From the Sector

Reset
28 results
21.01.2025

45 Years Trevira CS®

Indorama Ventures exhibited the Trevira CS® brand together with 17 Trevira CS partner companies at the Heimtextil trade fair in Frankfurt, Germany, from January 14-17, 2025.

This year Trevira CS is celebrating its 45th anniversary! In 1980 Trevira CS® was launched on the market, at that time a pioneer for permanently flame retardant textiles whose flame retardant properties neither wash out nor are lost through ageing or use. They are characterized by the fact that they meet all essential fire protection standards without the need for a chemical finish. Fabrics made from specially produced flame-retardant polyester can be labeled as Trevira CS after passing a brand test. Samples, brochures, pictures and short anecdotes from 45 years of Trevira CS will be on display in a special area of the exhibition stand, inviting visitors to browse and smile.

Indorama Ventures exhibited the Trevira CS® brand together with 17 Trevira CS partner companies at the Heimtextil trade fair in Frankfurt, Germany, from January 14-17, 2025.

This year Trevira CS is celebrating its 45th anniversary! In 1980 Trevira CS® was launched on the market, at that time a pioneer for permanently flame retardant textiles whose flame retardant properties neither wash out nor are lost through ageing or use. They are characterized by the fact that they meet all essential fire protection standards without the need for a chemical finish. Fabrics made from specially produced flame-retardant polyester can be labeled as Trevira CS after passing a brand test. Samples, brochures, pictures and short anecdotes from 45 years of Trevira CS will be on display in a special area of the exhibition stand, inviting visitors to browse and smile.

In the anniversary year the focus of the Trevira CS® joint stand will be on permanent flame retardancy and the sustainability approaches of Trevira CS fabrics, which are known for their outstanding properties and versatility in the textile industry. Not only will the latest yarn and fabric developments from the 17 partners be presented, the three sustainability approaches from 1. pre-consumer recycling, 2. the Trevira CS take-back concept in cooperation with the company ALTEX Textil-Recycling GmbH & Co. KG in Gronau, Germany and 3. developments from chemically recycled raw material, but also all submissions to the Trevira CS Fabric Competition 2025. This encouraged Trevira CS participants to explore the interfaces between permanent flame retardancy, textile design, functionality and safety and to submit articles for five different categories.

The BREATHAIR® brand, a 3D upholstery material, was also be presented at the trade fair. This innovative and recyclable product has been specially developed for the upholstery industry and offers new possibilities for sustainable and comfortable furniture designs. Thanks to the nature of BREATHAIR®, it can be recycled at the end of its life cycle . Visitors to the trade fair will have the opportunity to experience the unique comfort of BREATHAIR® up close in a seating lab.

The Deja™ brand is an integral part of Indorama Ventures' commitment to long-term sustainability through recycling and bio-based materials. The product portfolio includes chips, as well as various staple fibers and filament yarns in multiple titer and yarn specifications.

In cooperation with Auping and TWE, Indorama Ventures and Deja™ developed an innovative mattress consisting of two basic components. This new design allows for easier disassembly and therefore more efficient recycling. The partnership aims to promote the circular economy and reduce the environmental impact of mattresses. By using recyclable materials and reducing waste, the companies are actively contributing to a more sustainable future.

Source:

Indorama Ventures Public Company Limited

Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo Photo (c) Citizens of Humanity Group
Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo
06.01.2025

Pili partners with Citizens of Humanity and Orta

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili has developed unique processes combining fermentation and organic chemistry to offer a high-performance, eco-friendly alternative to petrochemical dyes. Their ecological alternative significantly reduces the use of toxic chemicals and fossil resources, while aiming to cut CO2 emissions up to 50%. It meets the same performance as petrochemical indigo while seamlessly integrating into existing dyeing processes without requiring additional investment in commercial dyeing equipment.

Pili’s colors development is based on standardized Life Cycle Assessments (LCAs), ensuring a rigorous process to measure and minimize their environmental impact.

A Partnership Driving Sustainable Transformation in the Industry
Fiber and dye are the two main components of denim products and also the ones with the greatest impact on their production. The partnership between Citizens of Humanity, Pili, and Orta establishes one of the highest ecological standards in the market with the use of regenerative cotton and biobased indigo.

