From the Sector

Reset
134 results
OCSiAl: New Graphene nanotube facility in Europe (c) OCSiAl Group
13.09.2023

OCSiAl: New Graphene nanotube facility in Europe

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 
In addition to synthesizing nanotubes, the facility will manufacture nanotube suspensions for lithium-ion battery manufacturers in Europe, the US, and Asia – enough to enhance the performance of more than 1 mln electric cars with an average battery capacity of 75 kWh per car. OCSiAl nanotubes create long and robust electrical networks between active material particles, improving key battery characteristics, including cycle life, lower DCR, C-rate performance, and cohesion between active battery material particles, making the battery electrodes more durable. Graphene nanotubes unlock new battery technologies, including high-silicon content anodes, thick LFP cathodes, fast-charging graphite anodes, and more. They can be applied in both conventional and emerging battery tech, such as a dry battery electrode coating process, and solid-state batteries.
 
As well as synthesizing nanotubes and producing suspensions, OCSiAl project includes manufacturing of nanotube concentrates for high-performance polymers. The project has passed environmental impact assessment and it is 100% powered by green energy. It enjoys support from Serbian municipal and national governments. The plant is planned to be certified in accordance with ISO 9001, ISO 14001, and ISO 45001, and to be compliant with the IATF 16949 automotive industry standard. The project will create more than 200 job opportunities for engineers, scientists, managers, operators, and administrative staff.
 
Currently, OCSiAl has an extensive manufacturing system of nanotube-based products in the regions of highest market demand, such as China, Japan, Sri Lanka, Brazil, Malaysia, and other countries. The Serbia nanotube hub will operate in conjunction with the company’s operational R&D center and planned graphene nanotube synthesis facility in Luxembourg.

Source:

OCSiAl Group

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

RISE® Innovation Award INDA Association of the Nonwoven Fabrics Industry
25.08.2023

RISE® Innovation Award 2023: Four Finalists

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

BicoBio Fiber by Fiberpartner ApS
The BicoBio Fiber is a bicomponent fiber core sheath construction, developed from materials with a low carbon footprint. This fiber is designed to biodegrade in the environments where most plastics are found: landfills and the ocean. The fiber’s BioBased PE is produced from sugar cane and has a negative carbon footprint. The fiber’s recycled PET is GRS certified. PrimaLoft® Bio™, a technology that enables polyester fibers to biodegrade, is utilized in the production of BicoBio Fibers. These fibers can be processed with a variety of nonwoven technologies.

Reifenhäuser Reicofil RF5 XHL by Reifenhäuser REICOFIL GmbH & Co. KG
Reicofil XHL (Extra High Loft) is the game changer for a super soft and drapeable nonwoven offering an incomparable feel the nonwoven market has never seen before. The outstanding soft touch is unique and intended for use in the hygiene sector. XHL focuses on low basis weight and high thickness with the best visual appearance. The high performance and efficient use of raw materials and energy ensure cost-effectiveness and environmentally-friendly production.

SAPMonit by TiHiVE
TiHive’s game-changing innovation, SAPMonit – a visionary French technology breakthrough – inspects millions of diapers weekly. SAPMonit delivers lightning-speed inline inspection of Super Absorbents weight and distribution, optimizes resources, detects flaws, and accelerates R&D. SAPMonit utilizes advanced see-through cameras, high-speed vision algorithms, and secure cloud integration, revolutionizing industry norms. SAPMonit has great potential for sustainability, cost reduction, and enhanced customer satisfaction.

The RISE Innovation Award winner will be announced Wednesday afternoon, September 27th.

More information:
INDA RISE®
Source:

INDA Association of the Nonwoven Fabrics Industry

ElasTool in a lifting unit, e.g. for logistics, transport or mining Grafik JUMBO-Textil
ElasTool in a lifting unit, e.g. for logistics, transport or mining
22.08.2023

JUMBO-Textil: Lubricant-free tensioning and clamping system

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

Economical and low maintenance
The system has further advantages: the textile solution runs quietly. Unlike clamping systems with steel cable springs, there is no creaking here. In addition, textiles, plastic and aluminium are particularly lightweight materials. ElasTool therefore saves energy. Another benefit: the connection system works without lubricating oil. While conventional tensioning and clamping solutions in industrial plants and products have to be oiled regularly, the JUMBO textile system works completely maintenance-free.

Versatile and easily interchangeable
Depending on the area of application of the ElasTool, the interchangeable head can be exchanged: Plastic hook instead of aluminium eyelet, stainless steel flange instead of aluminium hook – for example. The interchangeable head can be replaced effortlessly and without special tools.

