 
In addition to synthesizing nanotubes, the facility will manufacture nanotube suspensions for lithium-ion battery manufacturers in Europe, the US, and Asia – enough to enhance the performance of more than 1 mln electric cars with an average battery capacity of 75 kWh per car. OCSiAl nanotubes create long and robust electrical networks between active material particles, improving key battery characteristics, including cycle life, lower DCR, C-rate performance, and cohesion between active battery material particles, making the battery electrodes more durable. Graphene nanotubes unlock new battery technologies, including high-silicon content anodes, thick LFP cathodes, fast-charging graphite anodes, and more. They can be applied in both conventional and emerging battery tech, such as a dry battery electrode coating process, and solid-state batteries.
 
As well as synthesizing nanotubes and producing suspensions, OCSiAl project includes manufacturing of nanotube concentrates for high-performance polymers. The project has passed environmental impact assessment and it is 100% powered by green energy. It enjoys support from Serbian municipal and national governments. The plant is planned to be certified in accordance with ISO 9001, ISO 14001, and ISO 45001, and to be compliant with the IATF 16949 automotive industry standard. The project will create more than 200 job opportunities for engineers, scientists, managers, operators, and administrative staff.
 
Currently, OCSiAl has an extensive manufacturing system of nanotube-based products in the regions of highest market demand, such as China, Japan, Sri Lanka, Brazil, Malaysia, and other countries. The Serbia nanotube hub will operate in conjunction with the company’s operational R&D center and planned graphene nanotube synthesis facility in Luxembourg.

Source:

OCSiAl Group

Brembo SGL Carbon Ceramic Brakes expands production capacity (c) SGL CARBON SE
13.09.2023

Brembo SGL Carbon Ceramic Brakes expands production capacity

SGL Carbon and Brembo agreed to expand production capacities for the joint venture Brembo SGL Carbon Ceramic Brakes (BSCCB). Both companies have been working together with BSCCB on the conditions and implementation plans for this in the preceding months. BSCCB will invest around €150 million until 2027 to expand by more than 70% production capacities at the sites in Meitingen (Germany) and Stezzano (Italy).

The capacity enlargement includes the construction of two new production facilities at the SGL Carbon Meitingen site with a total area of around 8,500 m² and the installation of new production machinery. The groundbreaking in Meitingen will take place this fall.

At the Stezzano site, production areas will be extended by around 4.000 m² to existing buildings and investments will be made in new production machinery.

SGL Carbon and Brembo agreed to expand production capacities for the joint venture Brembo SGL Carbon Ceramic Brakes (BSCCB). Both companies have been working together with BSCCB on the conditions and implementation plans for this in the preceding months. BSCCB will invest around €150 million until 2027 to expand by more than 70% production capacities at the sites in Meitingen (Germany) and Stezzano (Italy).

The capacity enlargement includes the construction of two new production facilities at the SGL Carbon Meitingen site with a total area of around 8,500 m² and the installation of new production machinery. The groundbreaking in Meitingen will take place this fall.

At the Stezzano site, production areas will be extended by around 4.000 m² to existing buildings and investments will be made in new production machinery.

The extensive expansion of production capacities will enable Brembo SGL Carbon Ceramic Brakes (BSCCB) to meet the high market demand and to cover the increasing customer requests in the future. The need for carbon ceramic brake discs from BSCCB increased worldwide. This is mainly due to the high product quality and performance of carbon ceramic brake discs, which meet the specific requirements of automotive manufacturers, especially in the premium and luxury segments, where high braking performance is needed.

Source:

SGL CARBON SE