Pili biobased indigo will make its debut in Citizens of Humanity and AGOLDE’s Spring 2025 collections. This long-term partnership between Citizens of Humanity, Orta, and Pili will continue to expand in future collections. The launch will be exclusive on NET-A-PORTER on January 6, 2025, before being extended to agolde.com, citizensofhumanity.com, and other global retailers.

A Key Step Towards the Decarbonization of the Color Industry
Building on this first success, Pili is accelerating the development of coloring solutions for various industrial applications, particularly in the inks, paints, and polymers sectors. The aim is to decarbonize everyday products using high-performance biobased pigments, with the first applicative tests set to begin this year. Pili continues its mission to decarbonize the color industry, paving the way for a sustainable revolution.

30.10.2024

World’s first sports t-shirt made from 100% textile waste

For the first time, a piece of clothing is made entirely from textile waste – no bottles, no packaging, no virgin plastic. 100% biorecycled fibers. By developing and industrializing CARBIOS’ enzymatic depolymerization technology to achieve 100% “fiber-to-fiber” recycling, the consortium collectively advances the textile industry's shift towards a circular economy.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and its “fiber-to-fiber” consortium partners On, Patagonia, PUMA, Salomon, and PVH Corp., parent company of Calvin Klein, unveil the world’s first enzymatically recycled polyester garment made from 100% textile waste using CARBIOS’ pioneering biorecycling technology.

For the first time, a piece of clothing is made entirely from textile waste – no bottles, no packaging, no virgin plastic. 100% biorecycled fibers. By developing and industrializing CARBIOS’ enzymatic depolymerization technology to achieve 100% “fiber-to-fiber” recycling, the consortium collectively advances the textile industry's shift towards a circular economy.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and its “fiber-to-fiber” consortium partners On, Patagonia, PUMA, Salomon, and PVH Corp., parent company of Calvin Klein, unveil the world’s first enzymatically recycled polyester garment made from 100% textile waste using CARBIOS’ pioneering biorecycling technology.

This technological feat contributes to advancing textile circularity when, today, the majority of recycled polyester is made from PET bottles, and only 1% of fibers are recycled into new fibers.  The collective achievement marks an important milestone for the consortium’s ultimate aim of demonstrating fiber-to-fiber closed loop using CARBIOS’ biorecycling process at an industrial scale, and marks an important step forward for the textile industry’s shift towards a circular economy.

A plain, white T-shirt was a deliberate choice to showcase the technological achievement that made its production possible from mixed and colored textile waste.  By using CARBIOS’ biorecycling technology, polyester is broken down using enzymes into its fundamental building blocks which are reformed to produce biorecycled polyester whose quality is on par with oil-based virgin polyester.  Petroleum can now be replaced by textile waste as a raw material to produce polyester textiles, that will in turn become raw materials again, thus fueling a circular economy, with the added benefit of a lower carbon footprint and avoidance of landfill or incineration.

The t-shirt’s production began with all consortium members (On, Patagonia, PUMA, PVH Corp. and Salomon) supplying rolls and production cutting scraps to CARBIOS in Clermont-Ferrand, France.  This textile waste consisted of some mixed blends with cotton or elastane, as well as various treatments (such as durable water repellent) and dyes which render them complex to recycle using conventional methods. The collected waste was deconstructed into its original monomers, PTA and MEG, using CARBIOS’ biorecycling technology at its pilot facility. The resulting monomers were then repolymerized, spun into yarn and woven into new fabric by external partners, demonstrating the seamless integration into existing manufacturing processes.  The resulting sports t-shirt made from 100% textile waste meets the quality standards and sustainability objectives of the apparel brands present in the “fiber-to-fiber” consortium.

CARBIOS’ demonstration plant in Clermont-Ferrand, France, has been up and running since 2021, and its first commercial plant, the world’s first industrial-scale enzymatic PET recycling plant, is currently under construction in Longlaville, France.  In addition, CARBIOS recently announced several letters of intent with PET producers in Asia and Europe, confirming global interest in its biorecycling technology and advancing the international roll-out of its licensing model.

