From the Sector

Reset
9 results
03.04.2024

Trützschler: Holistic approach to textile recycling

Trützschler expanded their portfolio to become the first full-liner in the preparation of textile waste – from mechanical recycling to the spinning preparation of torn secondary fibers.

The TRUECYCLED solution is the result of their cooperation with the company Balkan Textile Machinery INC.CO. in Turkey, which they announced at the ITMA 2023 trade event in Milan. Since then, Trützschler has received many inquiries for recycling systems.

Trützschler expanded their portfolio to become the first full-liner in the preparation of textile waste – from mechanical recycling to the spinning preparation of torn secondary fibers.

The TRUECYCLED solution is the result of their cooperation with the company Balkan Textile Machinery INC.CO. in Turkey, which they announced at the ITMA 2023 trade event in Milan. Since then, Trützschler has received many inquiries for recycling systems.

Success with a systems approach
Recycling systems face significant technological challenges. On average, torn fibers are much shorter than virgin fibers. The percentage share of short fibers in the fiber mass is much higher. Unopened yarn and fabric particles are also difficult to process. Not surprisingly, much academic and practical research is currently conducted to find solutions for these problems. Dr. Georg Stegschuster, a researcher specializing in textile recycling, believes a systems approach is needed. He is working at the Recycling atelier, a model factory for mechanical recycling in Augsburg, Germany, which is committed to delivering the latest technological insights for textile recycling. “A perfect fine-tuning between tearing and spinning preparation is key for obtaining the best possible quality results and avoiding unnecessary fiber shortening,” he says. “This can be achieved if you are in control of both processes – and have the necessary expertise for both processes too.”

Gentle but effective
In some cases, for example, it may be advantageous to have less aggressive settings in the tearing line. This can help avoid unnecessary fiber shortening. The remaining higher share of unopened fabric must then be handled in a high-performance spinning preparation line. This starts with the right blow room configuration for perfect opening, cleaning and blending. A card that is specially designed for recycling materials, such as the new TC 30Ri, can also enable gentle but effective treatment of fibers.

A shortened drafting process is also a must. The integrated draw frame IDF 3 can make this possible. The draft is high enough to provide excellent levelling of the numerous short fibers, but low enough to prevent floating fibers.

Full-liner in mechanical recycling and preparation of textile waste
Trützschler now offers a complete system covering the whole process, from cutting and tearing textile waste through to carding and drawing secondary fibers. Thanks to this holistic approach and Trützschler’s expertise for the whole process, manufacturers can avoid unnecessary fiber shortening.

Source:

Trützschler Group

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

Naia™ Renew Eastman
14.12.2023

Naia™ Renew receives Global Recycled Standard certification

Eastman Naia™ Renew cellulosic fiber received Global Recycled Standard (GRS) certification on December 13. This certifies Naia™ Renew recycled content, chain of custody, social and environmental practices, and chemical restrictions.

Textile Exchange, a global non-profit for sustainable change in the fashion and textile industry, manages the GRS certification process. Certification is achieved through an audit from independent third-party certifying body SCS Global Services and applies to the full supply chain and addresses traceability, environmental principles, social requirements, chemical content and labeling.

"We’re honored to add GRS certification to our list of Naia™ certifications that support our sustainability goals,” said Claudia de Witte, sustainability leader for Eastman textiles. “Third-party certifications help us build our brand trustworthiness. It’s our goal to make sustainable textiles available to all, and we do that by building trust with our customers and collaborators. This certification adds even more credibility to our fibers and our sustainability story, which we’re proud to share.”

Eastman Naia™ Renew cellulosic fiber received Global Recycled Standard (GRS) certification on December 13. This certifies Naia™ Renew recycled content, chain of custody, social and environmental practices, and chemical restrictions.

Textile Exchange, a global non-profit for sustainable change in the fashion and textile industry, manages the GRS certification process. Certification is achieved through an audit from independent third-party certifying body SCS Global Services and applies to the full supply chain and addresses traceability, environmental principles, social requirements, chemical content and labeling.

