From the Sector

Reset
69 results
21.01.2025

45 Years Trevira CS®

Indorama Ventures exhibited the Trevira CS® brand together with 17 Trevira CS partner companies at the Heimtextil trade fair in Frankfurt, Germany, from January 14-17, 2025.

This year Trevira CS is celebrating its 45th anniversary! In 1980 Trevira CS® was launched on the market, at that time a pioneer for permanently flame retardant textiles whose flame retardant properties neither wash out nor are lost through ageing or use. They are characterized by the fact that they meet all essential fire protection standards without the need for a chemical finish. Fabrics made from specially produced flame-retardant polyester can be labeled as Trevira CS after passing a brand test. Samples, brochures, pictures and short anecdotes from 45 years of Trevira CS will be on display in a special area of the exhibition stand, inviting visitors to browse and smile.

Indorama Ventures exhibited the Trevira CS® brand together with 17 Trevira CS partner companies at the Heimtextil trade fair in Frankfurt, Germany, from January 14-17, 2025.

This year Trevira CS is celebrating its 45th anniversary! In 1980 Trevira CS® was launched on the market, at that time a pioneer for permanently flame retardant textiles whose flame retardant properties neither wash out nor are lost through ageing or use. They are characterized by the fact that they meet all essential fire protection standards without the need for a chemical finish. Fabrics made from specially produced flame-retardant polyester can be labeled as Trevira CS after passing a brand test. Samples, brochures, pictures and short anecdotes from 45 years of Trevira CS will be on display in a special area of the exhibition stand, inviting visitors to browse and smile.

In the anniversary year the focus of the Trevira CS® joint stand will be on permanent flame retardancy and the sustainability approaches of Trevira CS fabrics, which are known for their outstanding properties and versatility in the textile industry. Not only will the latest yarn and fabric developments from the 17 partners be presented, the three sustainability approaches from 1. pre-consumer recycling, 2. the Trevira CS take-back concept in cooperation with the company ALTEX Textil-Recycling GmbH & Co. KG in Gronau, Germany and 3. developments from chemically recycled raw material, but also all submissions to the Trevira CS Fabric Competition 2025. This encouraged Trevira CS participants to explore the interfaces between permanent flame retardancy, textile design, functionality and safety and to submit articles for five different categories.

The BREATHAIR® brand, a 3D upholstery material, was also be presented at the trade fair. This innovative and recyclable product has been specially developed for the upholstery industry and offers new possibilities for sustainable and comfortable furniture designs. Thanks to the nature of BREATHAIR®, it can be recycled at the end of its life cycle . Visitors to the trade fair will have the opportunity to experience the unique comfort of BREATHAIR® up close in a seating lab.

The Deja™ brand is an integral part of Indorama Ventures' commitment to long-term sustainability through recycling and bio-based materials. The product portfolio includes chips, as well as various staple fibers and filament yarns in multiple titer and yarn specifications.

In cooperation with Auping and TWE, Indorama Ventures and Deja™ developed an innovative mattress consisting of two basic components. This new design allows for easier disassembly and therefore more efficient recycling. The partnership aims to promote the circular economy and reduce the environmental impact of mattresses. By using recyclable materials and reducing waste, the companies are actively contributing to a more sustainable future.

Source:

Indorama Ventures Public Company Limited

Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo Photo (c) Citizens of Humanity Group
Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo
06.01.2025

Pili partners with Citizens of Humanity and Orta

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili has developed unique processes combining fermentation and organic chemistry to offer a high-performance, eco-friendly alternative to petrochemical dyes. Their ecological alternative significantly reduces the use of toxic chemicals and fossil resources, while aiming to cut CO2 emissions up to 50%. It meets the same performance as petrochemical indigo while seamlessly integrating into existing dyeing processes without requiring additional investment in commercial dyeing equipment.

Pili’s colors development is based on standardized Life Cycle Assessments (LCAs), ensuring a rigorous process to measure and minimize their environmental impact.

A Partnership Driving Sustainable Transformation in the Industry
Fiber and dye are the two main components of denim products and also the ones with the greatest impact on their production. The partnership between Citizens of Humanity, Pili, and Orta establishes one of the highest ecological standards in the market with the use of regenerative cotton and biobased indigo.

Pili biobased indigo will make its debut in Citizens of Humanity and AGOLDE’s Spring 2025 collections. This long-term partnership between Citizens of Humanity, Orta, and Pili will continue to expand in future collections. The launch will be exclusive on NET-A-PORTER on January 6, 2025, before being extended to agolde.com, citizensofhumanity.com, and other global retailers.

A Key Step Towards the Decarbonization of the Color Industry
Building on this first success, Pili is accelerating the development of coloring solutions for various industrial applications, particularly in the inks, paints, and polymers sectors. The aim is to decarbonize everyday products using high-performance biobased pigments, with the first applicative tests set to begin this year. Pili continues its mission to decarbonize the color industry, paving the way for a sustainable revolution.