Source:

Carbios

Graphic LM Wind Power
14.10.2024

Wind Turbine Blade Recycling: ZEBRA Project Demonstrates Closed-Loop System

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

The ZEBRA (Zero wastE Blade ReseArch) project marks a significant leap forward in the recycling and circular economy for wind turbine blades. This collaborative effort demonstrates a breakthrough in the complete recycling of thermoplastic blades achieving significant environmental and economic benefits.

The ZEBRA project is a unique partnership led by the French Institute for Technological Research, IRT Jules Verne. Joining forces are industry leaders Arkema (resin supplier), Owens Corning (glass fiber supplier), LM Wind Power (blade manufacturer), SUEZ (dismantling and waste processing), CANOE R&D center (recycling technology), and ENGIE (life cycle analysis).

Each company played a crucial role in the development of the closed-loop recycling process:

  • Arkema developed and validated the generation of recycled Elium® monomer through thermolysis, and, together with its subsidiary Bostik, an innovative adhesive for the blade assembly that is recycled together with Elium® paving the way for industrial-scale implementation.
  • Owens Corning successfully recovered glass fiber at pilot scale, enabling its reintroduction into the production process for their Sustaina® product line.
  • LM Wind Power manufactured two wind turbine blades with Arkema’s Elium® resin and Owens Corning’s Ultrablade® fabrics; one blade including a large structural element made with recycled Elium® resin.
  • SUEZ provided cutting and grinding expertise for processing the blades.
  • CANOE R&D center optimized recycling for production and carbon blade waste, additionally developing methods for repurposing waste streams through mechanical recycling.
  • ENGIE conducted a comprehensive life cycle analysis demonstrating the environmental benefits of closed-loop ZEBRA blades and validated their economic viability.

A Sustainable Future for Wind Energy
The ZEBRA project successfully recycled Elium® resin and Ultrablade® fabrics from wind turbine blades and manufacturing waste, reformulating them back into usable materials. This closed-loop process addresses the growing challenge of end-of-life blade management within the wind energy industry.

  • Recycled Elium® Monomer: Arkema achieved a yield of over 75% in the thermolysis process, paving the way for industrial-scale production of recycled resin.
  • Recovered Glass Fiber: Owens Corning successfully retrieved glass fiber for remelting and reintegration into their Sustaina® product line.
  • Life Cycle and Cost Analysis: ENGIE's study confirmed the significant environmental benefits and economic viability of ZEBRA blades when assuming a closed-loop recycling system from production to end-of-life.

ZEBRA blade using Elium® thermoplastic resin, Bostik’s highly compatible adhesive and Ultrablade® fabrics is bringing the best closed-loop recycling solution compared to traditional thermoset system. The operating cost and investments for recycling facility are significantly lowered. The CO2 emission linked to the recycling operations is reduced as well. All those results are making the closed-loop recycling solution of ZEBRA blades a viable option both on economic and environmental standpoints.

By demonstrating the feasibility of full wind turbine blade recycling, the ZEBRA project paves the way for a more sustainable future in the wind energy sector.

Source:

LM Wind Power

organic cotton Uganda © Cotonea
08.10.2024

Organic cotton brand Cotonea: Transparency offensive in environmental accounting

On the occasion of World Cotton Day 2024, Cotonea presented comprehensive CO2 and energy analyses of a total of 460 fabrics for the first time. Unlike conventional life cycle assessments, the brand analyzes its entire value chain from the cotton plant to the finished fabric and measures energy consumption and associated CO2 emissions in detail. This enables comprehensive transparency and creates comparability.

“Our analyses and the consistent use of renewable energies along the entire supply chain show that some of our fabrics still act as CO2 sinks even after finishing. This is a clear signal of our commitment to environmental protection,” says Roland Stelzer, Managing Director of the long-established company Elmer & Zweifel and founder of the Cotonea brand.

On the occasion of World Cotton Day 2024, Cotonea presented comprehensive CO2 and energy analyses of a total of 460 fabrics for the first time. Unlike conventional life cycle assessments, the brand analyzes its entire value chain from the cotton plant to the finished fabric and measures energy consumption and associated CO2 emissions in detail. This enables comprehensive transparency and creates comparability.

“Our analyses and the consistent use of renewable energies along the entire supply chain show that some of our fabrics still act as CO2 sinks even after finishing. This is a clear signal of our commitment to environmental protection,” says Roland Stelzer, Managing Director of the long-established company Elmer & Zweifel and founder of the Cotonea brand.