"We’re honored to add GRS certification to our list of Naia™ certifications that support our sustainability goals,” said Claudia de Witte, sustainability leader for Eastman textiles. “Third-party certifications help us build our brand trustworthiness. It’s our goal to make sustainable textiles available to all, and we do that by building trust with our customers and collaborators. This certification adds even more credibility to our fibers and our sustainability story, which we’re proud to share.”

In June 2023, Textile Exchange made an important announcement regarding its Alternative Volume Reconciliation (VR2) policy, which broadened the range of chemical recycling technologies eligible for mass balance. Notably, this expansion now encompasses gasification, the technical description of Eastman’s molecular recycling technology known as carbon renewal technology. Eastman collaborated with Textile Exchange and other stakeholders to educate the industry about the value and contribution of its molecular recycling technology. This policy update is critical for Eastman because it allows the company’s innovative material-to-material recycling technology to be audited for GRS certification.

Molecular recycling technologies at Eastman break waste down into its molecular building blocks allowing the materials to be used in new materials that are indistinguishable from non-recycled materials. By expanding the GRS to include gasification, the global standard now allows for a broader approach to making sustainable textiles accessible to everyone.

In recent years, the textiles industry has shifted toward circular materials to help tackle one of the largest challenges facing the planet: waste pollution, especially textile waste. Eastman molecular recycling is complementary to mechanical recycling and is a solution for hard-to-recycle waste material, including textiles, which are impacted by factors like fiber blends, chemicals and additives.

Naia™ Renew is produced from 60% sustainably sourced wood pulp and 40% GRS-certified* waste materials that would otherwise be destined for landfills through Eastman's patented molecular recycling technology. The certification verifies the processes of chemical recycling, concentrating, extrusion, and spinning of the undyed yarns and fibers.

27.11.2023

CALL for PAPERS - Dornbirn GFC 2024

The programme committee is now accepting paper proposals for the Dornbirn GFC Global Fiber Congress 2024. They will be accepted through 15 February 2024

TOPICS
Fiber innovations

Is the core focus, including all applications like apparel, home, automotive, technical textiles etc. Nonwoven applications itself show very high innovative potential and will be part of this group. Natural fibers like cotton, wool and others will enrich the wholistic approach in the fibres space. Raw materials for the manmade fibre production like Pulp and upstream materials for synthetic fibers will extend this core pillar.
 
Circular Solutions & Recycling & Sustainability
Due to rising awareness of the climate change and the implementation of the “Green Deal”, “Sustainable Development Goals”, “ESG” and other, this pillar became enormously relevant over the years including:
sustainability in general for textiles and nonwovens, new and upcoming sorting- and separation technologies, mechanical recycling and chemical recycling and other ways forward.

The programme committee is now accepting paper proposals for the Dornbirn GFC Global Fiber Congress 2024. They will be accepted through 15 February 2024

TOPICS
Fiber innovations

Is the core focus, including all applications like apparel, home, automotive, technical textiles etc. Nonwoven applications itself show very high innovative potential and will be part of this group. Natural fibers like cotton, wool and others will enrich the wholistic approach in the fibres space. Raw materials for the manmade fibre production like Pulp and upstream materials for synthetic fibers will extend this core pillar.
 
Circular Solutions & Recycling & Sustainability
Due to rising awareness of the climate change and the implementation of the “Green Deal”, “Sustainable Development Goals”, “ESG” and other, this pillar became enormously relevant over the years including:
sustainability in general for textiles and nonwovens, new and upcoming sorting- and separation technologies, mechanical recycling and chemical recycling and other ways forward.

Energy Solutions
As energy is becoming significantly important for the whole value chain in terms of costs and sustainability, there will be a strong focus on energy innovations at the next congress.  
 
Emerging Tech
Topics around Digitalization, AI, Transparency and Traceability will get high influence in the value chain and thus open up new approaches in innovation.

Source:

Dornbirn GFC

13.06.2023

Three Finalists Announced for the 2023 World of Wipes Innovation Award®


2XL Corporation, Avgol Nonwovens, and Yowel to compete for Award
INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the World of Wipes Innovation Award®. The Award will be presented at the 17th annual World of Wipes® (WOW) International Conference, July 17-20, at the Atlanta Marriott Marquis in Atlanta, Georgia.    