Polyester carpet Photo Autoneum
Polyester carpet
19.12.2024

Autoneum optimizes environmental performance of Pure technologies for Renault Emblème

Autoneum has supported Renault Group in the development of Renault Emblème, a low-carbon demonstration car designed to reduce greenhouse gas emissions by 90 percent over its entire life cycle. As a key partner of the project, Autoneum further optimized the environmental performance of its sustainable Pure technologies, which were used for numerous components in the vehicle interior and exterior. Leveraging its proven expertise in the development of lightweight and fully recyclable monomaterials with a high recycled content, as well as in the areas of life cycle analysis (LCA) and product innovation, Autoneum was able to reduce the carbon footprint of its parts and contribute to a significant reduction in vehicle weight for Renault Emblème.

Autoneum has supported Renault Group in the development of Renault Emblème, a low-carbon demonstration car designed to reduce greenhouse gas emissions by 90 percent over its entire life cycle. As a key partner of the project, Autoneum further optimized the environmental performance of its sustainable Pure technologies, which were used for numerous components in the vehicle interior and exterior. Leveraging its proven expertise in the development of lightweight and fully recyclable monomaterials with a high recycled content, as well as in the areas of life cycle analysis (LCA) and product innovation, Autoneum was able to reduce the carbon footprint of its parts and contribute to a significant reduction in vehicle weight for Renault Emblème.

Increasingly stringent regulations to reduce greenhouse gas emissions on a global scale, new directives and the electrification of mobility require innovative approaches from the entire automotive industry. To support vehicle manufacturers in achieving their sustainability targets, Autoneum continuously optimizes the environmental performance of its products and processes: from further increasing the share of recycled content and the end-of-life recyclability of its lightweight technologies to reducing waste and shifting to renewable energy in its production facilities. In addition, the Company is working closely with customers and partners to validate data and products together. One of the most recent examples of such a successful collaboration is Autoneum’s contribution to Renault Emblème.

The Renault Emblème demonstration car emits 90% fewer greenhouse gases over its entire life cycle than a comparable vehicle produced today. To achieve these ambitious decarbonization targets, Renault Group assembled more than twenty suppliers from across the industry to participate in specialized projects in five different areas: eco-design, raw material selection, manufacturing, use and end of life. In addition to providing valuable expertise in the areas of LCA and product development, Autoneum’s contribution entailed the further optimization of its environmentally friendly Pure technologies, which already today are characterized by an excellent sustainability performance across the product life cycle and also include the Company’s growing portfolio of monomaterial technologies made of 100 percent polyester.

Autoneum’s innovative and lightweight materials were used for around thirty fiber-based components in the interior and exterior of Renault Emblème, including the carpet, the underbody panels and wheelhouse outer liners as well the front and rear trunk. Thanks to the high recycled content, the waste-free production process and the excellent recyclability of the materials at the end of their service life, Autoneum was able to reduce drastically the carbon footprint of the components. This outstanding achievement was made possible by further boosting the sustainability performance of existing technologies such as Ultra-Silent, Propylat PET, Hybrid-Acoustics and Autoneum’s monomaterial polyester carpet systems. In addition, the parts contributed to a weight reduction, which positively affected both the carbon footprint and the range of the electric car.

Italian Fashion Brand TWINSET Partners with TrusTrace Graphic: TrusTrace
04.12.2024

Italian Fashion Brand TWINSET Partners with TrusTrace

TrusTrace, a global company with a market-leading platform for product traceability and supply chain compliance in fashion and retail, announced that TWINSET, a high-end Italian fashion brand, has selected their platform to help identify suppliers, support eco-design initiatives, and measure each product’s environmental impact.

TWINSET was established in Carpi (Modena) in 1987. The collections, which initially focused on sophisticated knitwear, expanded over the years to offer, through apparel and accessories, a total look for women and girls.

With a three-year roadmap, results will be reached progressively by scaling-up to ultimately trace the full range of product categories and suppliers. Key objectives are to identify material country of origin, manage supply-chain risk such as forced labour, and enable eco-design by assessing the environmental impact of the product. To support the environmental impact initiative, TrusTrace partnered with a leading life cycle assessment (LCA) solution Peftrust, which feeds traceability data directly to the LCA solution to get the most precise PEF (Product Environmental Footprint) scoring.

TrusTrace, a global company with a market-leading platform for product traceability and supply chain compliance in fashion and retail, announced that TWINSET, a high-end Italian fashion brand, has selected their platform to help identify suppliers, support eco-design initiatives, and measure each product’s environmental impact.

TWINSET was established in Carpi (Modena) in 1987. The collections, which initially focused on sophisticated knitwear, expanded over the years to offer, through apparel and accessories, a total look for women and girls.

With a three-year roadmap, results will be reached progressively by scaling-up to ultimately trace the full range of product categories and suppliers. Key objectives are to identify material country of origin, manage supply-chain risk such as forced labour, and enable eco-design by assessing the environmental impact of the product. To support the environmental impact initiative, TrusTrace partnered with a leading life cycle assessment (LCA) solution Peftrust, which feeds traceability data directly to the LCA solution to get the most precise PEF (Product Environmental Footprint) scoring.

This strategic initiative has especially helped support TWINSET to prepare for incoming regulations such as Digital Product Passports (DPPs) which will be mandatory on textiles sold in Europe by 2030, as well as the Corporate Sustainability Reporting Directive (CSRD), which requires companies to report on their environmental and social impact.