Precise data
Cotonea examined the CO2 and energy footprint for a total of 460 different fabrics so precisely that even differences in colors, such as yellow or black, could be determined exactly. Only the energy consumption for the yarn dyeing required for a few fabrics and means of transportation such as trucks, ships and trains as well as the assessment of primary energy sources are based on average values. “Instead of blanket CO2 footprints or LCAs, we at Cotonea document exactly how our fabrics are manufactured and how much CO2 and energy are consumed in the individual production stages,” emphasizes Stelzer.

Some fabrics act as CO2 absorbers even after finishing. This is partly due to the natural CO2-binding properties of cotton fibers in organic cultivation and partly due to the use of hydropower and solar systems in the production facilities.

Advanced technology for comprehensive sustainability
For the analysis, Cotonea, with the support of the Industrieverband Veredelung - Garne - Gewebe - Technische Textilien e.V. (IVGT), used the “Umberto” life cycle assessment software, in which all relevant steps of the production process have been modeled and mapped. The calculations comply with ISO standards 14040 and 14044 for life cycle analysis (LCA). Since the end of 2012, Cotonea has provided items with a product passport that shows the individual production steps. In 2020, the organic cotton brand contributed its supply chain expertise to the “Textile Trust” blockchain project by IBM and Kaya & Kato, which was supported by the German Federal Ministry for Economic Cooperation and Development.

 

Source:

Cotonea

19.09.2024

First Home Compost biodegradable Shrinksleeve Labels

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SLEEVER®, a French family-owned group International SME and innovative leader in shrinksleeve label technology, announced the signing of an exclusive, long-term contract to jointly develop Home Compost biodegradable mono-oriented transverse shrink films.

This partnership includes a master supply agreement of CARBIOS Active, the enzymatic solution developed by CARBIOS for PLA biodegradation. CARBIOS Active is integrated directly into the transformation process to make these PLA-rich films Home Compost, while guaranteeing quality compost. These films will enable sleeves to be used in applications as diverse as labeling, wrapping and securing packaging for the luxury goods and mass retail markets, offering an eco-designed solution for packaging with no dedicated value chain.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, and SLEEVER®, a French family-owned group International SME and innovative leader in shrinksleeve label technology, announced the signing of an exclusive, long-term contract to jointly develop Home Compost biodegradable mono-oriented transverse shrink films.

This partnership includes a master supply agreement of CARBIOS Active, the enzymatic solution developed by CARBIOS for PLA biodegradation. CARBIOS Active is integrated directly into the transformation process to make these PLA-rich films Home Compost, while guaranteeing quality compost. These films will enable sleeves to be used in applications as diverse as labeling, wrapping and securing packaging for the luxury goods and mass retail markets, offering an eco-designed solution for packaging with no dedicated value chain.

More information:
Carbios PLA shrinksleeve label
Source:

Carbios

RISE® Innovation Award: Three Finalists (c) INDA
06.09.2024

RISE® Innovation Award: Three Finalists

INDA, the Association of the Nonwoven Fabrics Industry, has announced the finalists for the 2024 RISE® Innovation Award. On October 1-2, technology scouts, product developers, and business development professionals will gather at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, NC, to explore nonwoven research and advancements.

Finalists will present their innovations to RISE participants on Tuesday, October 1st. The Award winner will be revealed on Wednesday afternoon, October 2nd.

The 2024 Award Finalists:
Dual-Layer Filtration Media by Ahlstrom Italia S.p.A. – Ahlstrom’s new dual-layer filter media technology enhances engine air intake filtration performances, offering up to double the dust holding capacity and extending filter lifetime by over 50% compared to single-layer media. It also enables smaller, lighter filter designs, meeting current and future engine specifications, including fuel cells. Dual-layer filter media can be offered with flame-retardant functionality for various transportation and industrial applications, ensuring safety, improved performances and reduced environmental impact.

INDA, the Association of the Nonwoven Fabrics Industry, has announced the finalists for the 2024 RISE® Innovation Award. On October 1-2, technology scouts, product developers, and business development professionals will gather at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, NC, to explore nonwoven research and advancements.

Finalists will present their innovations to RISE participants on Tuesday, October 1st. The Award winner will be revealed on Wednesday afternoon, October 2nd.