The three products vying for this Award are a cleaning and disinfecting device from 2XL Corporation, a wipe utilizing biotransformation technology from Avgol Nonwovens, and a reusable towel dispensing system from Yowel.

The winner will be announced on July 20th at 11 am. The three companies competing for the Award are:


2XL Corporation, Avgol Nonwovens, and Yowel to compete for Award
INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the World of Wipes Innovation Award®. The Award will be presented at the 17th annual World of Wipes® (WOW) International Conference, July 17-20, at the Atlanta Marriott Marquis in Atlanta, Georgia.    

The three products vying for this Award are a cleaning and disinfecting device from 2XL Corporation, a wipe utilizing biotransformation technology from Avgol Nonwovens, and a reusable towel dispensing system from Yowel.

The winner will be announced on July 20th at 11 am. The three companies competing for the Award are:

Windup by 2XL Corporation
Meet the Windup: a groundbreaking new device that can clean and disinfect your home using a self-advancing microfiber roll that you never have to touch. Just one roll will clean your kitchen over 50 times. An innovative one-touch revolving roll and a versatile spray system that allows use of your favorite floor cleaner or our specially formulated disinfecting solution. No more stopping to change expensive pads or change filthy water. Get wound up for Windup.

Nonwoven wipe using biotransformation technology by Avgol Nonwovens
This innovative spunlace wipe utilized advanced biotransformation technology developed jointly by Indorama Ventures and Polymateria. Meeting the BSI PAS 9017 specification, this wipe in the event it becomes fugitive, and exposed to heat, sunlight, air and moisture will transform into a harmless, bioavailable wax at its end-of-life, eliminating microplastic pollution. Compatible with mechanical recycling and combatting ‘fugitive’ waste, this wipe represents a significant leap towards eco-friendly, sustainable nonwoven hygiene products.

The Yowel™ System by Yowel
Ready to help the earth and save money…every day? Yowel is a patented system for dispensing reusable towels. Instead of a roll of paper towels, place a Yowel full of reusable towels into your paper towel holder – or choose the countertop model, and you’re immediately reducing your paper towel consumption.  The Yowel System has 40 reusable towels and a mesh bag for used towels. Save money and help Mother Nature.

INDA’s Technical Advisory Board selected the finalists based on the creativity, uniqueness, and technical sophistication employed in finding novel ways to expand the utilization of nonwovens. Categories considered for the award were wipes related raw materials, roll goods, converting, packaging, active ingredients, binders, additives, and end-use products.

Nice-Pak’s SecureFLUSH® Technology Flushable Wipes received the 2022 World of Wipes Innovation Award for their unique, 100% cellulose nonwoven that is strong enough to clean, yet break apart rapidly, when flushed. A specialty “lock and key” design of plant-based fibers and formula leverages patent-pending technology to break apart five times faster than the leading brand of two-ply toilet paper and ensure responsible care of plumbing and wastewater. SecureFLUSH® Technology Flushable wipes are available in Walmart, Amazon, and at Nicencleanwipes.com.

More information:
INDA WOW nonwovens World of Wipes
Source:

INDA

Graphic IVL
01.06.2023

Indorama Ventures and Carbios: MOU for PET biorecycling plant in France

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Indorama Ventures Public Company Limited (IVL) and Carbios, a biotech company developing and industrializing biological solutions to reinvent the life cycle of plastic and textiles, announce the signing of a non-binding Memorandum of Understanding (MOU) to form a Joint Venture for the construction of the world’s first PET biorecycling plant in France.  

Based on and subject to the comprehensive terms set out in the MOU, Indorama Ventures plans to mobilize about €110 million for the Joint Venture in equity and non-convertible loan financing , pending final engineering documentation and final economic feasibility studies. Both parties have acknowledged their mutual support for the implementation of the project and their intent to finalize contract documentation before end 2023.

Subject to the successful performance of this first plant in France, Indorama Ventures confirms its intention to potentially expand the technology to other PET sites for future developments.