14.11.2024

Twenty Years of Sustainability Report for RadiciGroup

Twenty years have in fact passed since the Group published its first Social Report in 2004, qualifying it as one of the pioneering companies in the realisation of voluntary non-financial reporting. The document measures the Group’s achievements and the actions it has taken to reduce its environmental impact, respect social values, and implement good business management practices.

Over the years, the Report has steadily evolved and is now a true sustainability report that considers all ESG (Environment, Social and Governance) aspects, showing how they are also central to the company's business strategy. Over time, many new topics have been covered, the accuracy of the data has improved and the scope has expanded to include all Group companies: over 30 sites across Asia, the Americas and Europe.

The information contained in the Sustainability Report shows RadiciGroup's strong commitment, starting with the investments made:

Twenty years have in fact passed since the Group published its first Social Report in 2004, qualifying it as one of the pioneering companies in the realisation of voluntary non-financial reporting. The document measures the Group’s achievements and the actions it has taken to reduce its environmental impact, respect social values, and implement good business management practices.

Over the years, the Report has steadily evolved and is now a true sustainability report that considers all ESG (Environment, Social and Governance) aspects, showing how they are also central to the company's business strategy. Over time, many new topics have been covered, the accuracy of the data has improved and the scope has expanded to include all Group companies: over 30 sites across Asia, the Americas and Europe.

The information contained in the Sustainability Report shows RadiciGroup's strong commitment, starting with the investments made:

  • between 2019 and 2023, €278 million were allocated to support the competitiveness of the Group's companies, of which €45 million in 2023 alone;
  • the amount invested in the environment in 2023 and earmarked for the introduction of Best Available Techniques and performance efficiency reached €4.2 million.

Twenty years of reporting have also allowed RadiciGroup to measure the results of the investments it has made, to such an extent that in 2023 it already achieved the first goal of its "From Earth to Earth" Roadmap to 2030, i.e., a Group-wide reduction of 83% in direct CO2 equivalent emissions compared to 2011.

A significant contribution to this result came from the commissioning of an EnviNOx plant at the Radici Chimica plant in Germany, which, thanks to this technological innovation, greatly reduced its direct greenhouse gas emissions (- 92%).

The focus on responsible use of natural resources continues: In 2023, the share of electricity from renewable sources used for production processes was consolidated at 59%. The percentage of water resources saved through the practice of water recycling was also raised to 79%: some of our plants in fact reuse the same water up to 60 times and then return it to the environment. The theme of circular economy remains a cross-cutting one in many of the innovation projects, often also in a collaborative perspective with the rest of the supply chain. In particular, all Radicigroup companies work to contain the generation of scrap and waste through rigorous process management: 73% of all non-hazardous waste was recovered in 2023 and 56% of this was destined for internal recovery.

Even in the product area, measurement is fundamental, which is why RadiciGroup has long used Life Cycle Assessment studies to objectively calculate the environmental impact of its products and introduce environmental footprint mitigation solutions. This commitment is also evidenced by the numerous environmental certifications obtained by RadiciGroup plants.

With a view to promoting collaboration with customers, suppliers, scientific partners or independent experts in order to develop innovative and sustainable technologies or materials, RadiciGroup has strongly promoted open innovation projects: opportunities to stimulate a Group culture increasingly open to change and contamination with different fields of knowledge.

Regarding its employees, the Group has placed significant emphasis on training, particularly in fostering ESG awareness. In fact, in 2023, it organised its first large-scale training program focused on sustainability and circularity, engaging around 240 employees and delivering a total of 1,500 training hours. In addition, an internal human rights survey was launched, the results of which will form the basis for the formulation of a company policy on human rights and diversity.

Source:

RadiciGroup

30.10.2024

World’s first sports t-shirt made from 100% textile waste

For the first time, a piece of clothing is made entirely from textile waste – no bottles, no packaging, no virgin plastic. 100% biorecycled fibers. By developing and industrializing CARBIOS’ enzymatic depolymerization technology to achieve 100% “fiber-to-fiber” recycling, the consortium collectively advances the textile industry's shift towards a circular economy.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and its “fiber-to-fiber” consortium partners On, Patagonia, PUMA, Salomon, and PVH Corp., parent company of Calvin Klein, unveil the world’s first enzymatically recycled polyester garment made from 100% textile waste using CARBIOS’ pioneering biorecycling technology.

For the first time, a piece of clothing is made entirely from textile waste – no bottles, no packaging, no virgin plastic. 100% biorecycled fibers. By developing and industrializing CARBIOS’ enzymatic depolymerization technology to achieve 100% “fiber-to-fiber” recycling, the consortium collectively advances the textile industry's shift towards a circular economy.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and its “fiber-to-fiber” consortium partners On, Patagonia, PUMA, Salomon, and PVH Corp., parent company of Calvin Klein, unveil the world’s first enzymatically recycled polyester garment made from 100% textile waste using CARBIOS’ pioneering biorecycling technology.

This technological feat contributes to advancing textile circularity when, today, the majority of recycled polyester is made from PET bottles, and only 1% of fibers are recycled into new fibers.  The collective achievement marks an important milestone for the consortium’s ultimate aim of demonstrating fiber-to-fiber closed loop using CARBIOS’ biorecycling process at an industrial scale, and marks an important step forward for the textile industry’s shift towards a circular economy.

