From the Sector

Reset
677 results
Baton handover in the management Photo Dibella GmbH
Baton handover in the management
01.08.2023

Dibella: Carsten Ridder succeeds Ralf Hellmann

Dibella already announced a year ago that there would be a change of managing director in the middle of this year. As of 01.08.2023, Carsten Ridder will fill the position of additional managing director together with Stefan Tenbusch. At the same time, the previous managing director Ralf Hellmann will take on an advisory role in the company.

Carsten Ridder is no stranger to the company and has many years of experience as a committed member of the management. In 2001, the banker and graduate in business administration first joined the sister company Bimeco, before moving to Dibella in 2017 as an authorised signatory and member of the management. During this time, the active shareholder has contributed significantly to the development and implementation of important strategies in the areas of human resources and finance, among others.

Ralf Hellmann will continue to play an important role in the company after his retirement from the management by supporting Dibella in an advisory capacity. His experience and knowledge will remain a valuable resource to ensure the success of the projects already initiated as well as new ones.

Dibella already announced a year ago that there would be a change of managing director in the middle of this year. As of 01.08.2023, Carsten Ridder will fill the position of additional managing director together with Stefan Tenbusch. At the same time, the previous managing director Ralf Hellmann will take on an advisory role in the company.

Carsten Ridder is no stranger to the company and has many years of experience as a committed member of the management. In 2001, the banker and graduate in business administration first joined the sister company Bimeco, before moving to Dibella in 2017 as an authorised signatory and member of the management. During this time, the active shareholder has contributed significantly to the development and implementation of important strategies in the areas of human resources and finance, among others.

Ralf Hellmann will continue to play an important role in the company after his retirement from the management by supporting Dibella in an advisory capacity. His experience and knowledge will remain a valuable resource to ensure the success of the projects already initiated as well as new ones.

More information:
Dibella Ralf Hellmann Manager
Source:

Dibella GmbH

28.07.2023

RadiciGroup: Bibs made from recyclable materials for UCI Cycling World Championships

On the occasion of the 2023 UCI Cycling World Championships, the Union Cycliste Internationale chose Santini to make the bibs from recyclable materials. The UCI's partner brought together a pool of companies, all in the Bergamo area (Italy): RadiciGroup, Sitip, EFI Reggiani and Acerbis.

In 2022, the Union Cycliste Internationale released the UCI Climate Action Charter, which lays out an action plan to advance the environmental sustainability of the sport with a specific principle to reduce waste and accelerate the transition to a circular economy. This year, the UCI Cycling World Championships, which will be held from 3 to 13 August, are bringing together most of the cycling disciplines in a single location: Glasgow and across Scotland.

On the occasion of the 2023 UCI Cycling World Championships, the Union Cycliste Internationale chose Santini to make the bibs from recyclable materials. The UCI's partner brought together a pool of companies, all in the Bergamo area (Italy): RadiciGroup, Sitip, EFI Reggiani and Acerbis.

In 2022, the Union Cycliste Internationale released the UCI Climate Action Charter, which lays out an action plan to advance the environmental sustainability of the sport with a specific principle to reduce waste and accelerate the transition to a circular economy. This year, the UCI Cycling World Championships, which will be held from 3 to 13 August, are bringing together most of the cycling disciplines in a single location: Glasgow and across Scotland.

To mark the occasion, the UCI turned to its Official Partner, Santini, to make the bibs that the staff (judges, volunteers, commissaires etc.) and accredited photographers wear throughout the event. The bibs are "eco-designed", which means they are specifically created to have a second life after use. Once the event is over, the bibs could be collected and sent to RadiciGroup and transformed into new material, to be then processed by Acerbis to create X-Elite handguards for mountain bikes. This project is a concrete example of the circular economy at work, allowing 100% of the materials used to be recovered.

To optimise the production cycle of the bibs for the 2023 UCI Cycling World Championships, the products must be eco-friendly from the very first phase. The fabrics were therefore made from Italian nylon yarn produced by RadiciGroup. The choice of nylon – an infinitely recyclable thermoplastic material – is intertwined with UCI's sustainability goals for "limited-use" garments: RadiciGroup was able to channel its know-how and expertise in the field of chemistry to create "circular" bibs, working alongside the other partners. As the innovative yarn selected by RadiciGroup allows for easy and high-quality printing, the fabric is also customisable. The yarn is then provided to Sitip to create the "ARAS NG" warp-knitted fabric (95 g/100 m2): a recyclable single-fibre material made from 100% polyamide. The resulting fabric is the first nylon of its kind, designed to meet the transfer printing needs of the third project partner, EFI Reggiani, as well as the recyclability standards requested by RadiciGroup. The choice of fabric was born from extensive applied research, in which EFI Reggiani tested a wide range of fabrics to find the best colour results and the best resistance to rubbing and perspiration, which is vital for the bibs' intended use. In addition to using the new GOTS-certified EFI Reggiani IRIS Plus water-based inks, EFI Reggiani opted for a printing solution on transfer paper that does not consume water and requires a minimal amount of energy per square metre. Finally, the white fabric from Sitip and the transfer paper printed by EFI Reggiani arrived at Santini, who were responsible for transferring all the graphics for the 2023 UCI Cycling World Championships bibs from the paper onto the fabric. Santini also took care to assemble the garments using only thread and components made from nylon or chemically similar materials, allowing the bibs to enter the recycling process at the end of their lives without any further processing.                   

Source:

RadiciGroup

Gabriela Schelnner, Karl Mayer Group (c) Karl Mayer Group
Gabriela Schelnner, Karl Mayer Group
26.07.2023

Südwolle Group and KARL MAYER GROUP cooperate to unlock the potential of merino wool

The KARL MAYER GROUP and the Südwolle Group have joined forces in a project to explore the possibilities of merino wool for warp knitting technology. The project was triggered by the increasing demand for textiles made from sustainable and environmentally friendly materials. The cooperation was to develop innovative fabrics from renewable raw materials for use in underwear and functional sportswear. The focus of the work was on the use of wool as a material with excellent comfort properties and the look and feel of lightweight single jersey goods. The natural fiber fabric qualities are not typical for warp knitting processing, so the challenges during the project work were diverse.