The 2024 Award Finalists:
Dual-Layer Filtration Media by Ahlstrom Italia S.p.A. – Ahlstrom’s new dual-layer filter media technology enhances engine air intake filtration performances, offering up to double the dust holding capacity and extending filter lifetime by over 50% compared to single-layer media. It also enables smaller, lighter filter designs, meeting current and future engine specifications, including fuel cells. Dual-layer filter media can be offered with flame-retardant functionality for various transportation and industrial applications, ensuring safety, improved performances and reduced environmental impact.

ENDURA™ rPP Spunbond & SMS by Berry Global – A pre-consumer recycled Spunbond and SMS product, recognized by SCS Recycled Content Certification. With Spunbond products containing up to 90% recycled content and SMS products containing up to 40% recycled content, customers/consumers are provided a product with greenhouse gas emissions benefits, validated with life cycle assessment tools assumptions based on the actual production.  ENDURA Spunbond products have the opportunity to reduce CO2 emissions per kilogram of production by 70%, versus previous generation of product.

PlantPanel X by Hempitecture Inc. – PlantPanel X is a rigid continuous insulation material used in exterior above-ground applications. With an R Value of R3.25 per inch, PlantPanel adds to thermal and acoustic comfort and performance. Engineered with a density to resist compression and deflection, PlantPanel is used in split-insulation wall and roof assemblies with either a rain screen cladding or roofing material, depending on the application. With 100% biobased and recycled content, PlantPanel is a sustainable, low carbon continuous insulation solution that’s easy to install and safe to handle.

2023 RISE Innovation Award winner:
TiHive won the 2023 RISE Innovation Award for their SAPMonit technology. TiHive’s innovation, SAPMonit, inspects millions of diapers weekly. SAPMonit delivers lightning-speed inline inspection of superabsorbents’ weight and distribution, optimizes resources, detects flaws, and accelerates R&D.

Source:

INDA, the Association of the Nonwoven Fabrics Industry

Graphic by TBI
14.08.2024

Controlled biodegradation of PLA by incorporation of an optimized enzyme

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

It also describes the methodologies and challenges involved in obtaining homogeneous incorporation of the enzyme into PLA films at high temperatures (170°C), while retaining sufficient activity to enable the plastic produced to degrade completely and rapidly under domestic and industrial composting conditions, as well as in anaerobic digestion (methanization). It highlights the optimization process used to obtain an enzyme capable of withstanding the 170°C required to melt it into PLA by extrusion. The new enzymatic material is shown to disintegrate and biodegrade at a much faster rate than the 26 weeks required for certification for use in home composting, and also to help produce more biomethane, another source of waste recovery. It is also stated that the enzymatic material remains intact during long-term storage, and that its degradation will only be activated when transferred to composting or methanization conditions, thus guaranteeing its compatibility with PLA-based commercial applications such as flexible packaging or short-life items like food containers.

This work was mainly carried out within the INSA/Carbios PoPlaB (Polymers, Plastics and Biotechnology) cooperative laboratory at TBI and was supported by a grant for scientific research (THANAPLAST project, OSEO ISI contract number I 1206040W).

 

More information:
PLA enzymatic
Source:

Toulouse Biotechnology Institute (TBI)

26.03.2024

CARBIOS joins Paris Good Fashion

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, announces its membership to Paris Good Fashion, the association that unites over 100 French players in the sector - brands, designers and experts - around their commitment to sustainable fashion. CARBIOS is the first recycling technology supplier to join, demonstrating the importance given to recycling to achieve textile circularity. By contributing its solution for the biorecycling of polyester, the world's most widely used and fastest-growing textile fiber, CARBIOS aims to contribute Paris Good Fashion’s mission, which focuses on concrete actions, best practice sharing and collective intelligence to accelerate change in the fashion industry.

CARBIOS will be particularly involved in the association's project to set up a working group dedicated to the development of a "fiber-to-fiber" industry, one of Paris Good Fashion's top priorities over the next five years. While only 1% of textiles are currently recycled fiber-to-fiber (circular), this working group will identify levers for significantly increasing the share of recycled fibers in the industry.  Polyester currently follows a linear model from which we need to break out: virgin polyester is made from petroleum, and recycled polyester from PET bottles. After use, most of these products end their lives in landfill or incineration. A circular, "fiber-to-fiber" industry will give new life to textiles and reduce the environmental impact associated to their end-of-life management.