A plain, white T-shirt was a deliberate choice to showcase the technological achievement that made its production possible from mixed and colored textile waste.  By using CARBIOS’ biorecycling technology, polyester is broken down using enzymes into its fundamental building blocks which are reformed to produce biorecycled polyester whose quality is on par with oil-based virgin polyester.  Petroleum can now be replaced by textile waste as a raw material to produce polyester textiles, that will in turn become raw materials again, thus fueling a circular economy, with the added benefit of a lower carbon footprint and avoidance of landfill or incineration.

The t-shirt’s production began with all consortium members (On, Patagonia, PUMA, PVH Corp. and Salomon) supplying rolls and production cutting scraps to CARBIOS in Clermont-Ferrand, France.  This textile waste consisted of some mixed blends with cotton or elastane, as well as various treatments (such as durable water repellent) and dyes which render them complex to recycle using conventional methods. The collected waste was deconstructed into its original monomers, PTA and MEG, using CARBIOS’ biorecycling technology at its pilot facility. The resulting monomers were then repolymerized, spun into yarn and woven into new fabric by external partners, demonstrating the seamless integration into existing manufacturing processes.  The resulting sports t-shirt made from 100% textile waste meets the quality standards and sustainability objectives of the apparel brands present in the “fiber-to-fiber” consortium.

CARBIOS’ demonstration plant in Clermont-Ferrand, France, has been up and running since 2021, and its first commercial plant, the world’s first industrial-scale enzymatic PET recycling plant, is currently under construction in Longlaville, France.  In addition, CARBIOS recently announced several letters of intent with PET producers in Asia and Europe, confirming global interest in its biorecycling technology and advancing the international roll-out of its licensing model.

Source:

Carbios

Graphic LM Wind Power
14.10.2024

Wind Turbine Blade Recycling: ZEBRA Project Demonstrates Closed-Loop System

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

  • Arkema developed and validated the generation of recycled Elium® monomer through thermolysis, and, together with its subsidiary Bostik, an innovative adhesive for the blade assembly that is recycled together with Elium® paving the way for industrial-scale implementation.
  • Owens Corning successfully recovered glass fiber at pilot scale, enabling its reintroduction into the production process for their Sustaina® product line.
  • LM Wind Power manufactured two wind turbine blades with Arkema’s Elium® resin and Owens Corning’s Ultrablade® fabrics; one blade including a large structural element made with recycled Elium® resin.
  • SUEZ provided cutting and grinding expertise for processing the blades.
  • CANOE R&D center optimized recycling for production and carbon blade waste, additionally developing methods for repurposing waste streams through mechanical recycling.
  • ENGIE conducted a comprehensive life cycle analysis demonstrating the environmental benefits of closed-loop ZEBRA blades and validated their economic viability.

A Sustainable Future for Wind Energy
The ZEBRA project successfully recycled Elium® resin and Ultrablade® fabrics from wind turbine blades and manufacturing waste, reformulating them back into usable materials. This closed-loop process addresses the growing challenge of end-of-life blade management within the wind energy industry.

  • Recycled Elium® Monomer: Arkema achieved a yield of over 75% in the thermolysis process, paving the way for industrial-scale production of recycled resin.
  • Recovered Glass Fiber: Owens Corning successfully retrieved glass fiber for remelting and reintegration into their Sustaina® product line.
  • Life Cycle and Cost Analysis: ENGIE's study confirmed the significant environmental benefits and economic viability of ZEBRA blades when assuming a closed-loop recycling system from production to end-of-life.

ZEBRA blade using Elium® thermoplastic resin, Bostik’s highly compatible adhesive and Ultrablade® fabrics is bringing the best closed-loop recycling solution compared to traditional thermoset system. The operating cost and investments for recycling facility are significantly lowered. The CO2 emission linked to the recycling operations is reduced as well. All those results are making the closed-loop recycling solution of ZEBRA blades a viable option both on economic and environmental standpoints.

By demonstrating the feasibility of full wind turbine blade recycling, the ZEBRA project paves the way for a more sustainable future in the wind energy sector.

Source:

LM Wind Power

24.09.2024

CARBIOS and Selenis: Strategic partnership to produce PETG

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SELENIS, a leading supplier of high-quality specialty polyester solutions, have signed a Letter of Intent to cooperate in the production of PETG. By leveraging CARBIOS’ enzymatic depolymerization technology and Selenis’ expertise in polymerization, the companies aim to develop a premium, sustainable PETG material made from PET waste for the Cosmetic and Healthcare packaging sectors across Europe and the U.S. This partnership follows a two-year collaboration between the two companies and represents a significant advancement in the plastic recycling industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SELENIS, a leading supplier of high-quality specialty polyester solutions, have signed a Letter of Intent to cooperate in the production of PETG. By leveraging CARBIOS’ enzymatic depolymerization technology and Selenis’ expertise in polymerization, the companies aim to develop a premium, sustainable PETG material made from PET waste for the Cosmetic and Healthcare packaging sectors across Europe and the U.S. This partnership follows a two-year collaboration between the two companies and represents a significant advancement in the plastic recycling industry.