The KARL MAYER GROUP and the Südwolle Group have joined forces in a project to explore the possibilities of merino wool for warp knitting technology. The project was triggered by the increasing demand for textiles made from sustainable and environmentally friendly materials. The cooperation was to develop innovative fabrics from renewable raw materials for use in underwear and functional sportswear. The focus of the work was on the use of wool as a material with excellent comfort properties and the look and feel of lightweight single jersey goods. The natural fiber fabric qualities are not typical for warp knitting processing, so the challenges during the project work were diverse.

Merino wool yarns with good running properties
Regarding the choice of material, the product development team of Südwolle Group recommended the Hidalgo yarn from their product portfolio. The yarn was created using the in-house developed Betaspun technology, in which a filament was twisted around a merino core. When natural fibres such as wool, cotton or silk are combined with sustainable fibres such as biodegradable polyamide as the filament, the spinning process can create durable, lightweight yarns that disintegrate completely without residue after use. The yarns made from the two components also have good running properties for use in warp knitting. "The polyamide content of the yarn increases its tenacity, reduces hairiness and makes it an excellent choice for warp knitting technology," confirmed Gabriela Schellner from KARL MAYER's Textile Product Development Department.

Shape stability paired with single jersey "look and feel"
The Hidalgo yarn, which is made from merino wool, was processed on a warp knitting machine using a carefully thought-out lapping selection to produce a light, soft fabric which, above all, retains its shape. The textile specialists at KARL MAYER had experimented with two different single bar fabric qualities beforehand and had thus adopted a new approach for jersey machines.

The first results are promising. Now more trials are needed to perfect the technique. Development partners are needed, including fabric producers, brands, and garment manufacturers, with whom the fabric qualities, machine equipment and orientation to the end applications can be refined. The KARL MAYER GROUP and the Südwolle Group are also unanimous in their desire to push the boundaries of what is possible with merino wool and knitting technology and to develop new solutions for the textile industry through further project work.

Source:

Karl Mayer Group

24.07.2023

Indorama Ventures and SMBC: Thailand’s first sustainability-linked Trade Finance facility

Indorama Ventures Public Company Limited and Sumitomo Mitsui Banking Corporation (SMBC) signed Thailand’s first sustainability-linked Trade Finance facility of US$50 million to support Indorama Ventures’ contributions to its ambitious sustainability commitment. This new facility reflects Indorama Ventures’ leadership in leveraging sustainable financing in Thailand.

The new facility is short-term working capital finance linked to the company’s sustainability performance targets, including reducing greenhouse gas (GHG) emissions intensity by 10% by 2025 (from a 2020 base), increasing post-consumer PET bale input for recycling to 750,000 tons by 2025, and boosting renewable electricity consumption to 25% by 2030.

Indorama Ventures Public Company Limited and Sumitomo Mitsui Banking Corporation (SMBC) signed Thailand’s first sustainability-linked Trade Finance facility of US$50 million to support Indorama Ventures’ contributions to its ambitious sustainability commitment. This new facility reflects Indorama Ventures’ leadership in leveraging sustainable financing in Thailand.

The new facility is short-term working capital finance linked to the company’s sustainability performance targets, including reducing greenhouse gas (GHG) emissions intensity by 10% by 2025 (from a 2020 base), increasing post-consumer PET bale input for recycling to 750,000 tons by 2025, and boosting renewable electricity consumption to 25% by 2030.

Indorama Ventures has secured a total US$2.4 billion in long-term sustainable financing from various national and international financial institutions between 2018–2022. The funds are supporting the company’s expansion and sustainability projects in line with its strategy under Vision 2030 as a purposeful company with ESG at its core.

Source:

Indorama Ventures Public Company Limited 

Wedding Dress Design with Stratasys’ 3DFashion Technology (c) Stav Peretz
12.07.2023

Wedding Dress Design with Stratasys’ 3DFashion Technology

Ada Hefetz, an Israel-based wedding dress designer, has introduced a new attention-grabbing collection with intricate, showstopping elements produced using Stratasys’ advanced direct-to-textile 3D printing technology. Showcased recently at Milan Design Week, the three unique dresses are based on Hefetz’s Flower of Life theme and were produced using Stratasys’ 3DFashion™ technology as part of her latest series celebrating matrimonial union, the circle of life, and design.

Known for designing haute couture bridal dresses combining vintage style and classic modern chic, Ada Hefetz is renowned for constantly pushing the boundaries of design. This is her first completed project using 3D printing.

Ada Hefetz, an Israel-based wedding dress designer, has introduced a new attention-grabbing collection with intricate, showstopping elements produced using Stratasys’ advanced direct-to-textile 3D printing technology. Showcased recently at Milan Design Week, the three unique dresses are based on Hefetz’s Flower of Life theme and were produced using Stratasys’ 3DFashion™ technology as part of her latest series celebrating matrimonial union, the circle of life, and design.

Known for designing haute couture bridal dresses combining vintage style and classic modern chic, Ada Hefetz is renowned for constantly pushing the boundaries of design. This is her first completed project using 3D printing.

The wedding dresses feature complex geometrical shapes, depicting the ‘Flower of Life’, a sacred geometry dating back to ancient Egypt. The intricate pattern is composed of overlapping circles that intersect to form flowers, which Ada Hefetz has combined with her design of a lily to symbolize the union between two individuals and the circle of life. The inspiring design uses Stratasys’ translucent VeroVivid™ resin material with Stratasys’ J850™ TechStyle™ 3D printer, which can be printed in over 500,000 unique colors with varying levels of flexibility, simulating different textures and finishes.

Ada Hefetz’s Flower of Life-themed 3D printed wedding dresses are currently on display at Milan’s D-House Urban Laboratory, which is owned and managed by Dyloan, the leading Italian manufacturer serving the high-end fashion sector.