"A lifting system in a high-bay warehouse, a trolley in a crane, damping for compressors or crash systems – these are just three of the many possible applications. We adapt the dimensions, material, force-stretch behaviour, flame retardancy – like all properties – specifically to the respective project," emphasises Carl Mrusek, Chief Sales Officer of JUMBO-Textil. "Thus, with ElasTool, we offer a safe load connection for a wide variety of applications in industry."

ElasTool from JUMBO-Textil

  • Lightweight and flexible alternative to conventional tensioning and clamping systems
  • Suitable even in small installation spaces
  • With individual specifications and infinitely customisable dimensions
  • Connection tool optionally made of plastic, aluminium or stainless steel
  • Rubber rope in a thickness of 12 to 38 mm
  • Rubber rope made of polyamide, polyester, recycled PES, polypropylene, aramid, Dyneema, monofilament, natural fibres
  • Different interchangeable head shapes possible
  • As an end connection or for coupling with other machine elements
  • Tensile load up to 600 N, in individual cases more than this
  • Individually configurable e.g. with hook, eyelet or flange
Source:

JUMBO-Textil

Photo Autoneum
15.08.2023

Autoneum’s Re-Liner nominated as finalist for 2023 PACE Award

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Re-Liner is based on a core of polyolefins recovered from post-consumer bumpers and has a textile top layer made of fibers from recycled materials. “Autoneum has recognized the untapped potential of recovered resin from automotive bumper covers as a resource and is giving this former waste product a second life,” explained Dan Moler. “The core resin of Re-Liner is 100% automotive post-consumer recycled material, not just a filler or additive to a virgin material. Lightweight, durable, and sustainable wheelhouse outer liners based on this technology are expected to reduce waste generated by bumper covers by nearly one million kilograms in 2023.”

For more than a quarter century of a century, the PACE Award has honored innovations driven by automotive suppliers. The award is known in the global automotive industry for identifying and recognizing the latest game-changing innovation: from the plant floor to the product to the showroom. In 2000, Autoneum (then Rieter Automotive) already received a PACE Award for its Ultra-Light technology. In addition, two of the Company’s technologies have also been nominated as finalists in the past: Ultra-Silent in 2010 and Theta-Fiber in 2012.

More information:
Autoneum Re-Liner PACE award
Source:

Autoneum

Photo: BTMA by AWOL Media
Pictured at the new installation (left to right) are Jayessh S Nanavati of Sainite Exports, JR Mehta of Candour Techtex, Barry Goodwin, and Sanjay Jain, Amba's coating technologist in India
02.06.2023

Amba Projex supports growth for India’s Candour Techtex

Candour Techtex, a Melegaon JR Group company, is satisfied with the latest coating and lamination line supplied by UK’s Amba Projex and has ordered a second, wider one to meet increasing demand.

Based in High Peak near Manchester, BTMA member Amba Projex has over 40 years’ experience in the design and manufacture of special purpose technical textile machines, with coating and laminating installations around the world.

Amba will be working closely with Candour over the next five years, to establish an Indian technical textiles powerhouse capitalising on the UK technology provider’s long experience in the field.

Formerly Chandni Textiles Engineering Industries, Candour Techtex of the Malegaon JR Group assumed its new name in 2022 to reflect its focus on a wide range of technical textiles at its new plant in Malegaon in the Nashik District of Maharashtra.

Candour Techtex, a Melegaon JR Group company, is satisfied with the latest coating and lamination line supplied by UK’s Amba Projex and has ordered a second, wider one to meet increasing demand.

Based in High Peak near Manchester, BTMA member Amba Projex has over 40 years’ experience in the design and manufacture of special purpose technical textile machines, with coating and laminating installations around the world.

Amba will be working closely with Candour over the next five years, to establish an Indian technical textiles powerhouse capitalising on the UK technology provider’s long experience in the field.

Formerly Chandni Textiles Engineering Industries, Candour Techtex of the Malegaon JR Group assumed its new name in 2022 to reflect its focus on a wide range of technical textiles at its new plant in Malegaon in the Nashik District of Maharashtra.

The company was founded in 1986 and at its existing plant in Ankleshwar, Gujarat, produces an annual 1.2 million metres of light velvet fabrics mainly for the domestic market for apparel and light home furnishings. In 2020 it also began operations at a plastic moulded components division in Gonde, Nashik, with a capacity of 4,500 tons per annum.

Blackout fabrics
In particular, the new Amba Projex system enables blackout fabrics to be produced efficiently and at scale.

Blackout fabrics are installed in rooms where complete light shielding is required, such as in public institutions like hospitals, and retirement homes, in hotels and conference rooms, and also in the home, especially in bedrooms.