PETG is an indispensable packaging material in both the cosmetics and healthcare industries due to its exceptional clarity, durability, mechanical and chemical resistance. CARBIOS’ enzymatic depolymerization solution breaks down all types of PET waste into PTA and MEG monomers, which are then transformed into PETG through Selenis’ advanced polymerization processes. Thanks to the purity of these monomers, PETG issued from biorecycling presents the same properties as virgin PETG, allowing for products packaged in thick, molded pots and lids to be protected and presented attractively. In the medical and pharmaceutical industries, PETG properties are also critical for guaranteeing top packaging performance, sterility, transparency and optical brightness, making it an ideal choice for complex medical device packaging, pharmaceuticals blisters, or any other packaging of diagnostic equipment. The material’s value is therefore further underscored by combining a sustainable recycling solution whilst guaranteeing all needed properties, aligning with consumer sustainability demands and stringent regulatory requirements.

CARBIOS and Selenis’ partnership is the result of extensive pilot and industrial polymerization trials that have refined the quality of the end product. The result is high-specialty PETG grades issued from biorecycling that meet the strict requirements of sectors like cosmetics and healthcare, where Selenis has a strong presence through its Selcare brand.

More information:
Carbios PETG
Source:

Carbios

19.09.2024

First Home Compost biodegradable Shrinksleeve Labels

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SLEEVER®, a French family-owned group International SME and innovative leader in shrinksleeve label technology, announced the signing of an exclusive, long-term contract to jointly develop Home Compost biodegradable mono-oriented transverse shrink films.

This partnership includes a master supply agreement of CARBIOS Active, the enzymatic solution developed by CARBIOS for PLA biodegradation. CARBIOS Active is integrated directly into the transformation process to make these PLA-rich films Home Compost, while guaranteeing quality compost. These films will enable sleeves to be used in applications as diverse as labeling, wrapping and securing packaging for the luxury goods and mass retail markets, offering an eco-designed solution for packaging with no dedicated value chain.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SLEEVER®, a French family-owned group International SME and innovative leader in shrinksleeve label technology, announced the signing of an exclusive, long-term contract to jointly develop Home Compost biodegradable mono-oriented transverse shrink films.

This partnership includes a master supply agreement of CARBIOS Active, the enzymatic solution developed by CARBIOS for PLA biodegradation. CARBIOS Active is integrated directly into the transformation process to make these PLA-rich films Home Compost, while guaranteeing quality compost. These films will enable sleeves to be used in applications as diverse as labeling, wrapping and securing packaging for the luxury goods and mass retail markets, offering an eco-designed solution for packaging with no dedicated value chain.

More information:
Carbios PLA shrinksleeve label
Source:

Carbios

Autoneum: Fully recyclable trunk side trim (c) Autoneum
15.07.2024

Autoneum: Fully recyclable trunk side trim

With the fully recyclable 100% polyester trunk side trim, Autoneum is putting the rear of the vehicle at the center of its efforts for a more circular economy in the automotive industry. The latest addition to Autoneum’s growing portfolio of sustainable monomaterial products made entirely from polyester is based on the existing Pure technology Propylat PET. The component demonstrates an excellent environmental performance in terms of recycled content, waste-free manufacturing and end-of-life recyclability.

With the fully recyclable 100% polyester trunk side trim, Autoneum is putting the rear of the vehicle at the center of its efforts for a more circular economy in the automotive industry. The latest addition to Autoneum’s growing portfolio of sustainable monomaterial products made entirely from polyester is based on the existing Pure technology Propylat PET. The component demonstrates an excellent environmental performance in terms of recycled content, waste-free manufacturing and end-of-life recyclability.

New regulations such as the revised End-of-Life Vehicles Directive in Europe are accelerating the automotive industry’s transition from a linear to a circular economy. In this context, the recyclability of vehicles at the end of their service life is becoming increasingly important. This in turn raises the demand for automotive components that have an excellent environmental performance across the product life cycle and at the same time meet the highest standards of material quality and technical performance. Autoneum’s new 100% polyester trunk side trim helps customers achieve their ambitious sustainability targets while offering optimum durability, design flexibility and aesthetics.

As with Autoneum’s environmentally friendly monomaterial carpet systems, the new 100% polyester trunk side trim is fully recyclable. Production cut-offs can be reclaimed, processed and reused, ensuring a closed material loop. Thanks to Autoneum’s high-value recycling concept, the recycled fibers can also be granulated and spun into new fibers, which reduces the need for virgin raw materials and thus conserves natural resources. The carrier material is based on the lightweight Autoneum Pure technology Propylat PET and contains at least 50% recycled fibers. Like all variants of Propylat, the technology features a high proportion of recycled material and can be produced waste-free thanks to its complete vertical integration. In addition, Propylat PET consists of 100% PET and is therefore fully recyclable. The new monomaterial trunk side trim made exclusively from polyester is also available under the Autoneum Blue sustainability label. Blue products feature at least 30% recycled PET that was collected from coastal areas, thus making an important contribution to preventing plastic pollution in the oceans.