More information:
Stratasys 3D printing materials
Source:

Stratasys

Schwedisches Fashionlabel „Acne Studios“ feiert Neueröffnung in Hamburg (c) Acne Studios
30.06.2023

Schwedisches Fashionlabel „Acne Studios“ feiert Neueröffnung in Hamburg

„Keep it simple“ ist das Stil-Credo der schwedischen Modemarke Acne Studios. Die Kleidungsstücke sind nicht überfrachtet, sondern überraschen durch einen ungewöhnlichen Schnitt oder einzelne leuchtende Farben. Diese Brand-DNA wurde auch bei der Neueröffnung des Stores am Neuen Wall in Hamburg aufgegriffen. Innenarchitektin Vera Schmitz hat für das Ladendesign das Retailkonzept des Designstudios Halleroed lokal interpretiert und Elemente klassischer deutscher Architektur mit der schwedischen Markenphilosophie kombiniert. Verantwortlich für die Umsetzung des Innenausbaus inklusive aller technischen Gewerke und der Überarbeitung der Fassade war der Generalübernehmer Schwitzke Project aus Düsseldorf.

„Keep it simple“ ist das Stil-Credo der schwedischen Modemarke Acne Studios. Die Kleidungsstücke sind nicht überfrachtet, sondern überraschen durch einen ungewöhnlichen Schnitt oder einzelne leuchtende Farben. Diese Brand-DNA wurde auch bei der Neueröffnung des Stores am Neuen Wall in Hamburg aufgegriffen. Innenarchitektin Vera Schmitz hat für das Ladendesign das Retailkonzept des Designstudios Halleroed lokal interpretiert und Elemente klassischer deutscher Architektur mit der schwedischen Markenphilosophie kombiniert. Verantwortlich für die Umsetzung des Innenausbaus inklusive aller technischen Gewerke und der Überarbeitung der Fassade war der Generalübernehmer Schwitzke Project aus Düsseldorf.

Der 225 Quadratmeter große Hamburger Store, der zwischen zwei Kanälen und zwischen zwei Straßen gelegen ist, wird in zwei Flügel aufgeteilt. Über zwei getrennte Eingänge gelangen die Kund:innen in den Store, in dessen Mitte sich eine dreieckige Gondel befindet, die mit Spiegeln verdeckt ist und so ein Gefühl der optischen Illusion erzeugt. Im Store verteilt finden sich als Deko-Elemente eine Auswahl von Sitzmöbeln in Batik-Look, die die industrielle Umgebung aus harten Metallen und Glas aufbrechen.  

Der Hamburger Store ist die erste Kooperation zwischen Schwitzke Project und Acne Studios.

DITF: Textile structures regulate water flow of rain-retaining "Living Wall" (c) DITF
Outdoor demonstrator on the Research CUBUS. At the top is the textile water reservoir with all inputs and outputs and textile valve for rapid emptying. Below are the substrate blocks with integrated hydraulic textiles
30.06.2023

DITF: Textile structures regulate water flow of rain-retaining "Living Wall"

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Innovative hydraulic textile structures regulate water flow. The rock wool plant substrate on which the plants grow has a large volume in a small space thanks to its structure. Depending on how heavy the precipitation is, the rainwater is stored in a textile structure and later used to irrigate the plants. In the event of heavy rainfall, the excess water is discharged into the sewage system with a time delay. In this way, the "Living Walls" developed at the DITF help to make efficient use of water as a resource in post-densified urban areas.

The research project also scientifically investigated the cooling performance of a green facade. Modern textile technology in the substrate promotes the "transpiration" of the plants. This creates evaporative cooling and lowers temperatures in the surrounding area.

The work of the Denkendorf research team also included a cost-benefit calculation and a life-cycle analysis. Based on the laboratory and outdoor studies, a "green value" was defined that can be used to evaluate and compare the effect of greening buildings as a whole.

(c) adidas AG
28.06.2023

adidas Originals and KSENIASCHNAIDER present Collaborative Collection

This season, adidas Originals and the progressive Ukrainian label KSENIASCHNAIDER have come together to present a collaborative collection featuring a host of unconventional garments, footwear, and accessories.

Founded in 2011 by Ksenia and Anton Schnaider, KSENIASCHNAIDER is a Kyiv-based independent fashion house centered on creating boundary pushing ready-to-wear, denim, and upcycled apparel and accessories. Drawing on Ksenia’s design language and Anton’s engineering logic, the partners’ eponymous label continues to challenge established conventions to boldly project a new vision of the future.

The collection is anchored by a host of garments which blend the Ukrainian house’s signature aesthetic with adidas’ instantly recognizable brand codes. First, an array of denim pieces – including jeans, jackets, and shirt dresses – are elevated with frayed edges, voluminous cuts, and idiosyncratic details. Second, fresh takes on a timeless adidas classic stand out as adiColor tracksuits, corsets, and dresses are reworked in a patchwork finish.

The adidas Originals x KSENIASCHNAIDER collection launches on July 1st.

This season, adidas Originals and the progressive Ukrainian label KSENIASCHNAIDER have come together to present a collaborative collection featuring a host of unconventional garments, footwear, and accessories.

Founded in 2011 by Ksenia and Anton Schnaider, KSENIASCHNAIDER is a Kyiv-based independent fashion house centered on creating boundary pushing ready-to-wear, denim, and upcycled apparel and accessories. Drawing on Ksenia’s design language and Anton’s engineering logic, the partners’ eponymous label continues to challenge established conventions to boldly project a new vision of the future.

The collection is anchored by a host of garments which blend the Ukrainian house’s signature aesthetic with adidas’ instantly recognizable brand codes. First, an array of denim pieces – including jeans, jackets, and shirt dresses – are elevated with frayed edges, voluminous cuts, and idiosyncratic details. Second, fresh takes on a timeless adidas classic stand out as adiColor tracksuits, corsets, and dresses are reworked in a patchwork finish.

The adidas Originals x KSENIASCHNAIDER collection launches on July 1st.