They obtain their light impermeability by a special three-layer blackout coating which works on textiles of all colours. Only the middle layer of the three coatings needs to be black for obtaining the necessary light absorption. The fabrics are usually also treated for permanent flame-retardancy, and also with water or stain-repellent finishes. In addition to locking out light and providing maximum privacy, blackout curtains also help to insulate a home and reduce energy costs, in addition to protecting furniture and carpets from fading due to sunlight exposure.

Celliant -how it works (c) Hologenix
06.04.2023

Hologenix: Infrared technology with potentially positive impact on diabetic patients

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

According to statistics cited in the International Diabetes Federation Diabetes Atlas, 9th edition, globally, close to a half billion people are living with diabetes and that number is expected to increase by more than 50 percent in the next 25 years.
 
The introduction of the study in the Journal of Textile Science & Engineering also reports that diabetic patients frequently suffer from a combination of peripheral neuropathy and peripheral artery disease, which particularly affects their feet. It further states that it has been estimated that the lifetime risk for the development of foot ulcers in diabetic patients can be as high as 25 percent and that the risk of amputation is 10 to 20 times higher than in non-diabetic subjects.
 
The study was performed by Lawrence A. Lavery, D.P.M., M.P.H., a Professor in the Department of Plastic Surgery at UT Southwestern Medical Center. His clinic and research interests involve diabetic foot complications, infections and wound healing, and he participated in the conception, design, implementation and authorship of the Journal of Textile Science & Engineering study.  

CELLIANT technology is a patented process for adding micron-sized thermo-responsive mineral particles to fibers, in this case polyethylene terephthalate (PET) fibers. The resulting CELLIANT yarns were woven into stockings and gloves containing either 82% CELLIANT polyester, 13% nylon and 5% spandex or for the placebo, 82% polyester with no CELLIANT, 13% nylon and 5% spandex. CELLIANT products absorb body heat and re-emit the energy back to the body as infrared energy, which is non-invasive and increases temporary blood flow and cell oxygenation levels in the body.

The objective of the study was to “evaluate changes in transcutaneous oxygen (TcPO2) and peripheral blood flow (laser Doppler, LD) in the hands and feet of diabetic patients with vascular impairment when CELLIANT gloves and stockings are worn.” While there was not a statistically significant result across all subjects, the study did show that some patients wearing CELLIANT stockings for 60 minutes had an increase of as much as 20% in tissue oxygenation and 30% in localized blood flow. According to the study’s conclusion, “the trends that were observed in favor of CELLIANT stockings suggest that a larger well-designed clinical trial should be undertaken and may provide evidence of clinical efficacy in treatment of the diabetic foot.”
 
The study also notes that “There have been no documented or observed side effects of wearing CELLIANT stockings, and they are relatively inexpensive compared to conventional pharmaceutical interventions.”

Hologenix has embarked on a more comprehensive trial, “Study to Evaluate CELLIANT Diabetic Medical Socks to Increase Tissue Oxygenation and Incidence of Complete Wound Closure in Diabetic Foot Wounds” – NCT04709419, which focuses on the impact of CELLIANT technology to potentially improve tissue oxygenation and wound healing outcomes.
 
“We are excited to explore whether future studies of infrared, with its most common biological effects of increased localized blood flow and cellular oxygenation, could result in a breakthrough in diabetic patients with vascular impairment,” said Seth Casden, Hologenix Co-founder and CEO. “We see a huge potential opportunity with this research for helping to fulfill our core mission of improving people’s health and well-being by potentially reducing the impact of diabetes, and we are actively seeking partners to expand our research efforts.”

Source:

Hologenix

Photo Mahlo GmbH + Co. KG
23.03.2023

Mahlo at the INDEX 2023: Nonwovens in focus

When the nonwoven industry meets at the leading trade fair INDEX in Geneva from 18 to 21 April, Mahlo GmbH + Co KG awaits trade visitors from all over the world to inform them about the right measurement technology enabling more efficient and high-quality production of nonwovens.

With a wide range of sensors, different measuring techniques and the corresponding measuring bridges, practically all tasks regarding the control of basis weight, moisture, thickness, fibre content, and air permeability can be solved in a cost-efficient and practical way.

When the nonwoven industry meets at the leading trade fair INDEX in Geneva from 18 to 21 April, Mahlo GmbH + Co KG awaits trade visitors from all over the world to inform them about the right measurement technology enabling more efficient and high-quality production of nonwovens.

With a wide range of sensors, different measuring techniques and the corresponding measuring bridges, practically all tasks regarding the control of basis weight, moisture, thickness, fibre content, and air permeability can be solved in a cost-efficient and practical way.