Source:

Carbios

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

Propylat-Technologie Photo Autoneum Management AG
08.12.2023

Optimized acoustic performance thanks to sustainable technology with high recycled content

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

The ongoing electrification of mobility as well as increasingly strict regulatory requirements for vehicle performance in terms of sustainability and acoustics are presenting new challenges to car manufacturers worldwide. With Propylat, Autoneum now offers another lightweight, fiber-based and versatile technology whose sound-insulating and -absorbing properties as well as high content of recycled materials help customers address these challenges. Propylat-based products not only contribute to reducing pass-by noise and improving driver comfort, but they are also up to 50 percent lighter than equivalent plastic alternatives; this results in a lower vehicle weight and, consequently, less fuel and energy consumption as well as lower CO2 emissions.

Autoneum's innovative Propylat technology consists of a mixture of recycled synthetic and natural fibers – the latter include cotton, jute, flax or hemp, for example – that are consolidated using thermoplastic binding fibers without adding any further chemical binders. Thanks to the flexible fiber composition and the variable density and thickness of the porous material, the properties of the respective Propylat variant, for example with regards to acoustic performance, can be tailored to individual customer requirements. This allows for a versatile application of the technology in a variety of interior and exterior components such as wheelhouse outer liners, trunk trim, underbody systems and carpets. For instance, Propylat-based wheelhouse outer liners significantly reduce rolling noise both inside and outside the vehicle while at the same time offering optimum protection against stone chipping and spray water.

In terms of sustainability, Propylat always contains a high proportion of recycled fibers – up to 100% in some variants – and can be manufactured with zero waste. Thanks to the full vertical integration of Propylat and Autoneum’s extensive expertise in recycling processes, the technology also contributes to a further significant reduction in production waste. Moreover, the Propylat PET technology variant, which consists of 100% PET, of which up to 70% are recycled fibers, is fully recyclable at the end of product life. For this reason, Propylat PET has been selected for Autoneum Pure – the Company’s sustainability label for technologies with excellent environmental performance throughout the product life cycle – where it will replace the current Mono-Liner technology going forward.

Propylat-based components are currently available in Europe, North America and China.

Source:

Autoneum Management AG

In combination with Oerlikon's atmos.io digital platform, Haelixa's DNA marker technology makes the clear traceability of textile products a reality. Image Oerlikon Textile GmbH & Co. KG
20.11.2023

Man-made fiber yarns with DNA: Supply chains in textile end products traceable

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

In cooperation with the Swiss company Haelixa, Oerlikon Manmade Fibers Solutions will, in future, be able to make the entire value chain of a textile end product transparent and hence sustainable. The two development partners are offering a solution for the comprehensive traceability of products, as required by the European Green Deal.

An essential part of the solution is the DNA marker technology developed by Haelixa that enables complete traceability of materials. These markers survive all production process steps, validating that the end product is identifiable. "This innovative technology employs distinct DNA tailored for each project, establishing a unique identity for the material," explains Holly Berger, Marketing Director at Haelixa. "Once the DNA is integrated into the material, it becomes irremovable, impervious to falsification or alteration." Handling is straightforward: the DNA marker is fed into the spinning process with the preparation oil, for example. The preparation system is modified accordingly. Further feeding options are currently being developed.

Smart factory: total transparency with atmos.io
The concept is complemented by atmos.io, Oerlikon's digital platform, which records and evaluates extensive production and process data during the yarn manufacturing process. Atmos.io gives the yarn its digital identity during its time on Oerlikon systems, from the melt to the packaged package. This technology has been used successfully for some time to monitor the production process. With atmos.io, deviations in process parameters and yarn data can be identified and rectified within a very short time, which in turn keeps the yarn quality stable and reduces waste rates.

