From the Sector

Reset
246 results
16.11.2022

Next EU-wide REACH enforcement project to focus on imported products

The Enforcement Forum of ECHA agreed that the next REACH enforcement project will investigate how companies fulfil the registration, authorisation and restriction obligations for products and chemicals they import from outside the EU. The project will be done in 2023-2025 and will require close cooperation between REACH enforcement and national customs authorities in the Member States.
In its November meeting, the Enforcement Forum, responsible for harmonising the enforcement of EU chemicals legislation, agreed to focus its next project on the control of imports of substances, mixtures and articles.

This subject was triggered by high levels of non-compliance in imported goods detected in previous Forum projects, including a recent pilot project. The pilot found that 23 % of inspected products were non-compliant with requirements set by EU law and further controls are necessary.

The Enforcement Forum of ECHA agreed that the next REACH enforcement project will investigate how companies fulfil the registration, authorisation and restriction obligations for products and chemicals they import from outside the EU. The project will be done in 2023-2025 and will require close cooperation between REACH enforcement and national customs authorities in the Member States.
In its November meeting, the Enforcement Forum, responsible for harmonising the enforcement of EU chemicals legislation, agreed to focus its next project on the control of imports of substances, mixtures and articles.

This subject was triggered by high levels of non-compliance in imported goods detected in previous Forum projects, including a recent pilot project. The pilot found that 23 % of inspected products were non-compliant with requirements set by EU law and further controls are necessary.

Control of imports at the point of entry is the most effective means of checking that non-compliant substances, mixtures and articles do not enter the European market. The project will also work on further developing and strengthening existing cooperation between REACH inspectors and customs. By strengthening the control of imports, the project will also contribute to the goals of the EU’s Chemicals Strategy for Sustainability.

The Forum also agreed to publish its future advice on enforceability of new restriction proposals under REACH.

Opportunities for expanding the future role of the Forum, strengthening the control of imports and other areas were on the agenda in an open session where 41 representatives from stakeholder organisations and four candidate countries joined. Among other topics, the open session also addressed the enforceability of REACH restrictions, for example, in textiles or on the use of lead gunshot in wetlands as well as analytical methods relevant for the control of REACH duties.

The Forum’s Biocidal Products Regulation Subgroup (BPRS) re-elected Helmut de Vos (BE) for a second term as a Vice-Chair.

More information:
ECHA REACH
Source:

European Chemicals Agency

comfortemp® nature Lyocell HO 60x Bild Freudenberg
comfortemp® nature Lyocell HO 60x
16.11.2022

Freudenberg presents sustainable product innovations at ISPO 2022

Freudenberg Performance Materials Apparel (Freudenberg) as a leading specialist in woven, knitted and non-woven interlinings and thermal insulation, presents sustainable solutions for sportswear and related product segments of all kinds in Munich.

Trade show visitors will experience a wide range of innovative and sustainable interlinings for active sports outfits, stretch interlinings for yoga wear, Pilates & Co, and thermal insulations that combine perfect outdoor wearing comfort with high warmth retention. With comfortemp® brand thermal insulations and the Active Range, Freudenberg presents a complete package for outdoor and sportswear for winter sports: thermal insulations, interlinings, tapes, lining fabrics and adhesive solutions.

Freudenberg Performance Materials Apparel (Freudenberg) as a leading specialist in woven, knitted and non-woven interlinings and thermal insulation, presents sustainable solutions for sportswear and related product segments of all kinds in Munich.

Trade show visitors will experience a wide range of innovative and sustainable interlinings for active sports outfits, stretch interlinings for yoga wear, Pilates & Co, and thermal insulations that combine perfect outdoor wearing comfort with high warmth retention. With comfortemp® brand thermal insulations and the Active Range, Freudenberg presents a complete package for outdoor and sportswear for winter sports: thermal insulations, interlinings, tapes, lining fabrics and adhesive solutions.

The independent jury has nominated the 100 percent biodegradable thermal insulation comfortemp® nature Lyocell HO 60x, made from Lyocell regenerated fibers, for the Textrends Award fall/winter 2024/25 season. The award is given exclusively to innovative products that are groundbreaking for the development of the textile industry. comfortemp® nature Lyocell HO 60x has a variety of extraordinary performance characteristics as a high warmth retention, bacteria inhibiting and fast drying, furthermore water repellent. High wearing comfort and the assurance of a perfect moisture balance characterize the volume fleece as ideal for the application in sportswear.

Freudenberg is presenting its entire European and global product portfolio from its "House of Sustainability" at ISPO. The "House of Sustainability" supports Freudenberg in minimizing its ecological footprint and maximizing its ecological handprint. For this purpose, the company's own manufacturing processes are designed to minimize the impact on the environment. In addition, products are developed to help customers produce more sustainably.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

15.11.2022

Renewcell and Eastman collaborate to develop textile-to-textile recycled yarns

The Swedish textile-to-textile recycling company Renewcell has signed a Letter of Intent with Eastman, a leading US cellulosic acetate fiber producer, for a collaboration to develop Naia™ Renew ES yarns sourced from Circulose®, Renewcell’s 100% recycled textile raw material. The agreement is Renewcell’s first with a US-based fiber producer and an important step in developing the first acetate-based applications to use Circulose® feedstock.

”Eastman considering Circulose® as a feedstock in the production of a premium yarn like Naia™ Renew reflects very well on the Renewcell team’s ability to work with partners to adjust and optimize our product for new fiber applications. This agreement signals an acceleration of our joint efforts to bring Naia™ Renew ES yarns derived from Circulose® to market. I look forward to working alongside Eastman in making fashion circular.” comments Patrik Lundström, CEO of Renewcell.

The Swedish textile-to-textile recycling company Renewcell has signed a Letter of Intent with Eastman, a leading US cellulosic acetate fiber producer, for a collaboration to develop Naia™ Renew ES yarns sourced from Circulose®, Renewcell’s 100% recycled textile raw material. The agreement is Renewcell’s first with a US-based fiber producer and an important step in developing the first acetate-based applications to use Circulose® feedstock.

”Eastman considering Circulose® as a feedstock in the production of a premium yarn like Naia™ Renew reflects very well on the Renewcell team’s ability to work with partners to adjust and optimize our product for new fiber applications. This agreement signals an acceleration of our joint efforts to bring Naia™ Renew ES yarns derived from Circulose® to market. I look forward to working alongside Eastman in making fashion circular.” comments Patrik Lundström, CEO of Renewcell.

Ruth Farell, GM of Eastman Textiles says: ”we are thrilled to collaborate with a pioneeer such as Renewcell to lower our reliance on virgin feedstocks, redefine the essence of textile waste and close the loop within the textiles industry. This collaboration is at the heart of our strategy to launch a portfolio of products with increased recycled content”

10.11.2022

Indorama Ventures: Resilient YTD earnings in 3Q22

  • Last twelve months (LTM) Core EBITDA of US$2.5B, an increase of 60% YoY
  • Core EBITDA per ton of US$163 in LTM3Q22 and US$159 in 3Q22
  • Operating cash flow of US$1,952 in LTM3Q22, an increase of 59% YoY
  • 3Q22 Core Net Profit of THB 10.34B and Reported Net Profit of THB 8.14B

Indorama Ventures Public Company Limited (IVL) reported a resilient year-to-date performance and increasing earnings in a challenging macroeconomic environment.

IVL posted Core EBITDA of US$606 million in 3Q22, a 39% increase YoY and a decline of 20% QoQ as the strong tailwinds that drove record earnings into 2022 began to normalize in the third quarter.  

  • Last twelve months (LTM) Core EBITDA of US$2.5B, an increase of 60% YoY
  • Core EBITDA per ton of US$163 in LTM3Q22 and US$159 in 3Q22
  • Operating cash flow of US$1,952 in LTM3Q22, an increase of 59% YoY
  • 3Q22 Core Net Profit of THB 10.34B and Reported Net Profit of THB 8.14B

Indorama Ventures Public Company Limited (IVL) reported a resilient year-to-date performance and increasing earnings in a challenging macroeconomic environment.

IVL posted Core EBITDA of US$606 million in 3Q22, a 39% increase YoY and a decline of 20% QoQ as the strong tailwinds that drove record earnings into 2022 began to normalize in the third quarter.  

Strategic acquisitions, including Oxiteno, are bolstering IVL’s increasingly diverse geographic footprint and product portfolio, supporting earnings through volatile economic conditions. Revenue declined 10% QoQ in 3Q and grew 27% YoY as Combined PET, the largest business segment, saw steady volumes through the year, and new portfolio additions performed strongly, such as surfactants in the Integrated Oxides and Derivatives segment. With more than 70% of IVL’s platform catering to consumer daily necessities, demand remains stable.

Fibers segment posted YTD Core EBITDA of $189 million, a rise of 2% YoY. 3Q Core EBITDA increased 2% YoY, and decreased of 11% QoQ, to US$49 million. The Lifestyle fibers business continues to be impacted by the lockdown in China, while management in the Hygiene and Mobility verticals in Europe are effectively managing high energy costs.

Combined PET (CPET) segment achieved YTD Core EBITDA of US$1,192 million, an increase of 42% YoY. Core EBITDA in 3Q22 rose 27% YoY to US$327 million, and declined 24% QoQ, as business remained steady across operations apart from in Europe where peak energy prices continue to put pressure on demand and margins.

D K Agarwal, CEO of Indorama Ventures, said, “We are pleased with our performance across the business cycle. Our management is working hard to extract the advantages that we enjoy in terms of geographic leadership, product diversity, and an unmatched customer base of global household brands. Together with our habitual lens on cost management, these actions will help us to weather the economic challenges and continue to focus on our long-term potential.”

Source:

Indorama Ventures Public Company Limited 

Texaid / Texcircle
26.10.2022

Swiss Textile Recycling Project TEXCIRLCE

After two years of joint collaboration and research the Swiss Textile Recycling Project “Texcircle” comes to an end. Partners and stakeholders have worked on the vision of a textile cluster where materials flow in circular loops. The goal of the project was to develop high-quality yarns and products incorporating such a large amount of recycled textiles as possible. In the end, several product prototypes from carpets, socks, and curtains to pullovers, padding and accessories have been developed with at least 50 % recycled fiber up to 80 % recycled fibers and yarns.

Europe has a waste problem of 7.5 million waste of which only 30-35 % is collected and less than 1 % of the textile and clothing worldwide is recycled into textiles and clothing again. It is as well found that around 80 % of the impact of a textile product lies in the design.

After two years of joint collaboration and research the Swiss Textile Recycling Project “Texcircle” comes to an end. Partners and stakeholders have worked on the vision of a textile cluster where materials flow in circular loops. The goal of the project was to develop high-quality yarns and products incorporating such a large amount of recycled textiles as possible. In the end, several product prototypes from carpets, socks, and curtains to pullovers, padding and accessories have been developed with at least 50 % recycled fiber up to 80 % recycled fibers and yarns.

Europe has a waste problem of 7.5 million waste of which only 30-35 % is collected and less than 1 % of the textile and clothing worldwide is recycled into textiles and clothing again. It is as well found that around 80 % of the impact of a textile product lies in the design.

Together with the design research expertise of the Lucerne University of Applied sciences and arts, the spinning expertise of Rieter and the sorting and collection expertise of Texaid, systems should be created where products of high quality can be produced of recycled fiber. On board were the expertise of further Cluster partners of Brands, Retailers, and the public sector to see how a joint Cluster and system coukld be established.

The Project Texcircle and cluster is led by the Lucerne University of Applied Sciences and Arts – Art  & Design, and in collaboration with Coop, Rieter, Jacob Rohner AG, Ruckstuhl AG, TEXAID as well as workfashion.com ag. Furthermore, Bundesamt für Zivildienst ZIVI, NIKIN AG, and Tiger Liz Textiles are supporting the project. The project is funded by Innosuisse.

Furthermore, collaboration partners from all over Europe contributed to the project to enable these prototypes and systems.

Through joint developments from the design, the collecting, sorting trials, tearing, and spinning trials until the actual production trials and product testing. The partners were able to recycle 2.5 Tons of pre-and post-consumer textile waste into product prototypes with a promising commercial interest. From socks, west, and pullovers to non-woven felts and accessories to carpets and curtains. Through our 2 years of collaboration, the teamcame across several hurdles in the textile recycling value chain which could be tackled. This was a proof of concept that a circular system is possible and the industry now has to enable this at full scale.

Source:

Texaid / Texcircle

Photo: EREMA
21.10.2022

EREMA: Circular economy for PET fibres

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

"With EREMA's VACUREMA® and INTAREMA® technology and PURE LOOP's ISEC evo technology, our company group already has an extensive range of machines for fibre and PET recycling applications. For ecologically and economically sound recycling, however, new technological solutions are needed to use the recycled fibres in higher-value end applications and to achieve a functioning circular economy," explains Wolfgang Hermann, Business Development Manager Application Fibres & Textiles, EREMA Group GmbH. The initial focus will be on PET, regarded as a key material for the production of synthetic fibres. The aim is to find recycling solutions that allow PET fibre materials to be prepared for reuse in PET fibre production processes. This is a significant step for the circular economy because PET fibres in textiles account for about two-thirds of the total volume of PET.

In this development work, the EREMA Group can build on existing know-how. Proven recycling technologies have been combined with a new IV optimiser. "This extends the residence time of the PET melt, which is particularly necessary in fibre recycling to efficiently remove spinning oils. Our recycling process also increases the IV value of the PET melt after extrusion back to the specific level that is essential for production of the fibre," explains Hermann. Waste PET fibre from production processes can therefore be further processed into rPET filament fibre, carpet yarn and staple fibre.

Fibre test centre with plant to test customers' materials
In order to accelerate development work, EREMA opened its own fibre test centre a few months ago, where a cross-company team is working on recycling solutions for fibre-to-fibre applications.

Source:

EREMA Gruppe

Infinited Fiber Company
14.10.2022

Infinited Fiber Company accelerates scaling plans amid turbulence

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 
“We are not immune to the global market context in which we operate. The supply chain issues stemming from the Covid-19 pandemic are still wreaking havoc, and the ongoing war in Ukraine has dealt a heavy blow to the global utility, commodity, and financial markets – and to us. We are satisfied with the progress at the site of our planned commercial-scale factory and the opening of the factory remains our key priority. The current, unstable market environment has highlighted the need for us to also accelerate efforts to simultaneously pursue other avenues for scaling production, with the ultimate aim of serving our customers in the best possible way in the long run,” said Infinited Fiber Company CEO and cofounder Petri Alava.
 
Infinited Fiber Company said in June that it planned to build a factory to produce Infinna™, a textile fiber that can be created 100% from cotton-rich textile waste, at the site of a discontinued paper mill in Kemi, Finland. The factory is expected to create around 270 jobs in the area and to have an annual production capacity of 30,000 metric tons, equivalent to the fiber needed for about 100 million T-shirts. The future factory’s customer-base includes several of the world’s leading apparel companies, with most of the future production capacity already sold out for several years.
 
Since June, Infinited Fiber Company has advanced the site-specific basic engineering, recruitment planning, vendor selection, and permit processes according to plan. The limited component availability caused by the continuing impacts of the Covid-19 pandemic and the war in Ukraine have, however, prolonged significantly the delivery times for some of the key equipment and machinery needed for the factory. As a result of these developments, Infinited Fiber Company has re-evaluated its overall factory project timeline. The first commercial fiber deliveries from Kemi are now expected to begin in January 2026. The scope of the project remains unchanged and construction work at the site is expected begin during 2023 as previously communicated.
 
In addition, the European energy crisis sparked by the war in Ukraine has caused the electricity prices in Finland to roughly triple, and the prices of some of the key chemicals needed in the fiber regeneration process have risen by some 200-300% since the start of the war.
 
“We of course don’t have a crystal ball. But according to our advisors and other experts, utility and commodity prices are forecast to normalize before 2026, when we now expect the first commercial fiber deliveries from Kemi to be shipped. In addition to the likely normalization of the market, the extended timeline enables us to undertake the necessary measures to develop the profitability of the future factory. The growing demand for Infinna™, despite the general turbulence, is an encouraging and clear indication of the fashion industry’s commitment to circularity,” said Petri Alava.

Source:

Infinited Fiber Company

Graphic Hologenix
06.10.2022

CELLIANT® Viscose now as flock coating and flock fabric

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

Flocking is an application method in which tiny fibers are piled on to the surface of a textile, creating textures for both decorative and functional purposes. CELLIANT Viscose in a flocked material has many potential applications in the medical field for tapes, bandages, braces and orthopedic products, home textiles and decor, dog beds, clothing, and more.  CELLIANT features natural, ethically sourced minerals, which convert body heat into infrared energy for increased local circulation and cellular oxygenation.  These CELLIANT minerals are then embedded into viscose plant-based fibers. The Viscose fibers are then flocked onto a base material. CELLIANT Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as the fiber enhancements from CELLIANT infrared technology.

CELLIANT Viscose is the first IR flocked material that Spectro is producing. CELLIANT Viscose also represents a further expansion into sustainable products for Spectro. In addition, Spectro products are made in the USA, as is CELLIANT’s mineral blend.

Source:

Hologenix

27.09.2022

Lenzing awarded by EcoVadis for sustainability

  • Lenzing has been awarded the highest CSR rating from EcoVadis for the second consecutive time
  • Global rating standard evaluates 90,000 companies: Lenzing among top 1 percent of its industry
  • enzing joins the UN Global Compact sustainability initiative

Lenzing Group has been awarded platinum status in the CSR rating from EcoVadis. This comprehensive assessment covers the four key practices of corporate social responsibility: the environment, fair working conditions and human rights, ethics and sustainable procurement.

This is the second time that EcoVadis, a leading international provider of sustainability ratings for businesses, has awarded platinum status to Lenzing for its sustainability performance. As a result, Lenzing ranks among the world’s top 1 percent of companies in its sector that are rated by EcoVadis.

  • Lenzing has been awarded the highest CSR rating from EcoVadis for the second consecutive time
  • Global rating standard evaluates 90,000 companies: Lenzing among top 1 percent of its industry
  • enzing joins the UN Global Compact sustainability initiative

Lenzing Group has been awarded platinum status in the CSR rating from EcoVadis. This comprehensive assessment covers the four key practices of corporate social responsibility: the environment, fair working conditions and human rights, ethics and sustainable procurement.

This is the second time that EcoVadis, a leading international provider of sustainability ratings for businesses, has awarded platinum status to Lenzing for its sustainability performance. As a result, Lenzing ranks among the world’s top 1 percent of companies in its sector that are rated by EcoVadis.

In line with its “Naturally positive” sustainability strategy, the Lenzing Group has set ambitious targets in each of its core strategic areas, aimed at bolstering its capacity to move from a linear to a circular model. Lenzing reports the corresponding implementation measures and the progress it has made in its annual sustainability report. This high level of accountability and transparency was particularly praised in the assessment by EcoVadis. The rating provider also highlighted Lenzing’s comprehensive measures to reduce air pollution, wastewater and greenhouse gases, in addition to its provision of skills development training and health care programs for staff members.

Partnerships for systemic change
Lenzing forges strategic partnerships with various stakeholders to meet its ambitious climate and sustainability targets and drive forward systemic change in the textile and nonwoven industries. This is why Lenzing, as one of 15,000 companies worldwide, joined the United Nations Global Compact. As a member, Lenzing is committed to upholding human rights, respecting the rights of employees and their representatives, protecting the environment, enabling fair competition and combating corruption.

Source:

Lenzing AG

(c) adidas
23.09.2022

adidas by Stella McCartney: Industry-First, with Viscose Sportswear

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

It’s currently estimated that just under 1% of all textiles worldwide are recycled into new textiles, so it’s vital the textile industry comes together to learn and knowledge-share. Scheduled across a three-year period, the consortium which includes partners such as Frankenhuis have collected and sorted post-consumer end-of-life textiles, which using pioneering Infinited Fiber technology have been regenerated into a new man-made cellulosic fiber called Infinna™ - which looks and feels just like virgin cotton. This is then turned into a yarn blended with organic cotton, for garment production.

Designing the tracksuit, made using viscose (60% viscose, 40% organic cotton) as a consortium member took the process from a linear to a circular model , as the apparel’s function and style were of equal focus to the garment’s end of life existence.

At the end of the project, consortium partner Aalto University, a Finnish multidisciplinary community specialising in science, art, technology , and design, will distribute learnings with the industry and bring this potential circular design solution to the ever-eco-conscious consumer.

Source:

adidas

Photo: C.L.A.S.S.
20.09.2022

Bemberg™ by Asahi Kasei taking part at White Sustainable Milano

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

A new yarn range that expands the company’s realm of applications for the fashion and luxury industry, including also knitwear, jersey and casualwear. Indeed, the fibre comes with a circular economy footprint obtained from cotton linters through a closed-loop process. Bemberg™ also ensures certified sustainability credentials through its transparent and traceable approach.

At WSM fair, the company proves it by unveiling a collection of t-shirts developed in collaboration with the MagnoLab smart network of Italian companies. Circular economy and environmental responsibility meet aesthetic research with a collaborative imprint.

The new t-shirt collection created in synergy with MagnoLab, a network of Biella-based companies bringing forward initiative and collabs related to sustainability and circular economy. Staple-fibre is the top ingredient of the collection. The cut t-shirts are presented both in sheer and blends with other certified fibers, including GOTS cottons and RWS wools, capable of enhancing both the hand of the final garment and the performance of the brand-new yarn.

Source:

C.L.A.S.S.

15.09.2022

World Natural Fibre Update September 2022

World Natural Fibre Production in 2022 is estimated at 32.6 million tonnes, down 1.1 million tonnes from the estimate one month ago. Production reached 33.3 million tonnes in 2021 and 31.6 million in 2020.

A drought in Texas where over half of cotton produced in the United States is grown, and flooding in Pakistan, the fifth largest cotton producer, account for the decline (www.ICAC.org).

World Natural Fibre Production in 2022 is estimated at 32.6 million tonnes, down 1.1 million tonnes from the estimate one month ago. Production reached 33.3 million tonnes in 2021 and 31.6 million in 2020.

A drought in Texas where over half of cotton produced in the United States is grown, and flooding in Pakistan, the fifth largest cotton producer, account for the decline (www.ICAC.org).

  • Nearby cotton futures on the Intercontinental Exchange rose 14% from the end of July and finished August at $2.60 per kilogram.
  • The Eastern Market Indicator of wool prices in Australia, fell 1% from mid-July to mid-August to US$9.27 per kilogram.
  • Prices of jute fibre in India quoted by the Jute Balers Association (JBA) at the end of August converted to US$ fell 4% from a month earlier to 79 cents per kilogram.
  • Prices of silk in China equalled US$ 28.7 per kilogram at the end of August, compared with US$29.5 per kilogram in July 2022, a change of 3%.
  • Coconut coir fibre in India held at US cents 21 per kilogram in August.

World production of jute and allied fibres is estimated unchanged at 3.2 million tonnes in 2022 compared with 2021. High market prices in 2021 motivated farmers to expand planted area in both Bangladesh and India, but dry weather during June and July will limit yields per hectare. Normal monsoon rains resumed in South Asia during August, too late for the 2022 jute crop (https://www.wgc.de/en/).

Production of coir fibre rose by an average of 18,000 tonnes per year during the past decade, and production was at a record high of 1.12 million tonnes in 2021. Production is expected to remain high in 2022.

Flax has also been trending upward, rising by an average of 27,000 tonnes per year, and production in 2022 is estimated to remain above one million tonnes.

World wool production is forecast up by 5% in 2022 to 1.09 million tonnes (clean), the highest since 2018. Wetter weather in the Southern Hemisphere, following eight years of drought, is allowing farmers to rebuild herds (https://www.wool.com/market-intelligence/).

Natural fibres are heavily-traded commodities, and supply chain disruptions are causing significant economic losses as freight costs remain high and deliveries are delayed.

About 40% of world cotton production moves as fibre in international trade each season. Over half of world jute production moves as fibre or product, and around 55% of world wool production is exported as raw wool. Abaca, flax, and sisal are also heavily traded.

Most natural fibre exports traverse back-haul ocean freight routes from the Western Hemisphere to East Asia and the Middle East, from South Asia to East Asia and Europe, from Africa to East Asia and the Middle East, and from Australia and South Africa to China. Such routes are relatively underserved in the best of times, and reduced sailings since the start of Covid are restricting trade volumes.

As of the end of August, Freightos (https://fbx.freightos.com/) quoted the cost of moving a 40’ container from the United States West Coast to East Asia at $793, compared with $1,020 in March 2022. Nevertheless, average freight costs on back -haul routes used by natural fibres remain approximately triple their pre-covid levels. In addition to ocean freight costs, inland transportation is also affected by high fuel prices and a lack of containers. As one example, charges for inland handling of export containers in Bangladesh, the largest exporter of raw jute, increased by 48 per cent during August.

More information:
DNFI
Source:

Discover Natural Fibres Initiative

13.09.2022

Ionofibres a new track for smart and functional textiles

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Currenty, the uniqueness of his research leans towards the strategies employed when coating. These strategies expand to the processes and the materials used.

Uses ionic liquid
One of the tracks he investigates is about a new kind of material as textile coating, ionic liquids in combination with commercial textile fibres. Just like salt water, they conduct electricity but without water. Ionic liquid is a more stable electrolyte than salt water as nothing evaporates.

"The processable aspect is an important requirement since textile manufacturing can be harsh on textile fibres, especially when upscaling their use. The fibres can also be manufactured into woven or knitted without damaging them mechanically while retaining their conductivity. Surprisingly, they were even smoother to process into fabrics than the commercial yarns they are made from," explained Claude Huniade.

Ionofibres could be used as sensors since ionic liquids are sensitive to their environment. For example, humidity change can be sensed by the ionofibers, but also any stretch or pressure they are subjected to.

"Ionofibres could truly shine when they are combined with other materials or devices that require electrolytes. Ionofibres enable certain phenomena currently limited to happen in liquids to be feasible in air in a lightweight fashion. The applications are multiple and unique, for example for textile batteries, textile displays or textile muscles," said Claude Huniade.

Needs further research
Yet more research is needed to combine the ionofibres with other functional fibres and to produce the unique textile devices.

How do they stand out compared to common electronically conductive fibres?
"In comparison to electronically conductive fibres, ionofibers are different in how they conduct electricity. They are less conductive, but they bring other properties that electronically conductive fibers often lack. Ionofibres achieve higher flexibility and durability and match the type of conduction that our body uses. They actually match better than electronically conductive fibres with how electricity is present in nature," he concluded.

Source:

University of Borås - The Swedish School of Textiles

08.09.2022

Kelheim Fibres at the Global Fiber Congress 2022 in Dornbirn

Shorter product life cycles and rapid technological progress are changing the product landscape at an ever-faster pace. The ability to anticipate future changes and to proactively shape the change is therefore an increasingly decisive competitive factor for modern companies. Trends are considered to be important indicators of impending

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, stands out in the industry not least for its innovative strength, as evidenced by numerous awards such as the Techtextil Innovation Award 2022 in the “New Concept” category. At this year’s Global Fiber Congress Dornbirn, Innovation Manager Ilka Kaczmarek will give an insight into the innovation management of the Bavarian fibre experts in her presentation “Trend Management meets Open Innovation: Best Practice Examples from Kelheim”. Ilka Kaczmarek will show how successful product solutions were developed in a short time by focusing on customer needs and working closely with partners along the value chain.

Shorter product life cycles and rapid technological progress are changing the product landscape at an ever-faster pace. The ability to anticipate future changes and to proactively shape the change is therefore an increasingly decisive competitive factor for modern companies. Trends are considered to be important indicators of impending

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, stands out in the industry not least for its innovative strength, as evidenced by numerous awards such as the Techtextil Innovation Award 2022 in the “New Concept” category. At this year’s Global Fiber Congress Dornbirn, Innovation Manager Ilka Kaczmarek will give an insight into the innovation management of the Bavarian fibre experts in her presentation “Trend Management meets Open Innovation: Best Practice Examples from Kelheim”. Ilka Kaczmarek will show how successful product solutions were developed in a short time by focusing on customer needs and working closely with partners along the value chain.

Natalie Wunder, Project Manager at Kelheim Fibres, will explain one of these examples in detail in her presentation “Development of Menstruation Pants using Speciality Viscose Fibres”. Based on the current trend and the desire of end customers for reusable products, Kelheim Fibres was able to develop a washable and thus reusable, yet bio-based solution for feminine hygiene products.

Source:

Kelheim Fibres

(c) adidas AG
08.09.2022

adidas introduces FW22 Made with Nature Capsule Collection

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

Christopher Wheat, Global Category Director Running Footwear said: “At adidas, we understand that change is not only possible, it’s an urgent necessity. With Made with Nature, we are on a journey to a world beyond plastic. We’re calling time on conventional materials and methods of make. Once depleted, there’s no coming back for fossil resources. But when we design in synergy with natural processes, when we make with nature, we can use materials that regrow or regenerate – and change the way products are made."

(c) AZL. Comparison of battery casing in modular design and “cell-to-pack” design
Comparison of battery casing in modular design and “cell-to-pack” design
02.09.2022

AZL: Plastic-based multi-material solutions for cell-to-pack battery enclosures

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The design of battery housings is crucial for safety, capacity, performance, and economics. The Cell-to-Pack project, which is starting now, will focus on developing concepts for structural components and for producing them based on a variety of materials and design approaches. The concepts will be compared in terms of performance, weight and production costs, creating new know-how for OEMs, producers and their suppliers throughout the battery vehicle value chain. Companies are now invited to participate in this new cross-industry project to develop battery enclosure concepts for the promising and trend-setting cell-to-pack technology.

The basis for the project is the lightweight engineering expertise of the AZL experts, which they have already demonstrated in previous projects for multi-material solutions for module-based battery housings. Together with 46 industry partners, including Audi, Asahi Kasei, Covestro, DSM, EconCore, Faurecia, Hutchinson, Johns Manville, Magna, Marelli and Teijin, 20 different multi-material concepts were optimized in terms of weight and cost and compared with a reference component made from aluminum. All production steps were modelled in detail to obtain reliable cost estimates for each variant. Result: depending on the concept, 20% weight or 36% cost savings potential could be identified by using multi-material composites compared to the established aluminum reference.

It is expected that the design concept of battery enclosures will develop in the direction of a more efficient layout. In this case, the cells are no longer combined in modules in additional production steps, but are integrated directly into the battery housing. The elimination of battery modules and the improved, weight-saving use of space will allow for higher packing density, reduced overall height and cost saving. In addition, various levels of structural integration of the battery housing into the body structure are expected. These new designs bring specific challenges, including ensuring protection of the battery cells from external damage and fire protection. In addition, different recyclability and repair requirements may significantly impact future designs. How the different material and structural options for future generations of battery enclosures for the cell-to-pack technology might look like and how they compare in terms of cost and environmental impact will be investigated in the new AZL project. In addition to the material and production concepts from the concept study for module-based battery enclosures, results from a currently ongoing benchmarking of different materials for the impact protection plate and a new method for determining mechanical properties during a fire test will also be incorporated.

The project will start on October 27, 2022 with a kick-off meeting of the consortium, interested companies can still apply for participation until then.

02.09.2022

RGE: Closed-loop urban-fit textile-to-textile recycling solutions in Singapore

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings.

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings. The research centre will develop new technologies to recycle textile waste into fibre and create new, next-generation eco-friendly and sustainable textiles.

This move comes on the back of the tightening of waste import bans in countries such as China, India and Indonesia, which are among the world’s largest waste processors. The stricter import bans have left cities in need of viable local textile recycling solutions to tackle the immense textile waste generated.

RGE Executive Director, Mr Perry Lim, said, “Current textile recycling technologies, which rely primarily on a bleaching and separation process using heavy chemicals, cannot be implemented due to environmental laws. At the same time, there is an urgent need to keep textiles out of the brimming landfills.” He added, “As the world’s largest viscose producer, we aim to catalyse closed-loop, textile-to-textile recycling by developing optimal urban-fit solutions that can bring the world closer to a circular textile economy.”

Globally, an estimated 90 million tonnes of textile waste is generated and disposed of every year, with less than 1% being upcycled into new clothing or other textile materials. By 2030, the amount of global textile waste, which currently accounts for almost 10% of municipal solid waste, is expected to reach more than 134 million tonnes. The textile industry is also responsible for 10% of global greenhouse gas emissions – more than international flights and maritime shipping combined.

At present, most of the available textile recycling technologies are open-loop, where textile waste is typically downcycled to lower-quality products (insulating materials, cleaning cloths, etc.) or be used in waste-to-heat recycling.

“Closed-loop textile-to-textile recycling processes, particularly chemical recycling, are still under development. Scaling up the technologies to industrial scale remains a challenge. A key bottleneck is that refabricating textile waste into fibre needs purity standards for feedstock. However, most of the clothes that we wear are made of a mixture of different synthetic and natural fibres, which makes separating the complex blends of materials challenging for effective recycling.

“Our aim is to address this industry pain point by developing viable solutions that use less energy, fewer chemicals and produces harmless and less effluents, and then potentially scale up across our global operations,” Mr Lim said.

To tackle the key challenges in closed-loop textile recycling, RGE-NTU SusTex is looking into four key research areas, namely cleaner and more energy efficient methods of recycling into new raw materials, automated sorting of textile waste, eco-friendly dye removal, and development of a new class of sustainable textiles that is durable for wear and, at the same time, lends itself to easier recycling.

Technologies developed by RGE-NTU SusTex will be test bedded at RGE’s pilot urban-fit textile recycling plant in Singapore, which is projected for completion as early as 2024. If successful, RGE has plans to replicate the plant in other urban cities within its footprint.

 

Source:

Royal Golden Eagle

31.08.2022

DNFI Award 2022 – Deadline 9 Sept

As every year, in 2022 the Discover Natural Fibers Initiative (DNFI) called on individuals, universities, textile researchers and companies to submit their products, projects, processes and ideas in the field of Natural Fibres from the following categories:

  • Innovative products, components or applications
  • Innovative processes and procedures
  • Innovative research and science

The DNFI Innovation in Natural Fibres Award aims to promote the development of new products/components and applications using natural fibres as well as new processes for manufacturing of environmental friendly products. Universities, institutes, industry and individuals working in the area of scientific research are invited to participate. “Sustainability” should be just one important aspect of each submission considered by the judges.

The DNFI Innovation in Natural Fibres Award aims to recognise the innovations as well as the people and institutions responsible for them with the goal of raising public awareness of the achievements of the natural fibre sector as a whole.

As every year, in 2022 the Discover Natural Fibers Initiative (DNFI) called on individuals, universities, textile researchers and companies to submit their products, projects, processes and ideas in the field of Natural Fibres from the following categories:

  • Innovative products, components or applications
  • Innovative processes and procedures
  • Innovative research and science

The DNFI Innovation in Natural Fibres Award aims to promote the development of new products/components and applications using natural fibres as well as new processes for manufacturing of environmental friendly products. Universities, institutes, industry and individuals working in the area of scientific research are invited to participate. “Sustainability” should be just one important aspect of each submission considered by the judges.

The DNFI Innovation in Natural Fibres Award aims to recognise the innovations as well as the people and institutions responsible for them with the goal of raising public awareness of the achievements of the natural fibre sector as a whole.

Get the details online.

More information:
DNFI DNFI award
Source:

European Industry and Research Exchange on Technical Textiles

Beaulieu International Group
23.08.2022

BIG at EuroGeo7 with geotextile fibres & woven fabrics

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

“We are delighted to sponsor EuroGeo7 and to be finally on-site, following a two-year postponement of the event. EuroGeo7 is bringing the geotextile community together to further promote and develop geosynthetics in a fast changing global economy striving for growth while reducing its carbon footprint along the supply chain, " comment from Jefrem Jennard, Sales Director Fibres, and Roy Kerckhove, Sales Director Technical Textiles. “Geotextiles provide highly versatile, durable and natural resource-saving alternatives in large infrastructure works, and offer durable protection in erosion control and waste/water management projects. We are continuously developing our fibres and finished engineering textiles with proven sustainability-enhancing benefits to progress product development and customer sustainability goals on fossil carbon reduction, while taking concrete steps to reduce our own environmental footprint.”
 
Sustainability improvement is key to the long-term strategy of Beaulieu International Group, and it is committed to supporting the geotextile industry by targeting and accelerating change and communicating the sustainable performance of its products. The UN Sustainable Development Goals are integrated into its business and are the foundations of the new Route 2030 Sustainability Roadmap.


For manufacturers of nonwoven geotextiles, BFI’s high-tenacity HT8 staple fibres enable customers to achieve nonwovens with high mechanical performance at reduced fibre weight. The HT8 high tenacity fibres are designed in a way that customers can meet the industry durability standards for a longer service lifetime, supporting more sustainable design and resource reduction over time. BTT’s woven geotextiles are amongst the most sustainable in the industry and provide a wide range of functions, including separation, filtration, reinforcement and erosion control.

BFI and BTT have conducted lifecycle assessments to calculate their activities' carbon footprint and solutions and have received external recognition for their ongoing sustainability efforts. For example, in 2022, BFI was awarded a Silver EcoVadis sustainability rating, and BFI and BTT are proud recipients of the Voka Charter for Sustainable Entrepreneurship 2022.

Source:

Beaulieu International Group

Photo: Mark Stebnicki, pexels
16.08.2022

USDA presents new study of Chinese Cotton Textile Industry

  • Growing geographic separation between cotton production and textile manufacturing since the 1990s

The United States Department of Agriculture (USDA) released a comprehensive study about Chinese cotton in August 2022. The authors, Fred Gale and Eric Davis, concentrate on textiles, imports and Xinjiang.

China is the world’s largest textile manufacturer and the largest cotton consumer, but changes in China’s economy are reshaping the geography of its cotton-textile sector. Nearly all of China’s cotton is produced in the Xinjiang Uyghur Autonomous Region (XUAR), also known more simply as Xinjiang.

  • Growing geographic separation between cotton production and textile manufacturing since the 1990s

The United States Department of Agriculture (USDA) released a comprehensive study about Chinese cotton in August 2022. The authors, Fred Gale and Eric Davis, concentrate on textiles, imports and Xinjiang.

China is the world’s largest textile manufacturer and the largest cotton consumer, but changes in China’s economy are reshaping the geography of its cotton-textile sector. Nearly all of China’s cotton is produced in the Xinjiang Uyghur Autonomous Region (XUAR), also known more simply as Xinjiang.

Their study reviewed the regional patterns of China’s cotton textile industry development and identified growing geographic separation between cotton production and textile manufacturing since the 1990s using data from Chinese sources. The study investigated spatial patterns of demand for imported cotton by analyzing lists of Chinese companies applying for a share of the import quota from 2016 to 2022. Multiple regression analysis was used to control for potentially confounding influences when investigating whether companies in coastal provinces were more likely to use imported cotton than similarly sized companies in other regions.

Textile manufacturers — the main consumers of cotton — are concentrated in coastal and central regions where the share of China’s cotton production fell from over 50 percent to 10 percent during 2011–21. These geographic changes are a factor influencing global trade in cotton and textiles. Additionally, the use of forced labor in Xinjiang attracted more attention to the industry, prompting the United States and other countries to ban products produced in the region.

This study reviews the economic, geographic, and policy factors reshaping the industry and influencing the global trade of cotton and textile products. The study also examines data on Chinese companies applying for a share of China’s cotton import quota to gain insight about the demand for imported cotton.

China became the world’s largest producer, consumer, and importer of cotton soon after joining the World Trade Organization (WTO) in 2001. Despite adopting a tariff-rate quota (TRQ) system for cotton imports and issuing supplemental quotas in most years, the large number of cotton goods manufacturers that request shares of the quota suggests demand for imported cotton exceeds  the quota.

While the TRQ was intended to protect China’s cotton farmers, many farmers abandoned the labor-intensive crop as wages rose rapidly in many other industries and other crops produced higher returns. In response, officials encouraged cotton production in the relatively remote region of Xinjiang to prevent China from becoming reliant on imported cotton. Xinjiang growers receive a subsidy payment for cotton, and subsidies for machinery and seeds. A transportation subsidy induces textile manufacturers in eastern and central regions to purchase cotton from Xinjiang, which is about 2,200 to 2,900 miles from most of the country’s textile manufacturers. Financial support and other incentives encourage manufacturers to shift operations to Xinjiang.

Textile manufacturers in China are highly interested in importing cotton due to its lower price and quality. China imports about 20 percent of its cotton, and the United States is a chief exporter of cotton to China. While imported cotton is used in all provinces, manufacturers near the eastern seaboard show a greater propensity for imports. Nevertheless, in all regions, domestic cotton has the largest share of mill use.

Between 2016 and 2022, 1,581 companies applied for a share of the TRQ, and 265 companies applied in all 7 years. Most of these companies also applied for supplemental quotas issued with slightly higher tariffs. This large number of applicants suggests that imports could be even greater if quotas did not limit them. The operation of the quota application process is not public information, but data submitted by applicants suggests access to imported cotton is uneven. About 14 percent of applicants said imported cotton comprised over half of the cotton they used. Another 20 percent of companies requesting import quota did not use any imported cotton, suggesting that many applicants are unable to import. Textile manufacturers coped with limits on cotton imports by increasing their use of synthetic, chemical-based fibers or by importing cotton yarn. From 2000 to 2020, China’s yarn imports doubled from under 1 million metric tons to around 2 million metric tons with Vietnam supplying about 45 percent of that total in 2020.

The number of textile manufacturers in Xinjiang applying for a share of the cotton import quota rose from 37 to 68 between 2016 and 2022. However, imports constituted less than 2 percent of  the cotton Xinjiang applicants reported using—and 66 percent of them reported using no imported cotton—suggesting that applications from Xinjiang textile companies were often denied.
Analysis found that applicants in coastal provinces used more imported cotton than similarly sized applicants in other regions. Each location of a multi-plant company must apply separately for tariff-rate quotas. Textile manufacturers in Xinjiang that requested a share of the import quota included branches of some of China’s largest textile companies, but the analysis found that Xinjiang applicants used less imported cotton than similar manufacturing plants located in other regions. China’s role as a cotton importer appears to have peaked, while other countries are increasing their share of imports.

USDA baseline projections suggest that by 2030 Vietnam, Pakistan, Indonesia, Bangladesh, and Turkey will together account for 47 percent of the world’s cotton imports while China will only account for 24 percent. The study cam be downloaded from the USDA website.

More information:
cotton Cotton USA China Xinjiang