As an example, Wulbeck mentions spunlace products. They mainly consist of fibres such as cotton, PE, PET or rayon. They absorb light in the near-infrared range. Water and all other materials have different spectral ranges and can thus be distinguished. The near-infrared sensor Infrascope NIR determines the moisture content and the basis weight of different materials by attenuating the light in certain wavelengths. Due to its very high spectral resolution, the sensor can distinguish between components with very similar but not identical IR absorption and achieves high measurement accuracy. "Up to 0.05 g/m2 of the respective coating weight is possible," says Wulbeck.

"We want to support manufacturers in optimising their production processes and thus also the end product," says Matthias Wulbeck, Mahlo product manager for QCS. Because, like many other industries, the nonwoven sector is struggling with challenges such as rising prices for energy and raw materials, long delivery times and uncertain supply chains. In order to continue to produce economically and on time, it is therefore necessary to save resources and avoid faulty production as well as unnecessary process times. "Our Qualiscan QMS measurement and control system helps to do just that."

Source:

Mahlo GmbH + Co. KG

13.02.2023

CELLIANT cleared to market in 50+ countries

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

In 2017, the FDA determined that products containing CELLIANT are medical devices as defined in section 201(h) of the Federal Food, Drug and Cosmetic Act and are general wellness products because they are intended to temporarily increase blood flow and local circulation at the site of the application in healthy individuals.
 
At Hologenix®, whose CELLIANT® infrared technology is an ingredient in world-class brands across many categories, science matters. The company has a distinguished Science Advisory Board composed of experts in the fields of photobiology, nanotechnology, sleep medicine, diabetes and wound care. The Science Advisory Board has overseen nine peer-reviewed published studies that collectively demonstrate CELLIANT’s effectiveness and the benefits of infrared energy. This claim set provides the basis for products containing CELLIANT to be designated as a Class 1 Medical Device in 38 countries and cleared to market in 15, with more countries and regions to follow. This elevated status in 53 countries translates to CELLIANT being an ideal partner for global companies who are seeking innovation in textiles to distinguish their products.   

“We have laid the groundwork for our partner brands to capitalize on the benefits of our infrared technology and to enhance their ability to do business,” said Seth Casden, Hologenix co-founder and CEO.  “We firmly believe that regulatory status matters and that is why we have grown the number of countries we have such relationships with by over a third in the last three years. It is definitely a competitive advantage of our company and CELLIANT.”

“Globally, the awareness of the benefits of infrared textiles, which absorb body heat and reflect it back as therapeutic infrared energy, has grown exponentially over the last 10 years,” continued Casden. “And in the United States infrared is gaining a strong foothold.”

Source:

Hologenix

Graphik Freudenberg Performance Materials
10.01.2023

Freudenberg: Technical packaging textiles with less CO2 emissions

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

Evolon® microfilament textiles have a small carbon footprint because their manufacturing process uses low CO2 energy sources. The fabrics are lightweight and can be reused throughout entire production programs, e.g. of a car model when it is about the automotive industry. Furthermore, the new Evolon® RE fabrics contain up to 85% of recycled PET which is produced in-house out of post-consumer PET bottles.

Evolon® textiles are suitable for reusable technical packaging, which eliminate the use of thousands of disposable packaging materials. Evolon® fabrics offer scratch-free, lint-free, high-end surface protection for molded plastic parts, painted parts and other sensitive industrial and automotive parts during transport. This contributes to lower the scrap rate of parts and provide both financial and ecological benefits. By using Evolon® reusable packaging to transport highly-sensitive parts, customers can increase their efficiency and save resources.

Source:

Freudenberg Performance Materials

(c) Hologenix
21.12.2022

Celliant® with Repreve® receives ISPO Textrends awards

Hologenix®, creators of CELLIANT®, is pleased to announce CELLIANT® with REPREVE® – introduced with global textile solutions provider UNIFI®, makers of REPREVE® – has been awarded a Selection in the Fibers & Insulation Category of ISPO Textrends Fall/Winter 2024/25.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that CELLIANT® with REPREVE®, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved the honor. CELLIANT® with REPREVE® is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.

CELLIANT is a natural blend of IR-generating bioceramic minerals, which, when embedded into textiles, allows them to convert body heat into infrared energy, returning it to the body and temporarily increasing local circulation and cellular oxygenation. This aids significantly in muscle recovery, increases endurance, and improves overall performance in healthy individuals, among other benefits.

Hologenix®, creators of CELLIANT®, is pleased to announce CELLIANT® with REPREVE® – introduced with global textile solutions provider UNIFI®, makers of REPREVE® – has been awarded a Selection in the Fibers & Insulation Category of ISPO Textrends Fall/Winter 2024/25.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that CELLIANT® with REPREVE®, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved the honor. CELLIANT® with REPREVE® is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.