Source:

adidas AG

28.06.2023

EPTA highlights contribution of pultruded composites to sustainable construction

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

The future of construction
As one of the largest global users of energy and raw materials, the construction industry is under immense pressure to improve its sustainability. At the same time, it must respond to demands for improved performance and reduced total cost of ownership. New materials will be needed to minimise the use of natural resources, enable a reduction of carbon footprint and facilitate circular economy practices. Choosing the optimum materials required for durability throughout the lifecycle will be increasingly important. A shift to off-site production is also forecast, where factory-controlled environments and automated processes can improve quality control, lower waste, and reduce work on site.

Lightweight pultruded parts can be pre-assembled into modules or complete structures in the factory for faster installation on site. Lightweight profiles lower energy use during transportation and installation, and a longer service life combined with minimal maintenance can deliver a reduced through-life carbon footprint. Pultruded parts such as profiles, gratings, beams, tubes and planks are increasingly found in a range of building, construction and infrastructure applications. Examples include bridge decks, fencing, stairs and handrails, train platforms, cladding, utility poles, modular building concepts, and window frames.

One application offering large growth potential for composites is bridges. Composite bridges are being designed to provide a service life of 100 years and unlike steel bridges do not require regular repainting to protect them from corrosion. Over recent years, pultruded glass fibre composite has become a highly popular choice for pedestrian and cycle bridges. Pre-fabricated ‘easy fit’ bridge decking planks, pre-assembled bridge modules and complete bridge ‘kits’ are now available. Corrosion-resistant composite bridges are ideal for use near water or on the coast, and in remote locations where regular maintenance operations would be difficult. A composite bridge can deliver the same performance as a steel structure with a weight saving of up to 50% or more. This enables more streamlined bridge designs which require less substantial supporting structures and foundations, greatly reducing consumption of materials and energy. Lightweight also results in easier logistics and simplified installation. Pultruded are more easily transported to the construction site, with lower fuel consumption, and easier to move on site, often reducing labour requirements and the capacity of lifting equipment.

A lifecycle approach
As the construction industry looks to the future, the environmental and economic benefits of composite materials linked to easier logistics and installation, durability and low maintenance are becoming increasingly valued. More projects are demonstrating the benefits of composite materials and standards covering the design, fabrication and installation of pultruded profiles are making it easier for the construction industry to use them. With ongoing development and collaboration, pultrusion has the potential to contribute to a more sustainable future for construction and many other industries. EPTA will continue to promote the advancement of pultrusion technology and its applications and foster sustainable practices within the industry.

Source:

The European Pultrusion Technology Association (EPTA)

21.06.2023

Fashion for Good welcomes new partners to its Sorting for Circularity USA Project

The Sorting for Circularity USA consortium project welcomes new partners and expands its North American geographical scope. Fashion for Good is pleased to announce the addition of lululemon as an external brand partner, joining the existing seven brand partners. They also welcome their new implementation partners Helpsy, United Southern Waste Material, Goodwill Industries International Inc., and its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Additionally, Fashion for Good is pleased to recognise adidas as the project's lead sponsor, facilitating the complete realisation of the project scope.

The Sorting for Circularity USA consortium project welcomes new partners and expands its North American geographical scope. Fashion for Good is pleased to announce the addition of lululemon as an external brand partner, joining the existing seven brand partners. They also welcome their new implementation partners Helpsy, United Southern Waste Material, Goodwill Industries International Inc., and its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Additionally, Fashion for Good is pleased to recognise adidas as the project's lead sponsor, facilitating the complete realisation of the project scope.

Fashion for Good, together with Resource Recycling Systems, launched the Sorting for Circularity USA consortium project in January 2023. The project will conduct an extensive consumer survey to map the journey of a garment from closet to end of use, and present a comprehensive snapshot of textile waste composition generated in the United States. The insights gained from this 18-month project will help to scale collection, sorting, and recycling innovations and inform decisions on necessary investments and actions.

Within the first 6 months, the project has expanded to cover 6 key states: California, Texas, Florida, New York, New Jersey and Colorado. Additional implementation partners have also signed on to support the fibre composition data analysis: Secondary Materials and Recycled Textiles (SMART) Association, Helpsy, United Southern Waste Material, and Goodwill Industries International Inc., with its members Goodwill of Colorado, Goodwill Industries-Suncoast, Inc., Goodwill of the Finger Lakes, and Goodwill of San Francisco Bay. Resource Recycling Systems will drive the dissemination and analysis of the consumer survey together with New York State Center for Sustainable Materials Management and Syracuse University Center for Sustainable Community Solutions, and execute the textile composition analysis using Matoha’s near infrared devices with advisory support from Circle Economy.

Demonstrating the importance of pre-competitive collaboration in tackling the industry’s biggest challenges, lululemon joins Eastman, H&M and Nordstrom as key project partners, together with Fashion for Good corporate partners adidas, Inditex, Levi Strauss & Co., and Target. Adidas' lead sponsorship ensures a deeper analysis of USA textile waste infrastructure and the identification of valuable opportunities for advancement.

In the USA, textile waste is the fastest-growing segment of the country's waste stream, with 85% of discarded textiles ending up in landfills*. Understanding the composition of material, volume and location of used textiles is crucial for capturing them and sorting them for the best and highest quality end use. Moreover, the range of national and regional geographies within the Sorting for Circularity project series enables for nuanced cross-country comparisons - revealing differences in the textile waste generated and infrastructure required.

Sorting for Circularity, a framework co-developed by Fashion for Good and Circle Economy, aims to (re)capture textile waste by unlocking the feedstock potential for recycling, expedite the implementation of game changing automated sorting technologies such as near-infrared spectroscopy and advanced textile-to-textile recycling, and drive circularity within the fashion value chain. The project builds on the success of Sorting for Circularity Europe and India, which revealed insights on material composition, volume, and location of used textiles and provided a solid foundation to accelerate textile recycling in those respective geographical locations.

*United States Environmental Protection Agency (2019). National Overview: Facts and Figures on Materials, Wastes and Recycling.