Autoneum’s sustainable concept for 100% polyester trunk components is not limited to side trim but can also be applied to tailgate and other trunk trim. Thanks to their unique material composition, the Propylatbased trunk trim parts are lightweight and sound-absorbing, thus contributing to the attenuation of tire and rear e-motor noise. In addition, their geometry can be tailored to individual customer needs while the textile surface improves the overall aesthetic of the parts and at the same time offers a high resistance to scratches. Autoneum’s eco-friendly 100% polyester trunk trim is available in Europe, North America and China.

Source:

Autoneum Holding AG

09.07.2024

Asahi Kasei presents fibrillation finishing technology and LCA study report

Bemberg™ by Asahi Kasei presents its Velutine™ Evo brand, a finishing refinement technology developed by the Japanese laboratories of Asahi Kasei for Bemberg™. It offers a new way to generate fibrillation, featuring fabrics with a more “quiet-relaxed” appearance combined with a delicate and sensitive touch. VelutineTM Evo also brings environmental, global warming (CO2 emission) and water profiles for the benefit of BembergTM partners in the manufacture.

Bemberg™ by Asahi Kasei presents its Velutine™ Evo brand, a finishing refinement technology developed by the Japanese laboratories of Asahi Kasei for Bemberg™. It offers a new way to generate fibrillation, featuring fabrics with a more “quiet-relaxed” appearance combined with a delicate and sensitive touch. VelutineTM Evo also brings environmental, global warming (CO2 emission) and water profiles for the benefit of BembergTM partners in the manufacture.

The roll out of the evolved VelutineTM Evo technology will start its journey and activation with Infinity, a BembergTM partner and textile manufacturer located in Rovereto, in the Trentino Alto Adige area of Italy. Research and experimentation with new materials and finishings are part of Infinity’s daily work and results are guaranteed through attention to traceability, the use of certifications, and quality control throughout the process. Each material is closely selected from a sustainability standpoint, while the chemical impact of treating textiles is something that they also take extremely seriously. Infinity guarantees the traceability of every product that they make. Every step of the working process can be traced, thanks to a network of trusted suppliers who share their ethos and values.

Asahi Kasei is also releasing the LCA study report - Life Cycle Assessment. The study evaluated and quantified the environmental impact indicators associated with the technological processes involved in the production of BembergTM dyed fabric through the application of the traditional technology of fibrillation. LCA report study made by Centro Tessile Serico Sostenibile confirms all the projected data savings:

  • Global Warming Potential: 30% reduction in greenhouse gas emissions
  • Water consumption for ennobling process: 40% reduction
Source:

Asahi Kasei / C.L.A.S.S. Eco Hub

12.06.2024

B.I.G.powers Cushion Vinyl production plant with green energy

Beaulieu International Group is investing €5 million to transition the fossil based energy supply of its Cushion Vinyl production plant in Wielsbeke, Belgium, to bio mass generated steam supply. A transition to renewable energy. To this end, B.I.G. is collaborating with A&U Energie, a company that converts non-recyclable wood waste into green energy and heat. This strategic move aligns with B.I.G.'s commitment to reach ‘net zero’ for their operations by 2030.

The transition from fossil energy to green steam and the switch to waste gas treatment without direct fossil energy brings significant benefits. First, the switch in technology will lead to 88% reduction in their Belgian Cushion Vinyl carbon footprint related to heat supply and waste gas treatment, compared to the current emissions. Second, the use of steam heating and electric energy provides improved energy efficiency. In addition, the use of steam systems is known for its safety and reliability, providing a safer and more stable heating solution for the Belgian Cushion Vinyl facility. Moreover, the switch to steam and electric energy allows for the use of green electricity in the future, if available.

Beaulieu International Group is investing €5 million to transition the fossil based energy supply of its Cushion Vinyl production plant in Wielsbeke, Belgium, to bio mass generated steam supply. A transition to renewable energy. To this end, B.I.G. is collaborating with A&U Energie, a company that converts non-recyclable wood waste into green energy and heat. This strategic move aligns with B.I.G.'s commitment to reach ‘net zero’ for their operations by 2030.

The transition from fossil energy to green steam and the switch to waste gas treatment without direct fossil energy brings significant benefits. First, the switch in technology will lead to 88% reduction in their Belgian Cushion Vinyl carbon footprint related to heat supply and waste gas treatment, compared to the current emissions. Second, the use of steam heating and electric energy provides improved energy efficiency. In addition, the use of steam systems is known for its safety and reliability, providing a safer and more stable heating solution for the Belgian Cushion Vinyl facility. Moreover, the switch to steam and electric energy allows for the use of green electricity in the future, if available.

In addition to transitioning to 100% green energy, Beaulieu International Group is also dedicated to advancing the circular economy. These efforts encompass various initiatives, including increasing the use of recycled and reused materials. For example, 50% of B.I.G.'s PVC floor coverings are already fully recyclable. Additionally, they are actively working to reduce the environmental impact of their solutions by 42% at the end of their life cycle, striving to minimize product emissions to nearly zero, and eliminating pollutants. Recently at the Belgian Flanders Flooring Days, Beauflor launched its Twilight collection, a cushion vinyl floor created with PVC from 100% bio and circular sources resulting in a 40% reduced CO₂ footprint compared to their conventional heterogeneous CV flooring for residential applications

Furthermore, their cushion vinyl brand Beauflor launched the ReLive concept, a specialized program designed for a circular future, ensuring the collection, sorting, and recycling of PVC flooring cutting waste. Currently, this program focuses on post-installation waste and is exclusively available in France, with the goal of expanding its reach to other EU countries.