Combining both technologies enables clear traceability of the yarn produced, even in the downstream process steps. Hence, the yarn's components, qualities, manufacturing conditions, and origin are traced beyond doubt in the finished garment. "The unique DNA carries the 'roots' of the yarn digitally recorded in atmos.io into the everyday life of the end consumer," says Jochen Adler, CTO at Oerlikon Manmade Fibers. The textile end products meet the requirements of the digital product passport required by the EU, which contains the information needed to assess their life cycle assessment and circularity. Initial long-term tests have shown 100% traceability of the yarns in the POY and FDY spinning process. If the yarn manufacturer relies on the atmos.io platform, production systems can be adapted relatively easily to use the DNA markers.

Source:

Oerlikon Textile GmbH & Co. KG

A Carbios employee loads textile onto the preparation line Photo Carbios
09.10.2023

Carbios: New textile preparation line for polyester recycling

Carbios, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, inaugurated its textile preparation line at its demonstration plant in Clermont-Ferrand.

To streamline the textile preparation phase, which is currently carried out by hand or on several lines, Carbios has developed a fully integrated and automated line that transforms textile waste from used garments or cutting scraps into raw material suitable for depolymerization with its enzymatic biorecycling process.  

The patented line integrates all preparation stages (shredding and extraction of hard points such as buttons or fasteners), and provides Carbios with a high-performance, scalable development tool. The platform will help validate the biorecycling technology for textiles at demonstration plant scale (by 2024), and provides Carbios with expertise in working with collection and sorting operators to specify the quality of textiles and the preparation steps needed to make them suitable for enzymatic recycling.

Carbios, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, inaugurated its textile preparation line at its demonstration plant in Clermont-Ferrand.

To streamline the textile preparation phase, which is currently carried out by hand or on several lines, Carbios has developed a fully integrated and automated line that transforms textile waste from used garments or cutting scraps into raw material suitable for depolymerization with its enzymatic biorecycling process.  

The patented line integrates all preparation stages (shredding and extraction of hard points such as buttons or fasteners), and provides Carbios with a high-performance, scalable development tool. The platform will help validate the biorecycling technology for textiles at demonstration plant scale (by 2024), and provides Carbios with expertise in working with collection and sorting operators to specify the quality of textiles and the preparation steps needed to make them suitable for enzymatic recycling.

More information:
Carbios enzymatic textile recycling
Source:

Carbios

22.09.2023

Lenzing receives EU Ecolabel for fiber production in Indonesia

The Lenzing Group has received certification from the internationally recognized EU Ecolabel for its fibers at the Indonesian site. This means that Lenzing fibers produced in Purwakarta (PT. South Pacific Viscose) meet high environmental standards. The product portfolio thus expands and qualifies for the production of LENZING™ ECOVERO™ brand fibers for textiles and VEOCEL™ brand fibers for nonwoven applications.

The substantial investment of EUR 100 mn to modernize the Indonesian site has enabled Lenzing to significantly reduce its specific emissions. In addition, the site recently began sourcing energy from renewable sources and is driving the conversion to biomass in line with Lenzing's goals of reducing group-wide carbon emissions per ton of product sold by 50 percent by 2030 and achieving carbon-neutral production by 2050.

The Lenzing Group has received certification from the internationally recognized EU Ecolabel for its fibers at the Indonesian site. This means that Lenzing fibers produced in Purwakarta (PT. South Pacific Viscose) meet high environmental standards. The product portfolio thus expands and qualifies for the production of LENZING™ ECOVERO™ brand fibers for textiles and VEOCEL™ brand fibers for nonwoven applications.

The substantial investment of EUR 100 mn to modernize the Indonesian site has enabled Lenzing to significantly reduce its specific emissions. In addition, the site recently began sourcing energy from renewable sources and is driving the conversion to biomass in line with Lenzing's goals of reducing group-wide carbon emissions per ton of product sold by 50 percent by 2030 and achieving carbon-neutral production by 2050.

Anthropogenic climate change is one of the most pressing problems of our time, to which both the global textile and nonwovens industries make a major contribution. LENZING™ ECOVERO™ viscose fibers (for textiles) and VEOCEL™ Viscose (for nonwovens) have been proven to cause significantly less greenhouse gas emissions and water pollution than conventional viscose. At the Indonesian site, Lenzing also plans to produce the innovative LENZING™ ECOVERO™ Black fibers in the future, which also require less energy and water in textile chain thanks to the spun-dyeing process and thus also have a lower carbon footprint in their life cycle as a textile product.