Source:

Fashion for Good 

Oliver Streuli , CFO Rieter Holding AG Foto Rieter
20.06.2023

Oliver Streuli new CFO at Rieter

The Board of Directors of Rieter Holding Ltd. unanimously has appointed Oliver Streuli to the Group Executive Committee of Rieter Group as Chief Financial Officer, effective August 1, 2023.

Oliver Streuli was from June 2019 until April 2023 CEO at PCS Holding AG in Frauenfeld (Switzerland), a private institutional investment company, where he was responsible for developing the investment strategy as well as the financial and strategic supervision of the industrial portfolio companies. He was also project manager for the IPO on the SIX Swiss Exchange at Stadler Rail AG, Bussnang (Switzerland). Previously, he held different positions at UBS.

He is currently a member of the Board of Directors of Swiss Steel Holding AG, Lucerne (Switzerland), and of Autoneum Holding AG, Winterthur (Switzerland).

Oliver Streuli was a member of the Board of Directors of several industrial and financial portfolio companies of PCS Holding AG in Switzerland, in Austria and in Türkiye, which are active in fields of electric propulsion systems, green mobility and rolling stock leasing.

The Board of Directors of Rieter Holding Ltd. unanimously has appointed Oliver Streuli to the Group Executive Committee of Rieter Group as Chief Financial Officer, effective August 1, 2023.

Oliver Streuli was from June 2019 until April 2023 CEO at PCS Holding AG in Frauenfeld (Switzerland), a private institutional investment company, where he was responsible for developing the investment strategy as well as the financial and strategic supervision of the industrial portfolio companies. He was also project manager for the IPO on the SIX Swiss Exchange at Stadler Rail AG, Bussnang (Switzerland). Previously, he held different positions at UBS.

He is currently a member of the Board of Directors of Swiss Steel Holding AG, Lucerne (Switzerland), and of Autoneum Holding AG, Winterthur (Switzerland).

Oliver Streuli was a member of the Board of Directors of several industrial and financial portfolio companies of PCS Holding AG in Switzerland, in Austria and in Türkiye, which are active in fields of electric propulsion systems, green mobility and rolling stock leasing.

Oliver Streuli was born in 1988 and is a Swiss citizen. He holds a Master’s degree in Accounting and Finance from University St. Gallen (HSG),

Source:

Rieter Management AG

20.06.2023

New EU chemicals enforcement project to focus on products sold online

ECHA’s Enforcement Forum agreed to launch an EU-wide project to check that products sold online comply with REACH restrictions and the requirements of the Classification, Labelling and Packaging (CLP) Regulation. Its subgroup on Biocidal Products Regulation, BPRS, agreed to launch a project on labelling of biocidal products.

The Enforcement Forum including its BPR subgroup (BPRS) is a network of enforcement authorities from the EU and EEA. They are responsible for coordinating the enforcement of the REACH, CLP, PIC, POPs and the Biocidal Product Regulations with the aim of protecting our health and the environment while ensuring a level playing field for companies across the EU market.

ECHA’s Enforcement Forum agreed to launch an EU-wide project to check that products sold online comply with REACH restrictions and the requirements of the Classification, Labelling and Packaging (CLP) Regulation. Its subgroup on Biocidal Products Regulation, BPRS, agreed to launch a project on labelling of biocidal products.

The Enforcement Forum including its BPR subgroup (BPRS) is a network of enforcement authorities from the EU and EEA. They are responsible for coordinating the enforcement of the REACH, CLP, PIC, POPs and the Biocidal Product Regulations with the aim of protecting our health and the environment while ensuring a level playing field for companies across the EU market.

Inspections in this REACH-EN-FORCE (REF)-13 project will take place in 2025. The objective is to check that products, such as toys, common household goods or chemicals, sold online comply with REACH restrictions. Inspectors will also check that mixtures are classified, labelled and packaged in line with CLP and that online offers include the required information about the hazards of the mixture. Inspectors may also check compliance with restrictions under the Persistent Organic Pollutants (POPs) Regulation and the Restriction of Hazardous Substances (RoHS) Directive.

The online sale of chemicals is an area of high non-compliance. In a previous Forum project (REF-8), inspectors often found that mixtures and articles sold online contained restricted hazardous substances, including those causing cancer. The project found that 78 % of controlled mixtures or articles did not fulfil the conditions of REACH restrictions.

In the upcoming project, inspectors can rely on stricter rules governing online sales, such as the Digital Services Act and General Product Safety Regulation. These new laws are expected to make enforcement stronger.

The Forum’s subgroup on Biocidal Products Regulation (BPRS), agreed that the next major enforcement project on biocides (BEF-3) will focus on controlling the correctness of product labels for biocidal products. Inspectors will check that the information on the labelling of biocides corresponds to that what has been authorised and included in the Summary of Product Characteristics. Inspectors may also check the presence and quality of information in the Safety Data Sheets, where it is required for biocidal products.

Both REF-13 and BEF-3 projects will be prepared in 2024, inspections are planned for 2025 and reports are expected to be published in 2026.

During the meeting, the Forum members elected a new chair and vice chair. Henrik Hedlund (SE) will start as the Forum chair and Katja vom Hofe (DE) and Maria Orphanou (CY) will be the vice chairs as of 21 June 2023. Its biocides subgroup elected Helmut de Vos (BE) as chair and Jenny Karlsson (SE) and Eugen Anwander (AT) as vice chairs.

Source:

European Chemicals Agency

(c) adidas AG
19.06.2023

Over one million people came together to adidas’ Move For The Planet

Over 1.2 million people came together to Move For The Planet, a new global initiative by adidas that harnessed the collective activity of sporting communities across the world.

Over 173 million active minutes were tracked overall across countries in the adidas Running app with adidas pledging to donate €1 to Common Goal for every 10 minutes of activity logged across 34 sports between June 1-12 – up to €1.5m.

The contributions will support projects around the globe that educate and engage communities through sport. One such organisation selected by adidas and Common Goal is the ISF Cambodia (ISF), a charity with 16 years of experience using education and sport to change lives.