Under the agreement signed June 1, Carbios, which filed for plant permitting in December 2022, should acquire 13ha land from Indorama Ventures’ existing PET plant at Longlaville and expects to be granted permits by Q3 2023, allowing start of construction by end of 2023 and targeted commissioning in 2025.  The land surface offers the possibility to double capacity. Pursuant to this MOU, Indorama Ventures shall ensure 100% of output repolymerization and both partners shall collaborate to secure feedstock supply.

The total capital investment for the new plant is re-estimated to be around €230 million, taking into account recent impact from inflation. Project costs shall be financed by the sums mobilized by Indorama Ventures, the French State and Grand-Est Region subsidies available for the project , and by equity capitalization of the Joint Venture by Carbios. Part of Carbios’ equity injection into the Joint Venture shall be financed by a portion of Carbios’ current cash position (i.e. €86 million as of 30 April 2023). Carbios is actively examining the best options to finance its remaining equity injection into the Joint Venture and will choose the most appropriate solution and timeline based on market conditions.

The project is part of Indorama Ventures’ Vision 2030 ambition to build on its leadership as a global sustainable chemical company. The company’s ESG commitments include spending $1.5 billion to increase its recycling capacity to 50 billion PET bottles per year by 2025 and 100 billion bottles per year by 2030. To meet these goals, Indorama Ventures, the world’s largest producer of recycled PET resin used in beverage bottles, is investing in new recycling technologies, including advanced recycling, in addition to expanding its global footprint of mechanical recycling sites, including two in France.

Carbios has developed a disruptive enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products with an aim to achieve true circularity. Carbios has ambitious plans to become a leading technology provider in advanced recycling of PET by 2035. After successful ongoing operations in its demonstration plant in Clermont-Ferrand in France, Carbios has been collaborating with Indorama Ventures for over a year to assess the commercial and technical feasibility of the technology. The world’s first industrial-scale enzymatic PET recycling plant at Longlaville will have a capacity to process about 50,000 tons of post-consumer PET waste per year, including waste that is not recyclable mechanically, equivalent to 2 billion PET colored bottles or 2.5 billion PET trays.

More information:
IVL Carbios biorecycling PET
Source:

IVL

Recycled yarn (c) ITA Aachen
05.05.2023

ITA at the ITMA: Smart Circular Economy

"ITA Aachen and ITA Augsburg are part of the ITA Group International Centre for Sustainable Textiles. Experience our textile innovations at two exhibition booths," explains ITA Institute Director Professor Dr. Thomas Gries. "See our ring spinning tester at booth H3-B304, which spins recycled fibres sustainably and individually in a previously impossible fineness. In addition, there is digital yarn monitoring, which enables new market potentials. Get an idea of the Recycling Atelier of ITA Augsburg at booth H3-A207 and see the textile cycle from used textile to solution steps for industrial implementation together with industry partners. Join us on the Walk4Recycling and follow the path from used textile to a new knitted pullover on a tour of the trade fair. This is how we live up to our claim as the ITA Group: sustainable - digital - individual."

"ITA Aachen and ITA Augsburg are part of the ITA Group International Centre for Sustainable Textiles. Experience our textile innovations at two exhibition booths," explains ITA Institute Director Professor Dr. Thomas Gries. "See our ring spinning tester at booth H3-B304, which spins recycled fibres sustainably and individually in a previously impossible fineness. In addition, there is digital yarn monitoring, which enables new market potentials. Get an idea of the Recycling Atelier of ITA Augsburg at booth H3-A207 and see the textile cycle from used textile to solution steps for industrial implementation together with industry partners. Join us on the Walk4Recycling and follow the path from used textile to a new knitted pullover on a tour of the trade fair. This is how we live up to our claim as the ITA Group: sustainable - digital - individual."

ITA Aachen - Digital ring spinning tester for recycled fibres enables spinning of fine yarns with high recycled fibres content
The Institut für Textiltechnik of RWTH Aachen University (ITA) will be exhibiting a digital ring spinning tester, which spins recycled fibres directly and conventionally with a particularly high content of 60-70 percent. Up to now, recycled yarns have mainly been rotor-spun in this blend ratio. This results in rather coarse yarns and is not suitable for finer textiles such as outerwear. Ring spinning of recycled yarns now enables the spinning of finer yarns and thus a higher application level for recycled materials.