CELLIANT is a natural blend of IR-generating bioceramic minerals, which, when embedded into textiles, allows them to convert body heat into infrared energy, returning it to the body and temporarily increasing local circulation and cellular oxygenation. This aids significantly in muscle recovery, increases endurance, and improves overall performance in healthy individuals, among other benefits.

REPREVE recycled performance fiber consists of high-quality fibers made from 100% recycled materials, including post-consumer plastic bottles and pre-consumer waste. It is also certified and traceable with UNIFI’s U TRUST® verification and FiberPrint™ technology, which provide assurance that the product comes from recycled materials. Compared to virgin fiber, REPREVE helps to offset the use of petroleum, conserving water and energy and emitting fewer greenhouse gasses.

This award marks the third year in a row that Hologenix has had its CELLIANT technology recognized in the Fall/Winter Textrends Awards. CELLIANT in pure white was a Top Ten Winner in last year’s awards. The prior year, CELLIANT Viscose was a Selection Winner as well.

Source:

Hologenix, LLC

Photo Autoneum Management AG
19.12.2022

Autoneum: Optimized thermal management for electric vehicles thanks to cold chamber

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

The chamber enables to test both occupants’ subjective perception of thermal comfort and the performance of components and entire vehicles under controlled temperature conditions of up to minus 20 degrees Celsius. It is thus a valuable addition to the existing testing and bench-marking facilities at the Company’s global research and development centers. The tests conducted in the chamber show how existing insulating components such as under battery shields, carpets and interior trim need to be optimized to further enhance the thermal management of the vehicle battery and cabin. The tests also provide valuable insights regarding the development and optimization of heated surfaces such as floor mats and door trim panels to improve thermal performance and driver comfort of electric vehicles.

Source:

Autoneum Management AG

24.11.2022

EURATEX: A price cap at 275€/MWh would be meaningless

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The plan of the European Commission to propose a price cap on wholesale gas price at 275€/MWh would be a bitter disappointment for the European textiles and clothing manufacturers, said EURATEX.

November 22nd, EURATEX stated in a letter to EC President, Ursula von der Leyen, that any price cap above the level of 80€euro/MWh would not help the EU industry – the textile sector in particular – to survive the current crisis. Indeed as early as July 2021, the wholesale gas price in the EU was below 30€/MWh. Now, the EU industry is facing gas and energy prices that have exceeded any coping capacity: from the record-high 320€/MWh last August, the price has reached to 127€/MWh today. Still, it is more than 300% than the business as usual prices.

The very existence of the European industry is at stake and with it the European sustainability agenda – and Europe’s capacity to implement it. Furthermore, Europe will lose its strategic autonomy, which guarantees essential goods and services are made available on the European Internal Market. If we continue on this path, the EU will soon become totally dependent on foreign imports with no leverage to implement its sustainability agenda, let alone lead the transition to a circular economy on the international stage.

At present, the EU industry is facing a dire international competition with the industry in China, India and the US working at energy prices of around 10$/MWh. In addition, these competitors are benefitting of sky-high subsidies from their own governments: the rollout of the US $369bln industrial subsidy scheme is just the latest example.

EURATEX Director General, Dirk Vantyghem, believes that “while the EU Industry is under immense, unprecedented pressure, a price cap at 275€/MWh would be meaningless: the European industry will be permanently pushed out on the market. The industry is at the heart of the European way of life and the fundament of our social market economy. The EU must save its industry to save Europe. The moment to act is now.”

More information:
price gap energy crisis Euratex
Source:

EURATEX

(c) Hologenix, LLC
15.11.2022

Medline and Hologenix launch new orthopedic infrared products

Medline, a medical product distributor and manufacturer, together with Hologenix® launched a new line of CURAD® Performance Series® orthopedic products powered by CELLIANT® infrared technology.

CELLIANT, the flagship innovation of Hologenix, is a proprietary blend of natural minerals that allows textiles to convert body heat into infrared energy, returning it to the body and temporarily increasing local blood flow and cellular oxygenation. This has been clinically demonstrated to support recovery from physical activity and fatigue, increase endurance and stamina, and boost overall performance in healthy individuals, among other benefits.  

Trusted by athletes, CURAD is the Official Medical Supplier of the IRONMAN® U.S. Series. The new orthopedic products powered by CELLIANT infrared technology are the latest additions to the CURAD Performance Series collection and including different infrared supports designed for the ankle, knee, back, shoulder, as well as multipurpose use.

Medline, a medical product distributor and manufacturer, together with Hologenix® launched a new line of CURAD® Performance Series® orthopedic products powered by CELLIANT® infrared technology.

CELLIANT, the flagship innovation of Hologenix, is a proprietary blend of natural minerals that allows textiles to convert body heat into infrared energy, returning it to the body and temporarily increasing local blood flow and cellular oxygenation. This has been clinically demonstrated to support recovery from physical activity and fatigue, increase endurance and stamina, and boost overall performance in healthy individuals, among other benefits.  