The specific project will enable the installation of solar panels to light their football fields – creating safer spaces for girls and the wider community to practice in whilst at the same time, using renewable energy.

Over 1.2 million people came together to Move For The Planet, a new global initiative by adidas that harnessed the collective activity of sporting communities across the world.

Over 173 million active minutes were tracked overall across countries in the adidas Running app with adidas pledging to donate €1 to Common Goal for every 10 minutes of activity logged across 34 sports between June 1-12 – up to €1.5m.

The contributions will support projects around the globe that educate and engage communities through sport. One such organisation selected by adidas and Common Goal is the ISF Cambodia (ISF), a charity with 16 years of experience using education and sport to change lives.

The specific project will enable the installation of solar panels to light their football fields – creating safer spaces for girls and the wider community to practice in whilst at the same time, using renewable energy.

In addition to the solar panels, together with Football for Future and Common Goal, adidas is facilitating education on environmental sustainability through sport for ISF with a focus on helping the organization to raise awareness of environmental action in the community.

This will complement ISF workshops on environmental protection, the use of single use-plastic and waste management processes, enabling the children and young adults involved to be positive role models for their community.

Move For The Planet is part of adidas’ wider sustainability initiatives as the company continues its mission to make what’s best for the athlete. Earlier this year, adidas announced that it is ahead of schedule in its journey to replace virgin polyester with recycled polyester in its products wherever possible by the end of 2024. In 2022, 96% of all the polyester adidas used was recycled.

Source:

adidas AG

(c) Sappi Europe
19.06.2023

Sappi Gratkorn’s increases share of renewable energy

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

As part of Sappi Europe's full scale decarbonisation roadmap, Gratkorn mill is expanding the share of biomass to be used as an energy source, further driving the move away from fossil fuels as part of the mill’s contribution to the European roadmap. The project follows the recent modernisation of the power plant boiler which enabled the shift from coal to a combined approach of biomass and natural gas.

The mill is now embarking on a next step, enhancing its infrastructure and therefore capacity in order to handle the delivery, sorting and processing of increased biomass levels. This increased utilisation requires an improved biomass handling system at the mill as well as decentralised intermediate storage terminals within the surrounding regions.

"With our long-standing competent wood sourcing partner Papierholz Austria, we will continue our journey to move away from fossil fuels at Gratkorn mill and work towards a climate-neutral future”, says Peter Putz, Managing Director of Sappi Austria GmbH.

For the near term, Sappi’s decarbonisation roadmap includes close to 80 projects being carried out across its European mills by 2025.

“Our 2025 roadmap identifies the path we have embarked on towards a carbon-neutral future,” explains Sarah Price, Director Sustainability of Sappi Europe. The objective is to reduce emissions of specific greenhouse gases (Scope 1 and 2) by 25 per cent and to increase the share of renewable energy in Europe to 50 per cent by 2025 (compared to 2019). Additionally, Sappi’s 2030 science-based target is to reduce carbon emissions by 41.5% per ton of product. “We’re already making good progress towards these targets, with a large number of projects already well-underway or completed”.

Source:

Sappi Europe

(c) EREMA
07.06.2023

EREMA presents a new solution for PET fibre-to-fibre recycling

Following their entry into the fibres and textiles sector, as announced at K 2022, recycling machine manufacturer EREMA launches the INTAREMA® FibrePro:IV - which has been specially developed for PET fibre-to-fibre recycling - at ITMA in Milan from June 8 to 14. Thanks to its especially gentle material preparation and efficient removal of spinning oils, the rPET produced can be reused in proportions of up to 100 percent for the production of very fine fibres.

Following their entry into the fibres and textiles sector, as announced at K 2022, recycling machine manufacturer EREMA launches the INTAREMA® FibrePro:IV - which has been specially developed for PET fibre-to-fibre recycling - at ITMA in Milan from June 8 to 14. Thanks to its especially gentle material preparation and efficient removal of spinning oils, the rPET produced can be reused in proportions of up to 100 percent for the production of very fine fibres.

PET is regarded as a key material for the production of synthetic fibres. Around two thirds of the total volume of PET goes into the production of PET fibres for the textile industry. This highlights the importance of high-quality recycling solutions for the circular economy. By combining proven INTAREMA® technology with a new IV optimiser, EREMA succeeds in processing shredded PET fibre materials heavily contaminated by spinning oils in such a way that the finest fibres can be produced again from the recycled pellets. The system, which now joins EREMA's machine portfolio as the INTAREMA® FibrePro:IV, is characterised by a longer residence time of the PET melt. This is an essential factor for achieving high quality recycled pellets, as it allows the spinning oils and other additives used to improve the handling of the fibres during manufacturing to be removed more efficiently than in conventional PET recycling processes. Following extrusion, by polycondensation the intrinsic viscosity (IV) of the PET melt is increased in the new IV optimiser and under high vacuum to the precise level that is needed for fibre production. "Including filtration the output quality that we achieve with this recycling process is so high that ultra-fine fibres of up to 2 dtex can be produced using these rPET pellets, with an rPET content of 100 percent," says Markus Huber-Lindinger, Managing Director at EREMA. Waste PET fibre from production processes can therefore be further processed into rPET filament fibre, carpet yarn and staple fibre.

While the focus of the fibre and textiles application is currently still on PET fibre recycling, EREMA is committed to driving forward the recycling of mixed fibre materials from classic textile recycling collection in a next project phase. In order to accelerate development work, the EREMA Group opened its own fibre test centre, where a cross-company team is working on recycling solutions for fibre-to-fibre applications. The centre also operates a fully equipped and variable industrial-scale recycling plant. It includes the peripheral technology required and is available to customers for trials.

More information:
EREMA ITMA Fibers Recycling
Source:

EREMA Group

06.06.2023

GOTS, European Space Agency and Marple: Remote monitoring in organic cotton certification

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

Integrated with existing GOTS measures, this project will enable GOTS to further enhance the integrity of organic cotton by developing advanced risk assessment technology for organic certification and preventing fraud from the beginning of the supply chain. “It is an honour and very exciting to be a partner in this ESA Demonstration Project, and it is living up to our claim to be pioneers serving the sustainable textile sector to enable continuous improvement. Technologies like this will be a game changer regarding the integrity and promotion opportunities of organic cotton.” says Claudia Kersten, Managing Director of GOTS.

