From the Sector

Reset
44 results
13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

(c) AZL Aachen GmbH
28.01.2020

AZL and IKV launch common project

In the AZL Workgroup "High-Performance SMC", a project was developed in cooperation with M-Base, the IKV and the AZL partner network for the efficient and standardized provision of engineering data for SMC. Within the scope of the project, companies can participate in the definition of the required characteristic material data, the guidelines for the production of test specimens and the test specifications.
Sheet Moulding Compounds (SMC) are used in various application areas such as vehicles, electronics, construction and infrastructure.

In the AZL Workgroup "High-Performance SMC", a project was developed in cooperation with M-Base, the IKV and the AZL partner network for the efficient and standardized provision of engineering data for SMC. Within the scope of the project, companies can participate in the definition of the required characteristic material data, the guidelines for the production of test specimens and the test specifications.
Sheet Moulding Compounds (SMC) are used in various application areas such as vehicles, electronics, construction and infrastructure.

Driven by the requirements to reduce the production costs of lightweight components, a new generation of SMC components with high mechanical properties is of highest relevance. SMC offers enormous potential to realize structural components with good lightweight characteristics at significantly reduced costs compared to conventional continuous fiber-reinforced components.
In order to further establish SMC in broad industrial applications companies participating within the AZL Workgroup recognized the value of a data bank for data harmonization of SMC to provide the possibility of easily finding the right material with its characteristics for the needed specific requirements.

“The segment of SMC is with 250,000 tons production per year the largest composites market in Europe. I am very pleased that we start now with the project of data harmonization along the complete value chain. The goal is to have a similar data base as already established by Campus® for thermoplastics and thermoplastic composites. Only with a reliable set data we can convince the engineering experts to use SMC in a larger variety of applications,” says Dr. Michael Effing, Chairman of the Board of AVK and Composites Germany.

As of right now a databank for engineered thermoplastic materials (by Campus®) already exists and is offering an immense value.
Under the lead of M-Base, Dr. CEO Erwin Baur who has successfully established the CAMPUS database, the AZL, IKV and companies along the value chain of long fibre reinforced SMC initiated to build a CAMPUS-compatible data structure and material characterization methodology during the High-Performance SMC Workgroup Meetings.

The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK) (c) Reed Exhibitions, Oliver Wachenfeld
The lucky winner with the certificate, from left to right: Professor Jens Ridzewski (AVK), Sven Schöfer (ITA), Dr Rudolf Kleinholz (AVK)
17.09.2019

ITA is AVK innovation prize winner 2019 in the category "Research and Science”

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

  • Reduction of material usage by up to 50 percent through innovative draping strategy in the production of fibre composite materials

In fibre reinforced plastic (FRP) production, stamp forming is one of the most economical processes for automated large-scale production, e.g. in the BMW i-series. However, the current processes are susceptible to draping errors and a high proportion of waste. An innovative process developed at the Institut für Textiltechnik of RWTH Aachen University, short ITA, can now significantly reduce the scrap rate and reduce the waste rate of high-priced reinforcing textiles, such as carbon fibre textiles, by up to 50 percent. Sven Schöfer from ITA achieved this effect with his work "Development of a textile-based material feed to increase the preform quality during stamp forming of reinforcing layers". On 10 September 2019, he won the third AVK Innovation Prize in the "Research and Science" category at Composite Europe in Stuttgart, Germany.

Current process
In stamp forming, clamping grippers are usually used in industry to feed the stacked individual layers to the forming process and position them on the lower tool via a clamping frame or hold-down device. Due to the clamping grippers, the cutting proportion of cost-intensive reinforcing textiles is high, as additional material at the textile edge is necessary with clamping systems. Other approaches to feeding the reinforcing semi-finished product during forming and simultaneously improving the draping quality are also not economical: they are usually only designed for certain textile cuts, cannot be automated, are prone to errors or are expensive special solutions.

There is currently no system in the industry that can apply retention forces along a final contour with low waste and remains flexible in terms of geometry.

Innovative approach of Sven Schöfer
The innovative process developed by Sven Schöfer works with a detachable textile joint, a so-called tufting seam. It allows the single layers to slide off during the forming process under a retention force dependent on the seam design.

This reduces or completely eliminates draping errors in previously critical areas, even with complex preform geometries. This leads to a significant increase in preform quality and a reduction in scrap rates. The process is also highly efficient, as tensile forces can be applied to any component geometry on near-net-shape blanks. This reduces the material input by up to 50 percent.

Source:

ITA – Institut für Textiltechnik

Foto: ITM, TU Dresden, Mirko Krizwon
11.09.2019

Entwicklung der Technischen Universitäten Dresden und Clausthal mit dem AVK Innovationspreis 2019 geehrt

Gemeinsame Entwicklung von Textil- und Kunststofftechnikern aus den Technischen Universitäten Dresden und Clausthal mit dem AVK Innovationspreis 2019 in der Kategorie „Forschung/Wissenschaft“ geehrt

Am 10. September 2019 wurden im Rahmen der Composite Europe 2019 in Stuttgart die AVK-Innovationspreise 2019 verliehen. Wissenschaftlerinnen und Wissenschaftler des Institutes für Polymerwerkstoffe und Kunststofftechnik (PuK) der TU Claustahl und des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden erhielten für ihre gemeinsame „Entwicklung eines simulationsgestützten Verfahrens zur schnellen Imprägnierung großer und komplexer Strukturen auf Basis neuartiger textiler Halbzeuge mit integrierten temporären Strömungskanälen“ den AVK-Preis in der Kategorie „Forschung/Wissenschaft“.

Gemeinsame Entwicklung von Textil- und Kunststofftechnikern aus den Technischen Universitäten Dresden und Clausthal mit dem AVK Innovationspreis 2019 in der Kategorie „Forschung/Wissenschaft“ geehrt

Am 10. September 2019 wurden im Rahmen der Composite Europe 2019 in Stuttgart die AVK-Innovationspreise 2019 verliehen. Wissenschaftlerinnen und Wissenschaftler des Institutes für Polymerwerkstoffe und Kunststofftechnik (PuK) der TU Claustahl und des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden erhielten für ihre gemeinsame „Entwicklung eines simulationsgestützten Verfahrens zur schnellen Imprägnierung großer und komplexer Strukturen auf Basis neuartiger textiler Halbzeuge mit integrierten temporären Strömungskanälen“ den AVK-Preis in der Kategorie „Forschung/Wissenschaft“.

Dr.-Ing. Dilmurat Abliz, Dr.-Ing. Amke Eggers, Prof. Dr.-Ing. Gerhard Ziegmann und Prof. D.-Ing. Dieter Meiners vom PuK der TU Clausthal sowie Dipl.-Ing. David Hoffmann, Dr.-Ing. Wolfgang Trümper und Prof. Dr.-Ing. Chokri Cherif vom ITM der TU Dresden gehören zum Preisträgerteam und nahmen die in der Fachwelt hoch angesehene Auszeichnung dankend entgegen.

More information:
TU Dresden ITM AVK
Source:

TU Dresden