Through the establishment of strategic partnerships dedicated to finding innovative ways to repurpose waste materials previously slated for incineration, B.I.G. underscores its commitment to sustainable solutions and collaboration with like-minded organizations. 75% of B.I.G.'s post-industrial waste is now being successfully recycled.

Source:

Beaulieu International Group

05.06.2024

EFI: Single-Pass Production Inkjet Printing for Textiles at drupa 2024

Electronics For Imaging, Inc. reported that at drupa 2024, running through 7 June at Messe Düsseldorf, it is highlighting its expertise in single-pass printing solutions for packaging, display graphics, and textile markets.

Visitors to EFI’s stand will see some of the companies latest single-pass innovations live, including the Packsize® EFI™ X5® Nozomi, a full-colour, on-demand, right-sized box system that prints, cuts, creases, glues, and erects customised boxes at the rate of up to one box every 6 seconds, and the EFI Nozomi 14000 SD single pass printer for sign and display. The company is also showcasing a vast array of applications produced on the new Nozomi 14000 AQ true water-based, single pass printer for corrugated packaging and displays and the Nozomi 12000 MP single-pass technology for direct-to-metal package printing, as well as the next generation EFI Reggiani BOLT XS single-pass textile printer.

In addition to showcasing single-pass inkjet printing at the show, EFI is also introducing two new software solutions that add to the value of single-pass technology, including:

Electronics For Imaging, Inc. reported that at drupa 2024, running through 7 June at Messe Düsseldorf, it is highlighting its expertise in single-pass printing solutions for packaging, display graphics, and textile markets.

Visitors to EFI’s stand will see some of the companies latest single-pass innovations live, including the Packsize® EFI™ X5® Nozomi, a full-colour, on-demand, right-sized box system that prints, cuts, creases, glues, and erects customised boxes at the rate of up to one box every 6 seconds, and the EFI Nozomi 14000 SD single pass printer for sign and display. The company is also showcasing a vast array of applications produced on the new Nozomi 14000 AQ true water-based, single pass printer for corrugated packaging and displays and the Nozomi 12000 MP single-pass technology for direct-to-metal package printing, as well as the next generation EFI Reggiani BOLT XS single-pass textile printer.

In addition to showcasing single-pass inkjet printing at the show, EFI is also introducing two new software solutions that add to the value of single-pass technology, including:

  • EFInsight, cloud-based intelligence that optimises the operational efficiency and TCO of EFI packaging, display graphics, or textile digital inkjet printing systems with cloud-based data collection, analytics, reporting, proactive maintenance, and process control tools. It delivers the insights needed to understand the economics of production and the tools to maximise inkjet printer investments. It is currently available for EFI Nozomi single-pass printers for packaging.
  • EFI’s Life Cycle Assessment tool for Nozomi printers, which documents Nozomi’s environmental footprint, developed in partnership with Clean Agency. This tool, which EFI customers and their customers can use, analyses their CO2 emissions as part of their overall packaging Extended Producer Responsibility (EPR), and has proven that printing corrugated materials on the EFI Nozomi digital press reduces Global Warming Potential (GWP) by over 50% when compared to analogue printing technologies.
Source:

Electronics For Imaging, Inc.

17.04.2024

Stahl: 2023 ESG Report

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Stahl has published its 2023 Environmental, Social and Governance (ESG) Report. The report outlines Stahl's recent progress on its ESG Roadmap to 2030 and the steps the company is taking to live its purpose of Touching lives, for a better world.

Stahl’s ESG Roadmap to 2030 includes interim targets for 2023, making this a year in which Stahl reached several important milestones. For example, the company reduced its scope 1 and 2 greenhouse gas (GHG) emissions by 22% versus 2022. Furthermore, in 2023 the Science Based Targets initiative (SBTi) validated Stahl's scope 1, 2 and 3 targets, making it one of the first coatings companies on the SBTi-approved list.

To reduce its GHG emissions, Stahl is actively increasing its use of clean energy. At the end of 2023, renewable energy generation, such as solar panels, had been installed at four Stahl sites, compared to its target of three.

Measuring – and reducing – the impact of products is an important step in the company’s scope 3 emissions. As such, 353 Stahl products now have either life cycle assessment (LCA) or product carbon footprint (PCF) data, far exceeding the 2023 target of 50.
 
New ratings and certifications
In 2023, 2,161 of Stahl's products were certified by Zero Discharge of Hazardous Chemicals (ZDHC), in line with ZDHC MRSL V3.1. These products represented 70% of the company’s sales revenue, demonstrating increased demand for coatings with a lower risk to health and the environment.

Stahl was also proud to achieve a Platinum rating from EcoVadis for the second year in a row, which places it in the top 1% of companies evaluated. Stahl also exceeded its 2023 target of an average EcoVadis rating of at least 60/100 for their top ten suppliers, with an average rating of 68/100 reported in December 2023.
Fostering a safe and welcoming work environment

A core pillar of Stahl’s ESG approach is how it supports its employees’ physical and mental well-being. The 2023 ESG Report outlines several examples of this commitment, such as improvement in its key safety KPIs for the third year in a row.