The project's anticipated impact extends beyond identifying certified organic cotton fields. It is expected to also empower GOTS to recognise cotton fields that have not yet obtained organic certification but possess the potential for a seamless transition to organic cultivation, thanks to their utilisation of traditional and ecologically friendly farming practices. This would enable GOTS to bring a greater number of farmers – particularly those of a smaller size – into the certified organic sector and supply chains, creating new economic opportunities for small-scale farmers and their communities while also helping the textile sector to meet growing consumer demand for organic cotton. Guillaume Prigent, Business Development and Partnerships Officer at the European Space Agency, adds: “This project highlights how space solutions can have a positive impact on the world and is the kind of innovation that ESA supports through its Business Applications and Space Solutions programme.”

The project will run across the distinct cotton growing regions in India, with first results expected by the end of 2023.

India project builds on successful Uzbekistan feasibility pilot
The project is co-financed by GOTS and ESA, in collaboration with Marple GmbH, a German software development firm that developed the CoCuRA (Cotton Cultivation Remote Assessment) software with ESA BASS and successfully piloted it in a feasibility project in 2021 in Uzbekistan.

That venture showed how the trained AI was able to accurately differentiate cotton fields from other crops using only satellite images and sensor data, as well as whether the cotton fields were cultivated organically.

This spurred considerable interest from GOTS, which has committed to the development of cutting-edge technologies that can improve the integrity of the organic textile sector, especially cotton. Dr David Scherf, co-founder of Marple, said: “All our projects strive to leverage advanced technology for a positive impact on the environment and society. We are therefore delighted that our CoCuRA technology, which emerged from a moonshot research project, is being applied in a practical and impactful way. We are excited about the opportunity to work with the exceptional team at GOTS and further strengthen our successful partnership with ESA.”

More information:
GOTS AI cotton India
Source:

GOTS Global Organic Textile Standard

02.06.2023

Carbios receives funding for PET biorecycling plant and R&D activities

Carbios will receive grants totaling €54 million from French State via France 2030 and Grand-Est Region to finance construction of world’s first PET biorecycling plant and accelerate R&D activities

Carbios announces that its project has been selected by the French State for funding of €30 million from the French State as part of the investment plan France 2030, and €12.5 million from the Grand-Est Region.  The implementation of this funding is conditional to the European Commission’s approval of the corresponding state aid scheme, followed by the conclusion of national aid agreements. As part of the national call for projects on “Plastics Recycling” operated by ADEME[1], Carbios’ project to finalize the industrialization of its unique PET biorecycling process has been selected. The reference plant in Longlaville in the Grand-Est region will be the world’s first PET biorecycling plant and is due for commissioning in 2025. This plant will make it possible to relocate to France the production of the two basic components of PET, PTA and MEG[2], both derived from the Carbios process.

Carbios will receive grants totaling €54 million from French State via France 2030 and Grand-Est Region to finance construction of world’s first PET biorecycling plant and accelerate R&D activities

Carbios announces that its project has been selected by the French State for funding of €30 million from the French State as part of the investment plan France 2030, and €12.5 million from the Grand-Est Region.  The implementation of this funding is conditional to the European Commission’s approval of the corresponding state aid scheme, followed by the conclusion of national aid agreements. As part of the national call for projects on “Plastics Recycling” operated by ADEME[1], Carbios’ project to finalize the industrialization of its unique PET biorecycling process has been selected. The reference plant in Longlaville in the Grand-Est region will be the world’s first PET biorecycling plant and is due for commissioning in 2025. This plant will make it possible to relocate to France the production of the two basic components of PET, PTA and MEG[2], both derived from the Carbios process.

Carbios also announces that it has been granted total funding of €11.4 million from the French State as part of France 2030, of which €8.2 million directly for Carbios (€5 million in repayable advances) and €3.2 million for its academic partners INRAE[3], INSA[4] and CNRS[5] via the TWB[6] and TBI[7] joint service and research units. This funding will enable to continue its research into the optimization and continuous improvement of Carbios’ enzymatic technologies.

The plant will secure the sales of the first volumes of recycled PET produced with Carbios’ technology, and to offer its partners recycled PET of the same quality as virgin PET. Once the necessary permits have been obtained, which should be granted by the end of 2023, in line with the announced start of construction before the end of the year, the plant is scheduled to be commissioned in 2025. This will be followed by a period of ramp-up to full capacity. The plant will have a nominal processing capacity of 50,000 tonnes of PET waste per year, equivalent to 2 billion bottles or 2.5 billion food trays.

Selection for funding by the French State through France 2030 and the Grand-Est Region complements the recent announcement of an exclusive, long-term partnership with Novozymes[8], a leader in enzyme production, one of the main aims is to ensure the supply of enzymes to Carbios’ Longlaville plant and future licensed plants. In addition, Carbios recently secured a first supply source for its future plant by winning part of the CITEO tender for the biorecycling of multilayer trays[9].


[1] The French Agency for Ecological Transition
[2] PTA = purified terephthalic acid; MEG = monoethylene glycol
[3] French National Research Institute for Agriculture, Food and the Environment
[4] French National Institute of Applied Sciences
[5] French National Center for Scientific Research
[6] Toulouse White Biotechnology – UMS INRAE 1337 / UAR CNRS 3582
[7] Toulouse Biotechnology Institute – UMR INSA/CNRS 5504 / UMR INSA/INRAE 792
[8] Cf. press release dated 12 January 2023
[9] Cf. press release published by Citeo dated 26 April 2023

More information:
Carbios biorecycling plastics France
Source:

Carbios

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

Graphic IVL
01.06.2023

Indorama Ventures and Carbios: MOU for PET biorecycling plant in France

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Under the agreement signed June 1, Carbios, which filed for plant permitting in December 2022, should acquire 13ha land from Indorama Ventures’ existing PET plant at Longlaville and expects to be granted permits by Q3 2023, allowing start of construction by end of 2023 and targeted commissioning in 2025.  The land surface offers the possibility to double capacity. Pursuant to this MOU, Indorama Ventures shall ensure 100% of output repolymerization and both partners shall collaborate to secure feedstock supply.