Trusted by athletes, CURAD is the Official Medical Supplier of the IRONMAN® U.S. Series. The new orthopedic products powered by CELLIANT infrared technology are the latest additions to the CURAD Performance Series collection and including different infrared supports designed for the ankle, knee, back, shoulder, as well as multipurpose use.

“This new CURAD Performance Series offering represents a major expansion of CELLIANT infrared (IR) bio-responsive textiles into the sports medicine field,” said Seth Casden, Hologenix Co-Founder and CEO. “We are honored to partner with Medline and look forward to future introductions.”

In addition to the inclusion of CELLIANT infrared technology, Medline has engineered the elastic supports to provide targeted compression for enhanced local circulation that helps reduce swelling, with a contoured fit that won’t slip or shift during normal activities with silicone grips that keep the product in place.

The removable hot/cold therapy supports provide adjustable compression and a gel compress that can be cooled or heated to further reduce swelling and discomfort.

Source:

Hologenix, LLC /  Sarah Fletcher Communication

10.11.2022

INDA Call for Abstracts for World of Wipes® International Conference

INDA’s 17th annual World of Wipes® (WOW) International Conference is accepting abstracts through December 2, 2022, on innovative, inspiring, and informative wipe products, markets and technologies to be presented in Atlanta, GA, July 17-20, 2023.

Experts in the areas of dry and wet wipes, sustainability, end-use markets, substrate formation, raw materials and fibers, liquid ingredients, packaging, machinery, and market trends and data are encouraged to submit a brief abstract of one or two paragraphs detailing the relationship of their presentation to wipes or wipe manufacturing. Along with a brief abstract summary, professionals should also submit a speaker’s photo, and biography. Information may be submitted online via the WOW website before December 2nd.

Over 450 wipes business leaders are expected to convene at the Atlanta Marriott Marquis Hotel July 17-20, 2023 to hear premium content in market research, product innovations, sustainability issues, new materials and substrates for all wiping products and their components.

INDA’s 17th annual World of Wipes® (WOW) International Conference is accepting abstracts through December 2, 2022, on innovative, inspiring, and informative wipe products, markets and technologies to be presented in Atlanta, GA, July 17-20, 2023.

Experts in the areas of dry and wet wipes, sustainability, end-use markets, substrate formation, raw materials and fibers, liquid ingredients, packaging, machinery, and market trends and data are encouraged to submit a brief abstract of one or two paragraphs detailing the relationship of their presentation to wipes or wipe manufacturing. Along with a brief abstract summary, professionals should also submit a speaker’s photo, and biography. Information may be submitted online via the WOW website before December 2nd.

Over 450 wipes business leaders are expected to convene at the Atlanta Marriott Marquis Hotel July 17-20, 2023 to hear premium content in market research, product innovations, sustainability issues, new materials and substrates for all wiping products and their components.

The last WOW event held in Chicago connected more than 450 participants from 18 countries representing the entire wipes supply chain to explore issues and advancements in the growing multibillion-dollar wipes sector. WOW is targeted exclusively for wipes brand owners, converters, manufacturers, and their entire supply chain.

The WOW Committee is developing content for a timely and relevant program that targets such areas as energy consumption, digitalization, global supply chain challenges, the plastics issue, ingredient transparencies, market intelligence, substrate developments, converting systems, material science, packaging, and circularity advances in personal and industrial wipes.

Training at the WOW 2023 Conference
The WIPES Academy, the industry’s first and only comprehensive wipes training for the entire supply chain, will occur prior to the conference start, July 17-18. Participants will gain a strong foundation of fundamental wipes knowledge, covering the basics of wipes design, manufacturing and applications, market trends, and opportunities in new product areas. At least two years of basic nonwoven fabrics knowledge or completion of the INDA Elementary Nonwovens Course are the recommended prerequisites.

More information:
INDA WOW World of Wipes
Source:

INDA

27.10.2022

The curtain lifts on JEC World 2023

Well-known as the “Festival of composites” each year in Paris, JEC World is the event dedicated to composite materials, their manufacturing technologies and application markets. It will take place in Paris Nord Villepinte from April 25th to 27th, 2023, giving once again the opportunity for professionals to meet with the worldwide composites industry.

Six months prior to the show, the program of the 2023 edition starts to unveil.

For 2023, JEC World is preparing a wide program of conferences and expert panels discussions focusing largely on sustainability and key challenges of our industry and application sectors. In aerospace, construction, ground transportation, health, design, energy (…): sustainable initiatives and greener mindsets are taking over the latest developments in high-performance composite technologies and applications.