Besides keeping people safe, Stahl continues to make progress in fostering an open and inclusive workplace. For example, in support of diversity, equity and inclusion (DEI), Stahl appointed its first female leadership team member, trained 98% of its staff in DEI and established DEI committees at all Stahl sites. In addition, to strengthen communication, engagement and collaboration across the workforce, Stahl also established an internal workplace hub, MyStahl.

More information:
Stahl Coatings ESG
Source:

Stahl

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

Carbios published Sustainability Report for 2022 (c) Carbios
29.12.2023

Carbios published 2022 Sustainability Report

CARBIOS published its second Sustainability Report with 2022 as the reference year. Like the first, this report is not subject to any publication obligation for the company, confirms CARBIOS' commitment and desire for transparency in terms of environmental, social and governance (ESG) initiatives.

In 2022, several objectives were achieved:

CARBIOS published its second Sustainability Report with 2022 as the reference year. Like the first, this report is not subject to any publication obligation for the company, confirms CARBIOS' commitment and desire for transparency in terms of environmental, social and governance (ESG) initiatives.

In 2022, several objectives were achieved:

  • Increase of the number of independent directors on the Board of Directors,
  • Completion of the first carbon footprint report to sustainably reduce greenhouse gas emissions,
  • Consolidation of the life cycle analysis (LCA) of the PET enzymatic depolymerization process,
  • Continuation of employee training in safety and environmental issues.

In October 2023, CARBIOS appointed Bénédicte Garbil as Senior Vice President of Corporate Affairs and Sustainability: "In 2022, CARBIOS strengthened its governance, building a solid foundation for our continued growth and commitment to Corporate Social Responsibility (CSR). This strategic development demonstrates our commitment to operational excellence and transparency. We have integrated the principles of sustainability, ethics and environmental responsibility at the heart of our governance, putting CSR at the forefront of our actions."

Source:

Carbios

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

In combination with Oerlikon's atmos.io digital platform, Haelixa's DNA marker technology makes the clear traceability of textile products a reality. Image Oerlikon Textile GmbH & Co. KG
20.11.2023

Man-made fiber yarns with DNA: Supply chains in textile end products traceable

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

Smart factory: total transparency with atmos.io
The concept is complemented by atmos.io, Oerlikon's digital platform, which records and evaluates extensive production and process data during the yarn manufacturing process. Atmos.io gives the yarn its digital identity during its time on Oerlikon systems, from the melt to the packaged package. This technology has been used successfully for some time to monitor the production process. With atmos.io, deviations in process parameters and yarn data can be identified and rectified within a very short time, which in turn keeps the yarn quality stable and reduces waste rates.

Combining both technologies enables clear traceability of the yarn produced, even in the downstream process steps. Hence, the yarn's components, qualities, manufacturing conditions, and origin are traced beyond doubt in the finished garment. "The unique DNA carries the 'roots' of the yarn digitally recorded in atmos.io into the everyday life of the end consumer," says Jochen Adler, CTO at Oerlikon Manmade Fibers. The textile end products meet the requirements of the digital product passport required by the EU, which contains the information needed to assess their life cycle assessment and circularity. Initial long-term tests have shown 100% traceability of the yarns in the POY and FDY spinning process. If the yarn manufacturer relies on the atmos.io platform, production systems can be adapted relatively easily to use the DNA markers.

Source:

Oerlikon Textile GmbH & Co. KG

A Carbios employee loads textile onto the preparation line Photo Carbios
09.10.2023

Carbios: New textile preparation line for polyester recycling

Carbios, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, inaugurated its textile preparation line at its demonstration plant in Clermont-Ferrand.

To streamline the textile preparation phase, which is currently carried out by hand or on several lines, Carbios has developed a fully integrated and automated line that transforms textile waste from used garments or cutting scraps into raw material suitable for depolymerization with its enzymatic biorecycling process.  

The patented line integrates all preparation stages (shredding and extraction of hard points such as buttons or fasteners), and provides Carbios with a high-performance, scalable development tool. The platform will help validate the biorecycling technology for textiles at demonstration plant scale (by 2024), and provides Carbios with expertise in working with collection and sorting operators to specify the quality of textiles and the preparation steps needed to make them suitable for enzymatic recycling.

Carbios, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, inaugurated its textile preparation line at its demonstration plant in Clermont-Ferrand.

To streamline the textile preparation phase, which is currently carried out by hand or on several lines, Carbios has developed a fully integrated and automated line that transforms textile waste from used garments or cutting scraps into raw material suitable for depolymerization with its enzymatic biorecycling process.  

The patented line integrates all preparation stages (shredding and extraction of hard points such as buttons or fasteners), and provides Carbios with a high-performance, scalable development tool. The platform will help validate the biorecycling technology for textiles at demonstration plant scale (by 2024), and provides Carbios with expertise in working with collection and sorting operators to specify the quality of textiles and the preparation steps needed to make them suitable for enzymatic recycling.

More information:
Carbios enzymatic textile recycling
Source:

Carbios