The total capital investment for the new plant is re-estimated to be around €230 million, taking into account recent impact from inflation. Project costs shall be financed by the sums mobilized by Indorama Ventures, the French State and Grand-Est Region subsidies available for the project , and by equity capitalization of the Joint Venture by Carbios. Part of Carbios’ equity injection into the Joint Venture shall be financed by a portion of Carbios’ current cash position (i.e. €86 million as of 30 April 2023). Carbios is actively examining the best options to finance its remaining equity injection into the Joint Venture and will choose the most appropriate solution and timeline based on market conditions.

The project is part of Indorama Ventures’ Vision 2030 ambition to build on its leadership as a global sustainable chemical company. The company’s ESG commitments include spending $1.5 billion to increase its recycling capacity to 50 billion PET bottles per year by 2025 and 100 billion bottles per year by 2030. To meet these goals, Indorama Ventures, the world’s largest producer of recycled PET resin used in beverage bottles, is investing in new recycling technologies, including advanced recycling, in addition to expanding its global footprint of mechanical recycling sites, including two in France.

Carbios has developed a disruptive enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products with an aim to achieve true circularity. Carbios has ambitious plans to become a leading technology provider in advanced recycling of PET by 2035. After successful ongoing operations in its demonstration plant in Clermont-Ferrand in France, Carbios has been collaborating with Indorama Ventures for over a year to assess the commercial and technical feasibility of the technology. The world’s first industrial-scale enzymatic PET recycling plant at Longlaville will have a capacity to process about 50,000 tons of post-consumer PET waste per year, including waste that is not recyclable mechanically, equivalent to 2 billion PET colored bottles or 2.5 billion PET trays.

More information:
IVL Carbios biorecycling PET
Source:

IVL

(c) Lenzing AG
01.06.2023

Lenzing celebrates 40th anniversary of LENZING™ Acetic Acid Biobased

Lenzing Group, a global producer of wood-based specialty fibers, is celebrating the 40th anniversary of its biorefinery and co-product brand LENZING™ Acetic Acid Biobased. The brand was first introduced on May 4, 1983, and has since become one of the leading and most trusted biobased acetic acid providers.

Over the past 40 years, LENZING™ Acetic Acid Biobased, which has a reduced carbon footprint that is 85% lower than that of fossil-based acetic acid, has continued to gain trust and support from customers. Specialty chemical company Evonik, and food production company Speyer & Grund Group, have been incorporating LENZING™ Acetic Acid Biobased in the production of their products since 1983. LENZING™ Acetic Acid Biobased has also been in high demand from the hygiene industry during the COVID-19 pandemic as an all-purpose cleaning agent in conventional and green products.

Lenzing Group, a global producer of wood-based specialty fibers, is celebrating the 40th anniversary of its biorefinery and co-product brand LENZING™ Acetic Acid Biobased. The brand was first introduced on May 4, 1983, and has since become one of the leading and most trusted biobased acetic acid providers.

Over the past 40 years, LENZING™ Acetic Acid Biobased, which has a reduced carbon footprint that is 85% lower than that of fossil-based acetic acid, has continued to gain trust and support from customers. Specialty chemical company Evonik, and food production company Speyer & Grund Group, have been incorporating LENZING™ Acetic Acid Biobased in the production of their products since 1983. LENZING™ Acetic Acid Biobased has also been in high demand from the hygiene industry during the COVID-19 pandemic as an all-purpose cleaning agent in conventional and green products.

Pioneering a carbon neutral future in the biorefinery segment with a new offering
To mark the important occasion, Lenzing will introduce its first carbon neutral LENZING™ Acetic Acid Biobased to meet the growing sustainability needs of industries which predominately rely on fossil-based materials. Similar to the standard LENZING™ Acetic Acid Biobased, the carbon neutral LENZING™ Acetic Acid Biobased is produced using sustainably sourced beech wood as a universal replacement for non-renewable raw materials such as crude oil. By calculating, reducing and offsetting emissions during production processes, this expansion will create a more sustainable supply chain with highly functional products across various industries. From now on, Lenzing customers across the food, pharmaceutical, cosmetics, chemical and textile industries will be able to choose between carbon neutral and reduced carbon footprint acetic acid products.

Advancing circularity and carbon neutrality through efficient use of valuable resources
Lenzing’s biorefinery concept ensures that 100% of wood components are used to produce pulp for Lenzing’s botanic fibers, biorefinery products, as well as bioenergy, which is used to power Lenzing’s facilities. This makes Lenzing’s biorefinery sites almost fully energy self-sufficient to remain as carbon neutral as possible. To ensure a low carbon footprint, rail transportation is the preferred means for transporting LENZING™ biorefinery products, with trucks being leveraged in regions where rail transportation is not available.

Together with ClimatePartner, a recognized global leader in the design, development, and delivery of corporate climate action programs, Lenzing strives to reduce carbon emissions to net-zero through a mix of higher production efficiencies, use of renewable energy sources, low-carbon materials, and the dedicated support of an external nature-based carbon removal project. For instance, to offset remaining carbon emissions that cannot be reduced, Lenzing works with ClimatePartner to support and finance the switch to biomass as an energy source at a ceramic factory in Kitambar in northeastern Brazil. Using natural waste materials, like coconut shells, as renewable biomass for its energy production, the factory is able to produce roof tiles in a more climate-friendly way while saving on carbon emissions. Besides contributing to the fuel switch, the project also helps to reduce the deforestation rate in Brazil and avoid methane emissions that could result from the uncontrolled rotting of biomass.

More information:
Lenzing biobased acetic acid
Source:

Lenzing Group