Well-known as the “Festival of composites” each year in Paris, JEC World is the event dedicated to composite materials, their manufacturing technologies and application markets. It will take place in Paris Nord Villepinte from April 25th to 27th, 2023, giving once again the opportunity for professionals to meet with the worldwide composites industry.

Six months prior to the show, the program of the 2023 edition starts to unveil.

For 2023, JEC World is preparing a wide program of conferences and expert panels discussions focusing largely on sustainability and key challenges of our industry and application sectors. In aerospace, construction, ground transportation, health, design, energy (…): sustainable initiatives and greener mindsets are taking over the latest developments in high-performance composite technologies and applications.

The JEC Composites Innovation Awards
For 25 years, through the JEC Composites Innovation Awards, JEC Group has rewarded cutting-edge, creative projects which demonstrate the full potential of composite materials. Highly recognised worldwide, they offer the winners and their partners international recognition, a greater exposure during the JEC World show and throughout the following year, new business opportunities as well as an enhanced customer trust.
All companies, R&D centres and their partners can apply before December 16th, and the winners will be revealed during the ceremony, on March 2nd in Paris.

The JEC Composites Startup Booster, the leading startup competition in the world of composites and advanced materials comes back for a sixth edition. All entrepreneurs, SMEs, startups and academic spinoffs building innovative composites projects who want to get international visibility and grow their business with key players of the composites industry & OEMs are already signing up.

Following the call for entries (deadline January 15th, 2023), 20 startups will be selected by JEC Group and its partners Airbus and Mercedes-Benz. Out of the 20 finalists, 3 winners will be selected during the pitching sessions of the show: one in the “Materials & Products” category, one in the “Process, Manufacturing & Equipment” category and a special “Sustainability” award.

More information:
JEC World Composites Startup Award
Source:

JEC Group

Foto: Freudenberg Performance Materials
11.08.2022

Freudenberg Friction Inserts at WindEnergy Hamburg 2022

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

FFI help to improve the reliability of connections and thus of the entire wind turbine. Furthermore, they eliminate slipping and prevent fretting of connections.

Other examples of applications for FFI are highly loaded flange connections between the rotor shaft and gearbox, connections between the main bearing and the machine carrier housing, the gearbox to generator, or at the pitch gear or ring gear. They increase the friction co-efficient between two components.

Source:

Freudenberg Performance Materials

Photo: © 2022, Steiger Participations
11.07.2022

Swiss Textile Machinery technology and innovations for technical textiles

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

New ideas were exchanged, brainstormed, and discussed freely at members’ booths at the Swiss Textile Machinery Pavilion during the recent Techtextil in Frankfurt. “Customers and researchers met Swiss textile machinery companies to explore the possibility of the not-yet-invented. “We regard our Pavilion as the place where future innovations catch a spark,” says Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association. Further developments in the field of hybrid yarns were a hot topic. One example of this involves producing a yarn which has all the typical characteristics and advantages of carbon – but which also prioritizes careful use of resources, combining carbon fibres with thermoplastics.

Technical textiles cover a vast range of applications, and it’s still growing thanks to intensive research by specialist institutes and universities. Many members of the Swiss Textile Machinery Association maintain long-standing partnership with such bodies. Innovations are often joint efforts.

Feel-good technical fabrics
Some technical textiles feel like a second skin. A well-known example is activewear from the ‘sport tech’ field. Activewear includes breathable clothing, usually consisting of a three-layer-laminate: an inner lining, a breathable membrane in the center, and an outer fabric. The challenge is to bond the individual layers without losing breathability or softness, while meeting technical requirements such as resistance to a number of wash cycles.

Bonding solutions meeting top quality requirements, as well as ambitious standards for environmental protection and sustainability, were reinvented by the Cavitec brand from the Santex Rimar Group. This company’s hotmelt technology uses one-component polymers applied to textiles in a hot, molten state. Bonding based on hotmelts is both water- and solvent-free. Drying and exhaust air cleaning are not necessary, which is an ecological advantage. Energy consumption is also significantly lower. Cavitec hotmelt technology is also developed for laminated medical protection fabrics which are safe, high-quality and sustainable. These fabrics can be washed, sterilized, and used again.   

A second skin with added value is the result of Jakob Müller Group’s cooperation with an institute for an established outdoor fashion brand. They have devised a heating mat applied as an inner jacket. Outdoor gear with a heated inlay offers the wearer a comfortable feeling even in a cold climate. The heating mat is particularly light, breathable, flexible and adjustable to three temperature levels.

Fabrics with these advantages are now possible thanks to multi direct weaving (MDW) technology from the Jakob Müller Group. A lacquer-insulated heating strand is inserted into the base textile as a ‘meander’ using MDW technology. The technology is offered with both label weaving machines and the latest generation of ribbon weaving machines. The textile pocket calculator is another MDW based future-oriented application developed in cooperation with a textile research institute.