Source:

Lenzing Group

29.08.2023

Lotus Teknik Tekstil invests in ANDRITZ Metris All-In-One digitalization platform

ANDRITZ has received an order from Lotus Teknik Tekstil A.Ş., Türkiye, to install a Metris All-In-One digitalization platform for its new WetlaceTM CP nonwovens production line from ANDRITZ. The integration will be finalized in September 2023.

Lotus Teknik Tekstil A.Ş. is a leading nonwoven roll good producer and a member of the Sapro group, one of the top three producers of wet wipes globally.

The Metris All-in-One platform developed by ANDRITZ provides full support for industrial plants throughout their entire life cycle. It combines a complete range of functionalities for professional production management, simulation and optimization using the latest artificial intelligence methods, plus cyber security, and condition monitoring with smart sensors in an integrated approach.

It will support Lotus Teknik Tekstil in further optimizing the operating efficiency of its ANDRITZ Wetlace CP line by

ANDRITZ has received an order from Lotus Teknik Tekstil A.Ş., Türkiye, to install a Metris All-In-One digitalization platform for its new WetlaceTM CP nonwovens production line from ANDRITZ. The integration will be finalized in September 2023.

Lotus Teknik Tekstil A.Ş. is a leading nonwoven roll good producer and a member of the Sapro group, one of the top three producers of wet wipes globally.

The Metris All-in-One platform developed by ANDRITZ provides full support for industrial plants throughout their entire life cycle. It combines a complete range of functionalities for professional production management, simulation and optimization using the latest artificial intelligence methods, plus cyber security, and condition monitoring with smart sensors in an integrated approach.

It will support Lotus Teknik Tekstil in further optimizing the operating efficiency of its ANDRITZ Wetlace CP line by

  • ensuring a stable production process via data collection and process monitoring,
  • reducing operational costs through optimized production traceability and energy monitoring,
  • improving final product quality thanks to a stable process, and
  • reducing production waste by optimizing raw material management.
Source:

Andritz AG

(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

Graphic IVL
01.06.2023

Indorama Ventures and Carbios: MOU for PET biorecycling plant in France

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Under the agreement signed June 1, Carbios, which filed for plant permitting in December 2022, should acquire 13ha land from Indorama Ventures’ existing PET plant at Longlaville and expects to be granted permits by Q3 2023, allowing start of construction by end of 2023 and targeted commissioning in 2025.  The land surface offers the possibility to double capacity. Pursuant to this MOU, Indorama Ventures shall ensure 100% of output repolymerization and both partners shall collaborate to secure feedstock supply.

The total capital investment for the new plant is re-estimated to be around €230 million, taking into account recent impact from inflation. Project costs shall be financed by the sums mobilized by Indorama Ventures, the French State and Grand-Est Region subsidies available for the project , and by equity capitalization of the Joint Venture by Carbios. Part of Carbios’ equity injection into the Joint Venture shall be financed by a portion of Carbios’ current cash position (i.e. €86 million as of 30 April 2023). Carbios is actively examining the best options to finance its remaining equity injection into the Joint Venture and will choose the most appropriate solution and timeline based on market conditions.

The project is part of Indorama Ventures’ Vision 2030 ambition to build on its leadership as a global sustainable chemical company. The company’s ESG commitments include spending $1.5 billion to increase its recycling capacity to 50 billion PET bottles per year by 2025 and 100 billion bottles per year by 2030. To meet these goals, Indorama Ventures, the world’s largest producer of recycled PET resin used in beverage bottles, is investing in new recycling technologies, including advanced recycling, in addition to expanding its global footprint of mechanical recycling sites, including two in France.

Carbios has developed a disruptive enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products with an aim to achieve true circularity. Carbios has ambitious plans to become a leading technology provider in advanced recycling of PET by 2035. After successful ongoing operations in its demonstration plant in Clermont-Ferrand in France, Carbios has been collaborating with Indorama Ventures for over a year to assess the commercial and technical feasibility of the technology. The world’s first industrial-scale enzymatic PET recycling plant at Longlaville will have a capacity to process about 50,000 tons of post-consumer PET waste per year, including waste that is not recyclable mechanically, equivalent to 2 billion PET colored bottles or 2.5 billion PET trays.

More information:
IVL Carbios biorecycling PET
Source:

IVL