A unique selling point of the ITA ring spinning tester is the simultaneous spinning in the direct spinning process from the sliver and in the classic ring spinning process. For this purpose, the strength and elongation of the spun yarn are determined online and digitally for the first time. The real-time measurement allows process parameters and yarn properties to be adjusted iteratively and quickly. The ring spinning tester was upgraded from an existing tester to Industry 4.0 standard and is operated via a tablet. Operation via tablet enables the adjustment of process parameters including online quality monitoring remotely from anywhere in the world.
 
For this purpose, the ring spinning tester is also able to produce fine ring spun yarns. These yarns made from recycled material opens up a multitude of further fields of application for woven and knitted goods. Now, for example, clothing and technical textiles can be made from recycled material, the production of which was not possible before - such as outerwear made from recycled material. The development of new industries and fields of application opens up new market potential for recycled yarns - also and especially for processing in Europe. This creates the opportunity to preserve key technologies and jobs in cost-intensive locations.

ITA Augsburg - Recycling Atelier: Walk4Recycling
The Recycling Atelier of the Institut für Textiltechnik Augsburg gGmbH on stand H3-A207 presents the textile recycling from used textiles into new products via the various process steps and, together with the industrial partners, opens up solution paths for industrial implementation.

Under the headline "Walk4Recycling", a tour of the fair shows the cycle of used textiles from used knitwear into a new knitted pullover via a ring yarn made from a blend of 65 percent recycled cotton and 35 percent virgin polyester. The key innovation here is the high proportion of recycled fibres from post-consumer textiles for a ring yarn of this fineness. Today, mainly coarse rotor yarns for low-quality textiles are spun from these materials. The industrial partners participating in the Walk4Recycling are partners of the Recycling Atelier and contribute with their technologies to the fact that fibre material from old clothes can be processed in various process stages into a yarn of new value and high-quality ready-made garments.

The Walk4Recycling offers visitors the opportunity to experience a complete recycling cycle with the numerous process stages from tearing the old textiles, preparing and spinning the fibres and knitting a new jumper live during the fair. Get detailed information on the mechanical recycling of clothing via QR code, website and flyer about the participating exhibitors and their machines and technologies. A short movie will give you additional insights into the various processes involved in the production of the jumper.

Photo: Pixabay
10.03.2022

Carbios: White PET fiber from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste
Worldwide, around 90 million tons of PET are produced each year, more than 2/3 of which are used to manufacture fibers. However, only 13% of textile waste is currently recycled, mainly for downcycling, i.e. for lower quality applications (such as padding, insulators or rags). By successfully manufacturing at pilot scale a white PET fiber that is 100% enzymatically recycled from colored textile waste, Carbios is paving the way for the circular economy in the textile industry.  C-ZYME™ is now on the doorstep of industrialization and will soon enable the biggest brands to move closer to their sustainability goals.
 
Emmanuel Ladent, Chief Executive Officer of Carbios: « Thanks to our breakthrough process, it will soon be possible to manufacture, on a large scale, t-shirts or bottles using polyester textile waste as raw material. This is a major breakthrough that gives value to waste that currently has little or no value. It is a concrete solution that opens up a global market of 60 million tons per year of potential raw materials and will help to reduce the use of fossil resources. »
 
Separate collection of textile waste soon to be mandatory in Europe
From 1 January 2025 the separate collection of textile waste, which is already in place in some countries, will be mandatory for all EU Member States (European Directive 2018/851 on waste).  Carbios’ process will enable this waste to be sustainably recovered and included in a true circular economy model.
 
These technological validations were carried out as part of the CE-PET research project, co-funded by ADEME3. In particular, the project aimed to develop Carbios’ enzymatic PET recycling process on textile waste. The C-ZYME™ technology is complementary to thermomechanical recycling and will make it possible to process plastic and textile waste deposits that are currently not or poorly recovered. For the validation of this stage of the project, Carbios received €827,200 (€206,800 in grants and €620,400 in repayable advances).

More information:
Carbios PET textile waste
Source:

Carbios