Safety and health
Life-saving reliability is a must for vehicle airbags. They have to fulfil high security aspects, and must remain inflated for several seconds when an accident occurs. Airbags made of flat-woven fabric – cut and seamed – can show weakness at seams during the inflation phase. Latest Jacquard technology by Stäubli enables one-piece-woven (OPW) airbags to be produced, creating shape and structure in a single process. The final product is an airbag consisting of a sealed cushion with woven seams. OPW airbag weaving reduces the number of production steps, and increases the security aspects.
Another big advantage of Stäubli’s new weaving technology is the flexibility in formats required in today’s mid- and upper-range cars, where lateral protection (in the seat or in the roof over the door) has become standard and is designed in line with the car shape. Safe airbags are woven on modern high-speed weaving machines. The warp material, the variety of fabric patterns, and the importance of precisely shaped airbags require the use of a robust and reliable Jacquard machine.

A revolution for orthopaedic patients is a knitting machine from Steiger Participations, which uses compressive yarns developed to meet the needs of the specific health market. This machine model was exclusively designed for production with inlaid elastic yarns and offers optimum performance with guaranteed final product quality.

In the orthopaedic field, many Steiger flat knitting machines have already been operating as automatic, custom-made production systems. For example, the dimensions of an injured limb are taken by the doctor and fed into a web-based application. The doctor selects the compression class in the various sections of the item and a data file created by the software automatically applies a preconfigured program. With no human intervention required, the program is generated and produced on the machine, precisely matching the patient’s dimensions. Each product is different, and generally available within 48 hours.

ECO-COAT minimum application unit (c) Brückner
Minimalauftragsaggregat ECO-COAT
02.06.2022

BRÜCKNER: Answering current challenges of the textile industry

The German machinery producer BRÜCKNER used exactly these chances and repositioned itself during the pandemic period. For more than 70 years, the family-run company has been specialized in individual finishing concepts for textiles, technical textiles, nonwovens and floor coverings. The current challenges in the textile industry are serious. The clear increase of the energy costs and the general uncertainty of the energy supply as well as political requirements make a profitable textile production more and more demanding for many companies.

The German machinery producer BRÜCKNER used exactly these chances and repositioned itself during the pandemic period. For more than 70 years, the family-run company has been specialized in individual finishing concepts for textiles, technical textiles, nonwovens and floor coverings. The current challenges in the textile industry are serious. The clear increase of the energy costs and the general uncertainty of the energy supply as well as political requirements make a profitable textile production more and more demanding for many companies.

The company responds to this with a newly developed stenter concept with double heating system. Depending on availability, the lines can be operated with gas or oil, but also other combinations with steam or renewable energies are possible. This means that production delays and machine downtimes can be avoided as far as possible. In addition, developed intelligent assistance systems for its machines have been developed that support the machine operator in using the best possible process to operate the line as energy-efficiently as possible. Further energy savings are possible with new energy-efficient motors or heat-recovery and exhaust air cleaning systems. This also helps to avoid harmful emissions.

But many textile producers are also focusing on reducing chemicals. For this purpose, BRÜCKNER's further developed ECO-COAT minimum application unit can make a decisive contribution. Knitted and woven fabrics, but also nonwovens can be finished on one or both sides via different fabric paths. With the minimum application via an engraved roller, a single-sided application of up to 100 g/m² can be achieved. A double-sided and higher application quantity is achieved, for example, by impregnation in the nip. Irrespective of the selected fabric path, a very small liquor reservoir means that only minimal quantities of waste water are produced when changing batches or liquors, and the use of chemicals can also be significantly reduced. In addition, less water has to be evaporated in the subsequent drying process than, for example, in the case of impregnation in a water bath, so the energy requirement is significantly reduced.

On the two upcoming trade fairs ITM in Istanbul and TECHTEXTIL in Frankfurt in June, interested customers can personally get an idea of BRÜCKNER's new developments.

Source:

Brückner Trockentechnik GmbH & Co. KG

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
26.05.2022

Baldwin’s TexCoat G4 finishing system minimizes chemical and water waste

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

With extensive sustainability benefits, unprecedented tracking and process control, and Industry 4.0 integration, the TexCoat G4 provides consistently high-quality fabric finishing, with no chemistry waste, as well as minimal water and energy consumption. This system utilizes non-contact precision-spray technology, ensuring precise finishing coverage with the exact amount of chemistry for reaching the optimal performance of the fabric. Changeovers (pad bath emptying, cleaning and refilling) are significantly reduced, resulting in substantial chemical conservation and increased productivity.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller