From the Sector

Reset
360 results
29.05.2024

Teijin Frontier: Breathable, UV-blocking polyester material

Teijin Frontier Co., Ltd., the Teijin Group’s fibers and products converting company, announced the development of a new, multifunctional and comfortable polyester material that combines high breathability and UV protection. This new product reproduces the structure of a traditional Japanese "Sudare" blind (bamboo blind), which allows breezes to pass through while blocking out sunlight.

As extremely high summer temperatures become increasingly common, Teijin Frontier developed this new polyester to meet market demands for materials with enhanced heat protection functions. Heat protection encompasses breathability, UV resistance and anti-stickiness. However, until now, breathability – achieved by gaps between fibers – and UV protection were thought to be mutually exclusive.

To solve this dilemma, the company created a structure with slit-shaped, highly breathable areas in either the warp or weft direction of the fabric. These three-dimensional gaps, similar to those in a bamboo blind, allow the material to deliver both excellent breathability and high UV blocking performance of 85 percent or more. The structure allows air permeability of 50㎤/㎠・s or more.

Teijin Frontier Co., Ltd., the Teijin Group’s fibers and products converting company, announced the development of a new, multifunctional and comfortable polyester material that combines high breathability and UV protection. This new product reproduces the structure of a traditional Japanese "Sudare" blind (bamboo blind), which allows breezes to pass through while blocking out sunlight.

As extremely high summer temperatures become increasingly common, Teijin Frontier developed this new polyester to meet market demands for materials with enhanced heat protection functions. Heat protection encompasses breathability, UV resistance and anti-stickiness. However, until now, breathability – achieved by gaps between fibers – and UV protection were thought to be mutually exclusive.

To solve this dilemma, the company created a structure with slit-shaped, highly breathable areas in either the warp or weft direction of the fabric. These three-dimensional gaps, similar to those in a bamboo blind, allow the material to deliver both excellent breathability and high UV blocking performance of 85 percent or more. The structure allows air permeability of 50㎤/㎠・s or more.

This new product also offers sustainability benefits through the incorporation of recycled polyester in part. Its structure and elastic fibers provide stretch performance, while an uneven surface caused by differences in thread shrinkage and its structure avoid stickiness. Moreover, to achieve the combination of functions, Teijin Frontier also adopt special high-shrinkage technology and dying finishing technology. This material offers potential for use in both fashion and casual clothing.

Teijin Frontier will begin promoting this product for the 2025 spring and summer fashion and casual clothing collections in Japan, aiming for sales of 250,000 meters in fiscal 2024 and 750,000 meters in fiscal 2027.

Source:

Teijin Limited

29.05.2024

Cinte Techtextil China taking place in September 2024

With four months until the show opens doors, key exhibitors have already confirmed participation for the Cinte Techtextil China 2024. In conjunction with a positive global outlook, key players are eager to congregate again at the Shanghai New International Expo Centre from 19 – 21 September, to showcase innovations and connect with buyers from various sectors.
 
The fair will closely align with Messe Frankfurt’s ‘Texpertise Econogy’ – the umbrella for the group’s sustainability activities at its more than 50 textile trade shows worldwide. New energy elements, such as battery and hydrogen, will appear at the Innovation Showcase Area, on top of other interactive fringe events which centre around sustainability.

With four months until the show opens doors, key exhibitors have already confirmed participation for the Cinte Techtextil China 2024. In conjunction with a positive global outlook, key players are eager to congregate again at the Shanghai New International Expo Centre from 19 – 21 September, to showcase innovations and connect with buyers from various sectors.
 
The fair will closely align with Messe Frankfurt’s ‘Texpertise Econogy’ – the umbrella for the group’s sustainability activities at its more than 50 textile trade shows worldwide. New energy elements, such as battery and hydrogen, will appear at the Innovation Showcase Area, on top of other interactive fringe events which centre around sustainability.

With environmental protection as one of the top sourcing categories at the previous edition, products with medical, home, protection, and building applications rounded out the top five. By product group, in-demand sourcing categories included nonwovens; technology and accessories; woven fabrics, laid webs, knitted fabrics, braidings; composites; as well as coated textiles and bondtec. The show saw 15,542 visits from 52 countries and regions last year.

Catering to various key players in 2023, the well-known Groz-Beckert East Asia brought their latest innovative needling tools for the nonwovens sector. Speaking at the show, Mr Kabilen Sornum, Vice President Asia Pacific of Marketing & E-Commerce, commented: “While we are focusing on the China market, we have also seen buyers from the Middle East, Europe, Korea, and North Asia. Cinte Techtextil China is a more international fair – we can see that everyone is here, and the quality and innovation of buyers has improved greatly in the past three to four years. E-mobility and sustainability are two very clear trends.”
 
The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

Source:

Messe Frankfurt (HK) Ltd

Trevira CS fabrics and trimmings © Photo: Indorama Ventures
Trevira CS fabrics and trimmings
17.05.2024

Trevira CS at Clerkenwell Design Week in London

The Trevira CS brand is celebrating its debut at Clerkenwell Design Week (CDW), which takes place in London from May 21-23 2024. The brand is particularly targeting interior architects, interior designers, and contract furnishers to present its innovations on sustainability. Trevira CS stands for flame retardant fabrics that have been tested for fire safety. They also offer numerous sustainable properties.

The Trevira CS brand is celebrating its debut at Clerkenwell Design Week (CDW), which takes place in London from May 21-23 2024. The brand is particularly targeting interior architects, interior designers, and contract furnishers to present its innovations on sustainability. Trevira CS stands for flame retardant fabrics that have been tested for fire safety. They also offer numerous sustainable properties.

The London borough of Clerkenwell is home to more creative businesses and architects per square mile than anywhere else in the world, making it one of the most important design hubs in the world. To celebrate this rich and diverse community, Clerkenwell Design Week has created a unique opportunity to showcase the world's leading interior design brands. With more than 600 events in over 160 showrooms, more than 11 curated exhibitions, stunning installations, talks and a supporting program, CDW has established itself as the UK's leading design festival. The Trevira CS stand is part of the "German Collection - home to German Contemporary Design", which brings together a leading selection of renowned German brands.
 
The product range of flame-retardant Trevira® filament yarns now also includes 30 spun-dyed, UV-stable yarns, which are particularly suitable for outdoor use in fabrics in the hospitality sector and on cruise ships due to their high light fastness and UV resistance. They also score points for their sustainable properties, as the fabrics made from them can be produced in a more environmentally friendly way than textiles made from conventional yarns.

Trevira CS fabrics are also available in recycled versions. They consist of fiber and filament yarns that are obtained in various recycling processes. Fabrics made from these yarns can obtain the Trevira CS eco trademark. The prerequisite for this is a recycled content of at least 50%.

More information:
Outdoor Trevira CS flame retardant
Source:

Trevira CS is a brand of Indorama Ventures Fibers Germany GmbH

07.05.2024

Drupa: touchpoint textile showcases textile printing solutions

By establishing touchpoint textile, drupa has created a special forum to showcase pioneering applications in digital textile printing. The highlight will be the Digital Textile Micro Factory – a fully connected, integrated process chain starting with the customer enquiry and design through to large-format digital textile printing.

touchpoint textile represents drupa’s growing expansion into new markets comprising such segments as packaging production, large-format or industrial and functional printing next to packaging production. All of these segments are undergoing the same transformation processes and offer enormous growth potential. The special forum revolves around the opportunities and challenges of digital textile printing, brings together renowned exhibitors, industry partners and brand owners and provides scope for cross-industry cooperation, new projects as well as product and manufacturing ideas. The operational content partners of touchpoint textile include the German Institutes for Textile and Fibre Research Denkendorf (DITF), as Europe’s largest textile research centre, as well as ESMA, the European Specialist Printing Manufacturers Association.

By establishing touchpoint textile, drupa has created a special forum to showcase pioneering applications in digital textile printing. The highlight will be the Digital Textile Micro Factory – a fully connected, integrated process chain starting with the customer enquiry and design through to large-format digital textile printing.

touchpoint textile represents drupa’s growing expansion into new markets comprising such segments as packaging production, large-format or industrial and functional printing next to packaging production. All of these segments are undergoing the same transformation processes and offer enormous growth potential. The special forum revolves around the opportunities and challenges of digital textile printing, brings together renowned exhibitors, industry partners and brand owners and provides scope for cross-industry cooperation, new projects as well as product and manufacturing ideas. The operational content partners of touchpoint textile include the German Institutes for Textile and Fibre Research Denkendorf (DITF), as Europe’s largest textile research centre, as well as ESMA, the European Specialist Printing Manufacturers Association.

Digital Textile Micro Factory: on-demand and virtual products – on the path towards sustainable production
In cooperation with 12 partners from industry and research the DITF will demonstrate a Digital Textile Micro Factory live at drupa and, hence, a fully connected, integrated process chain from design to finished product. This will present new possibilities for digitalisation and direct customer involvement, for instance in the form of 3D apparel simulations complete with links to design networks for creative input. Digital workflows and virtual products are integrated directly in the manufacturing process. As a special highlight for all trade visitors the technology partners of this Micro Factory will demonstrate an automated on-demand production, textile printing, cutting and sorting – without any manual interaction. Such decentralised and digitally connected design and production chains will enable the textile industry to respond to customers’ requests and trends in a more targeted manner in future. This means, touchpoint textile 2024 technologically points the way to a future without shelf-warmers. In addition, the carbon footprint for the complete process from virtual development to finished product will be modelled and presented at the trade fair.  

2024 will see the design competition “drupa – textile design talents” being held for the first time. This was conceived of by the DITF and will be implemented by the partner Mitwill. This provides up-coming textile designers and newcomers with a unique opportunity to introduce their ideas and visions to a professional audience.

Broad industry support
A project as comprehensive as the Micro Factory requires many strong partners. The companies “on board” here include: Assyst/Germany (3D simulation for digital apparel twins), Mitwill Textiles Europe/France (creative design network), D.G.I. Digital Graphics Incorporation/South Korea, Multi-Plot Europe/Germany (large-format textile printing), LEONHARD KURZ Stiftung/Germany, Zünd/Switzerland (digital cutting), robotfactory/Denmark, Asco/The Netherlands (presenting an innovative buffer solution between digital printing and cutting, automated sorting of cut parts from the cutter by robotfactory) as well as Brother/Japan (for small-format textile printing and bonding technology). Vaude and berger textiles will be sponsoring the touchpoint. Another key partner is the Albstadt-Sigmaringen University that is supporting the project as a conceptual sponsor and which has set itself the clear mission to incorporate these new topics into its curriculum. This means the staff of the future will be geared up to the new challenges ahead.

Another partner of touchpoint textile is the European Specialist Printing Manufacturers Association (ESMA), which is responsible for the lecture programme. ESMA represents industrial, functional and specialist printing and acts as an organiser of educational events in the field of textile printing. At drupa speakers from research, development, and industry will address issues related to printing and finishing techniques, workflows, market developments and sustainability, to name but a few. The focus will also be on trends and applications that unlock ever new potential through the interplay of digital printing and textile printing substrates. The lectures are divided into the categories Research, Finishing, Print Systems & Hardware, Substrates, Inks & Chemistry and Software & Electronics. Assyst, for example, will deliver talks on the virtual development of apparel as well as the research project ECOShoring, which is funded by the “Deutsche Bundesstiftung Umwelt” – DBU (German Federal Environmental Foundation) and focuses on personalised and on-demand sustainable manufacturing. Other speakers represent Adobe, Balta Group, Barbieri Electronic, Brother, Centexbel, CST, DITF, Fujifilm Speciality Ink Systems, HS Albsig, Kornit Digital, Meteor Inkjet, Mimaki, Mitwill, Multiplot, Print-Rite, RWTH Aachen, Seiko Instruments, Tiger Coatings, Xaar, Zünd and the list is updated on regular basis.

drupa will be held at the Düsseldorf Exhibition Centre from 28 May to 7 June 2024.

Source:

Messe Düsseldorf

3D spacer fabric Photo: ARIS/DITF
3D spacer fabric
07.05.2024

Graywater treatment with 3D textiles

The demand for water in Germany is increasing and used water is not being utilized sufficiently. Graywater in particular, i.e. wastewater from showers, bathtubs and washbasins, offers great potential for further use. It can be brought to service water quality on site and reused for flushing toilets or watering gardens, for example. Thanks to flexible 3D textiles, it can even be used in almost any building to save space.

Around 50 to 80 percent of all domestic wastewater is graywater. Until now, large containers and tanks have been needed to reprocess it and return it to the cycle, taking up a lot of space in the building. The German Institutes of Textile and Fiber Research Denkendorf (DITF) and their project partner ARIS have developed a biological, textile-based system.

The demand for water in Germany is increasing and used water is not being utilized sufficiently. Graywater in particular, i.e. wastewater from showers, bathtubs and washbasins, offers great potential for further use. It can be brought to service water quality on site and reused for flushing toilets or watering gardens, for example. Thanks to flexible 3D textiles, it can even be used in almost any building to save space.

Around 50 to 80 percent of all domestic wastewater is graywater. Until now, large containers and tanks have been needed to reprocess it and return it to the cycle, taking up a lot of space in the building. The German Institutes of Textile and Fiber Research Denkendorf (DITF) and their project partner ARIS have developed a biological, textile-based system.

It is based on a 3D spacer fabric made of highly durable polypropylene. Its advantage is that it can be installed flat and is therefore extremely space-saving. Thanks to its special system geometry, it can be installed in places that would otherwise remain unused - for example in a new building under the floor of an underground garage, on a flat roof or in the garden. It can be modularly adapted to the water requirements and structural conditions in the respective buildings. "Even vertical solutions on facades are conceivable," explains DITF scientist Jamal Sarsour. This means that the graywater treatment system could be used in densely built-up cities in particular.

The system developed by the project partners requires little maintenance and is therefore particularly cost-effective. Compared to previous solutions, it is characterized by a long lifespan. It therefore contributes to sustainable water use and makes a valuable contribution to the circular economy.

ARIS plans to launch the new textile-based graywater treatment system on the market in 2024.

The project will be presented on June 13, 2024 at the SME Innovation Day of the Federal Ministry for Economic Affairs and Climate Protection in Berlin.

The research project with the number 16KN080829 of AiF Projekt GmbH, Berlin, was funded by the Federal Ministry of Economics and Climate Protection as part of the Central Innovation Program for SMEs (ZIM) on the basis of a resolution of the German Bundestag.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Walter Reiners Foundation awards Six Young Engineers (c) VDMA
Anna Markic, Mark Zenzinger, Lena Fink, Peter D. Dornier, Fabio Bußmann, Katharina Maria Ernst, Lennart Hellwig, Dr. Harald Weber
03.05.2024

Walter Reiners Foundation awards Six Young Engineers

At the Techtextil trade fair in Frankfurt, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to six successful young engineers. Promotion and sustainability prizes were awarded in the categories bachelor/project theses and diploma/master theses. Academic theses in which, for example, solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

The Walter Reiners Foundation awarded Anna Markic a sustainability prize worth 3,000 euros in the Bachelor's category. The topic of her thesis, written at Reutlingen University, was the recycling of carbon fibres.

Mark Zenzinger, Albstadt-Sigmaringen University, received a 3,000 euro promotion award in the Bachelor's category. His topic was the automation of the process chain for the production of welded textile hard goods.
 
Lena Fink from the TU Dresden received another promotion award worth 3,000 euros. Her construction engineering project work focused on a device to simplify the maintenance of braiding machines.

At the Techtextil trade fair in Frankfurt, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to six successful young engineers. Promotion and sustainability prizes were awarded in the categories bachelor/project theses and diploma/master theses. Academic theses in which, for example, solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

The Walter Reiners Foundation awarded Anna Markic a sustainability prize worth 3,000 euros in the Bachelor's category. The topic of her thesis, written at Reutlingen University, was the recycling of carbon fibres.

Mark Zenzinger, Albstadt-Sigmaringen University, received a 3,000 euro promotion award in the Bachelor's category. His topic was the automation of the process chain for the production of welded textile hard goods.
 
Lena Fink from the TU Dresden received another promotion award worth 3,000 euros. Her construction engineering project work focused on a device to simplify the maintenance of braiding machines.

Fabio Bussmann from RWTH Aachen was awarded a promotion prize in the Master's category, worth 3,500 euros. In his thesis, he analysed the life cycle assessments of alternative semi-finished products for geotextiles.

Katharina Maria Ernst, TU Dresden, was honoured with a sustainability prize of 3,500 euros in the Master's category. Her work focused on the development of a suitable process for the treatment of chitosan fibres as an alternative starting product in the production of carbon fibres.

Lennart Hellwig, RWTH Aachen University, was awarded a 3,500 euro prize in the Master's category. He focused on the topic of machine learning using the example of a nonwovens plant.

Source:

VDMA e. V

Tensile Tester by James  Heal (c) James Heal
22.04.2024

James Heal: New Product Launch of the Titan Tensile Tester

UK-based textile testing solutions provider James Heal has launched two new instruments in its tensile and compression testing range, marking 25 years of innovation since their first Titan universal testing machine was developed in 1999.

Having seen sustained growth in the market for personal protective equipment (PPE), particularly safety workwear, equipment and footwear, James Heal designed the Titan 25 to meet demand for quality testing products that require higher capacity tests. In addition, the company has experienced increasing demand in testing solutions for wider sporting, industrial and transportation applications, which also influenced the decision to develop higher capacity test instrumentation.

The new Titan 25 is the highest capacity universal testing machine to join the range capable of tests up to 25kN, while the 10kN Titan 10 has been newly refined. The new instruments offer efficiencies through automation, quick change connections for tooling with compatibility across the range, upgraded software, plus enhanced safety features.

UK-based textile testing solutions provider James Heal has launched two new instruments in its tensile and compression testing range, marking 25 years of innovation since their first Titan universal testing machine was developed in 1999.

Having seen sustained growth in the market for personal protective equipment (PPE), particularly safety workwear, equipment and footwear, James Heal designed the Titan 25 to meet demand for quality testing products that require higher capacity tests. In addition, the company has experienced increasing demand in testing solutions for wider sporting, industrial and transportation applications, which also influenced the decision to develop higher capacity test instrumentation.

The new Titan 25 is the highest capacity universal testing machine to join the range capable of tests up to 25kN, while the 10kN Titan 10 has been newly refined. The new instruments offer efficiencies through automation, quick change connections for tooling with compatibility across the range, upgraded software, plus enhanced safety features.

These dual column instruments enable testing on larger specimens across a wide range of tensile and compression tests. Load cells from 100N to 25kN allow testing to as low as 2N giving laboratories maximum flexibility and return for their investment.

Simple to use, the new Titan testers have over 750 pre-loaded standard procedures in the TestWise software, with the option for users to customise and save their own standards. The software automatically sets parameters for each selected test, reducing set up time and eliminating user error.

More information:
James Heal Tensile Tester
Source:

James  Heal

Emanuel Gunnarsson, University of Borås Photo University of Borås
19.04.2024

Healthcare: Solution for smart textile production

Smart textiles have the potential to revolutionise healthcare. In his doctoral thesis in textile technology at the University of Borås, Emanuel Gunnarsson presents unique solutions to the bottleneck that has long inhibited the market.

With an ageing population, increasing demands are being placed on healthcare and smart textiles can offer a solution where only imagination sets limits. “The long-term goal of most smart textiles is for them to be so easy to use that the user doesn't think of them as anything more than regular garments. No special procedure should be needed to use them. If we succeed in that, we won't burden healthcare by having healthcare personnel administer vital parameter monitoring such as blood pressure and pulse, as the user can handle it themselves,” said Emanuel Gunnarsson.

In his work, he has investigated how a t-shirt for measuring heart rhythm and movement patterns, and garments for electrostimulation, can be produced in a single step. This involves the connection between the contact surfaces (electrodes), the insulated conductive paths between the electrode and the contact point, and the electrical measuring equipment required.

Smart textiles have the potential to revolutionise healthcare. In his doctoral thesis in textile technology at the University of Borås, Emanuel Gunnarsson presents unique solutions to the bottleneck that has long inhibited the market.

With an ageing population, increasing demands are being placed on healthcare and smart textiles can offer a solution where only imagination sets limits. “The long-term goal of most smart textiles is for them to be so easy to use that the user doesn't think of them as anything more than regular garments. No special procedure should be needed to use them. If we succeed in that, we won't burden healthcare by having healthcare personnel administer vital parameter monitoring such as blood pressure and pulse, as the user can handle it themselves,” said Emanuel Gunnarsson.

In his work, he has investigated how a t-shirt for measuring heart rhythm and movement patterns, and garments for electrostimulation, can be produced in a single step. This involves the connection between the contact surfaces (electrodes), the insulated conductive paths between the electrode and the contact point, and the electrical measuring equipment required.

“This, as far as we know, has never been described before. We are completely convinced that this is the solution to a significant bottleneck when it comes to getting the smart textile market going in earnest,” said Emanuel Gunnarsson.

His work has resulted in two different simple ways to produce smart textiles. He demonstrates that sensors can be integrated using standard textile manufacturing methods. The research also includes criticism of some of the methods used to measure the functionality of smart textiles, and advice on how to do it better instead.

“The next natural step will be to see how these garments cope with one of the toughest challenges a garment faces, namely washing. Especially as these garments must be worn closest to the skin, they will need to be washed relatively often,” said Emanuel Gunnarsson.

Studies from other universities indicate that the yarns used to measure signals from the body do not withstand many washes, but after a small pilot study, Emanuel Gunnarsson is hopeful of the opposite.

Source:

University of Borås

Graniteville Specialty Fabrics installs Baldwin’s TexCoat™ G4 (c) Baldwin Technology Company Inc.
17.04.2024

Graniteville Specialty Fabrics installs Baldwin’s TexCoat™ G4

Graniteville Specialty Fabrics has set new standards by challenging the traditional pad finishing process. With Baldwin Technology’s spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.
 
Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets. The installation of Baldwin’s TexCoat™ G4 is part of a facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

Graniteville Specialty Fabrics has set new standards by challenging the traditional pad finishing process. With Baldwin Technology’s spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.
 
Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets. The installation of Baldwin’s TexCoat™ G4 is part of a facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

With sustainability benefits, tracking and process control, and Industry 4.0 integration, the TexCoat™ G4 provides high-quality fabric finishing, with no chemistry waste, as well as minimal water and energy consumption. This system utilizes non-contact precision-spray technology, ensuring precise finishing coverage with the exact amount of chemistry. Changeovers (pad bath emptying, cleaning and refilling) are reduced, resulting in substantial chemical conservation and increased productivity.

Cavitec: Technology for breathable laminates at Techtextil 2024 (c) Cavitec, Santex Rimar Group
03.04.2024

Cavitec: Technology for breathable laminates at Techtextil 2024

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

The adhesive is pressed by the doctor blade through the screen holes and transferred to the substrate. Different dot pattern (mesh or irregularly) and different screen thicknesses allow different coating weight and adhesive coverages.

The traversing adhesive dispenser is used to distribute the adhesive automatically over the set working width that – an additional technical benefit – can be set without any mechanical changes.

Cavitec’s screen coating system achieves high bonding strength while using less adhesive than other coating processes, because of applying the coating on the surface of the substrate and like this, the adhesive has less tendency to penetrate the substrate.

Bonding strength, softness of the fabric and the breathability are defined by the coating weight and the coverage. The rotary screen allows users to regulate and adapt the coverage respectively the coating weight. Cavitec offers a large selection of screens that are essential to fulfil the fabric requirements. A further advantage is the ease and efficiency of switching from one screen to another by simply unlocking the bayonet fitting. The IR-heater cover opens pneumatically and the lightweight screen can be easily removed by hand. Unlike with other methods, there's no need to deal with hot oil or any other heated liquid that requires cooling down.

The Caviscreen technology supports manufacturers by reducing costs with screens priced at a mere fraction, just 10%, of common gravure roller prices.

 

Source:

Aepli Communication GmbH

27.03.2024

KARL MAYER GROUP at SaigonTex 2024

At the upcoming SaigonTex, taking place from April 10th to 13th in Ho Chi Minh City, the KARL MAYER GROUP will present its innovations.

DThe KARL MAYER exhibition for warp preparation is entirely dedicated to sustainability. With BLUEDYE, an innovative machine is introduced, which ensures more sustainability and lower costs in the process of indigo dyeing. Thanks to innovative technological solutions, the amounts of water and chemicals used are significantly reduced. Additionally, less yarn waste is generated. Another innovation for more sustainability is CASCADE, a steam and condensation system that requires significantly less steam in the drying process of sizing and indigo dyeing plants by using a solution for energy recycling that is protected against imitation.

For the warp knitting sector, the group of companies presents its latest technological developments. Highlights include a digital solution from KM.ON for optimizing production management (DPM), innovations for enhancing performance in the HKS segment, and a double raschel machine that enables unique creative multi-color designs in spacer textiles with more colour and new Jacquard techniques.

At the upcoming SaigonTex, taking place from April 10th to 13th in Ho Chi Minh City, the KARL MAYER GROUP will present its innovations.

DThe KARL MAYER exhibition for warp preparation is entirely dedicated to sustainability. With BLUEDYE, an innovative machine is introduced, which ensures more sustainability and lower costs in the process of indigo dyeing. Thanks to innovative technological solutions, the amounts of water and chemicals used are significantly reduced. Additionally, less yarn waste is generated. Another innovation for more sustainability is CASCADE, a steam and condensation system that requires significantly less steam in the drying process of sizing and indigo dyeing plants by using a solution for energy recycling that is protected against imitation.

For the warp knitting sector, the group of companies presents its latest technological developments. Highlights include a digital solution from KM.ON for optimizing production management (DPM), innovations for enhancing performance in the HKS segment, and a double raschel machine that enables unique creative multi-color designs in spacer textiles with more colour and new Jacquard techniques.

"Vietnam is a growing market for textile production, which is gaining importance especially for major international sports brands," says Eddy Ho, Senior Sales Manager at KARL MAYER.
The sales professional expects a large number of visitors, especially from Vietnam, China, Taiwan, and South Korea. SaigonTex is one of the most important textile machinery exhibitions in East Asia, located in close proximity to production centres. Vietnam is, in turn, the second most important market for the KARL MAYER GROUP after China. It benefits from increasing foreign direct investments in textile production from China, Taiwan, and South Korea.

Source:

KARL MAYER GROUP

(c) TMAS
25.03.2024

TMAS: Microfactory for filter bags in Sweden

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

Filter bags are employed in a wide range of industrial processes and while they may be largely under the radar as products, they represent a pretty significant percentage of overall technical textiles production.
They are used in foundries, smelters, incinerators, asphalt plants and energy production plants. Other key manufacturing fields – often where dust is generated – include the production of timber, textiles, composites, waste handling and minerals, in addition to chemicals, food production, pharmaceuticals, electronics and agriculture.

As a further example of the scale of the industry and the high volumes of fabrics involved, one supplier has delivered a single order of 30,000 filter bags to be used for flue gas cleaning at a European power plant. The bags can also be anywhere up to twelve metres in length and frequently have to be replaced.

Source:

Textile Machinery Association of Sweden

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

Robot system (c) STFI
20.03.2024

STFI: Highlights of textile research at Techtextil 2024

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

From the field of sustainable products and solutions, a sleeping bag with bio-based and therefore vegan filling material and a natural fibre-based composite element for furniture construction, in which LEDs and capacitive proximity sensors for contactless function control have been applied using embroidery technology, will be on show. Printed heating conductor structures demonstrate current research work for the e-mobility of the future, as the individually controllable seat and interior heating should ultimately reduce weight and save energy compared to conventional heating systems.

While a protective suit for special task forces protects against the dangers of a Molotov cocktail attack, a shin guard and a knee brace with patellar ring illustrate the process combination of 3D printing and UV LED cross-linking. Other highlights from lightweight textile construction include the rib of a vertical rudder of an Airbus A320 and a green snowboard made from recycled carbon fibres.

More information:
STFI Techtextil Smart textiles
Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

15.03.2024

TMAS: Digitised solutions at Techtextil and Texprocess

Members of TMAS – the Swedish textile machinery association – will display technologies in alignment with the theme of digitalisation at the forthcoming Techtextil and Texprocess 2024 exhibitions, taking place in Frankfurt from April 23-26th.

Automatic handling
The fully automated and digitised handling solutions for finished garments, home textiles and furniture of Eton Systems, for example, will be demonstrated at Texprocess.

Designed to increase value-added time in production by eliminating manual transportation and minimising handling, the individually addressable product carriers are fully managed and controlled by the latest ETONingenious™ software. This web based real-time data collection and information system continuously accumulates, processes and makes all production information instantly available to supervisors, quality control personnel and management.

Members of TMAS – the Swedish textile machinery association – will display technologies in alignment with the theme of digitalisation at the forthcoming Techtextil and Texprocess 2024 exhibitions, taking place in Frankfurt from April 23-26th.

Automatic handling
The fully automated and digitised handling solutions for finished garments, home textiles and furniture of Eton Systems, for example, will be demonstrated at Texprocess.

Designed to increase value-added time in production by eliminating manual transportation and minimising handling, the individually addressable product carriers are fully managed and controlled by the latest ETONingenious™ software. This web based real-time data collection and information system continuously accumulates, processes and makes all production information instantly available to supervisors, quality control personnel and management.

Bespoke seams
Svegea will demonstrate its EC 300-XS colarette technology, which is used by garment manufacturers around the world for the production of tubular apparel components such as cuff and neck tapes and other seam reinforcements.

The EC 300-XS collarette cutter on show in Frankfurt is equipped with the latest E-Drive II system providing the operator with a very user-friendly touchscreen, providing full control of the cutting process. An accompanying FA 350 fully automatic roll slitting machine will also be demonstrated.

Digital finishing
At Techtextil meanwhile, Baldwin Technology Co. will provide full details of how its highly digitised TexCoat G4 non-contact spray technology for textile finishing and remoistening not only reduces water, chemicals and energy consumption, but also provides the flexibility to adapt to customer requirements in terms of single and double-sided finishing applications.

TexCoat G4 can reduce water consumption and chemical usage by as much as 50% compared to traditional padding application processes.

Yarn tension
Celebrating its 60th anniversary this year, Eltex will display the latest Eltex EyETM system for the continuous monitoring of yarn tension on warp beams.

The Eltex EyETM eliminates problems when warping, and also in subsequent weaving or tufting processes, monitoring the yarn tension on all positions in real-time and enabling a minimum and maximum allowable tension value it be set. If any yarn’s tension falls outside these values the operator can be warned or the machine stopped.

The Eltex ACT and ACT-R units meanwhile go beyond yarn tension monitoring to actually control yarn tension. This extends the application range greatly. The plug and play system automatically compensates for any differences in yarn tension that arise, for example from irregularities in yarn packages.

Accumulated know-how
Vandewiele Sweden AB benefits from all of the synergies and accumulated know-how of Vandewiele Group, supplying weft yarn feeding and tension control units for weaving looms to the majority of weaving machine manufacturers. It also retrofits its latest technologies to working mills to enable instant benefits in terms of productivity and control.

The company will present its latest X4 yarn feeders with integrated accessory displays (TED) as a new standard, as well as launching its own e-commerce platform – iroonline.com.

The TED function enables weft tension settings to be transferred from one machine to another, enabling a fast start-up the next time the same article is woven. The position of the S-Flex Tensioner is constantly monitored by an internal sensor – even if adjustment is made during power off.

X4 feeders are also available with integrated active tension control (ATC-W) as an option. With the ATC-W active tension control, the required tension is easily set and monitored on the integrated display. Once set, the system constantly regulates itself, ensuring consistent yarn tension during the weaving process which is constantly and accurately measured by the ATC sensor unit, sending a signal to the ATC operator unit resulting in consistently stable yarn tension at the required level.

Source:

TMAS - Swedish textile machinery association

KARL MAYER and Grabher: Competence platform for wearables (c) KARL MAYER GROUP
13.03.2024

KARL MAYER and Grabher: Competence platform for wearables

KARL MAYER has already produced a wide range of electrically conductive warp-knitted items for a wide variety of applications in the TEXTILE-CIRCUIT division of its TEXTILE MAKERSPACE, including a sensor shirt, a gesture control system and a conductive charging station. In order to drive the topic of wearables forward, the textile machine manufacturer has signed a cooperation agreement with the Grabher Group and delivered an MJ 52/1-S to the specialist for high-tech textiles in Lustenau. Managing Director Günter Grabher officially inaugurated the key machine for project work in the smart textiles sector in May 2023.

The machine is involved in various research projects, but is also available for new projects and tasks. The smart textiles competence team at KARL MAYER and Grabher is looking forward to supporting the ideas and work of interested parties also outside the research network with its know-how and the possibilities of the MJ 52/1-S.

KARL MAYER has already produced a wide range of electrically conductive warp-knitted items for a wide variety of applications in the TEXTILE-CIRCUIT division of its TEXTILE MAKERSPACE, including a sensor shirt, a gesture control system and a conductive charging station. In order to drive the topic of wearables forward, the textile machine manufacturer has signed a cooperation agreement with the Grabher Group and delivered an MJ 52/1-S to the specialist for high-tech textiles in Lustenau. Managing Director Günter Grabher officially inaugurated the key machine for project work in the smart textiles sector in May 2023.

The machine is involved in various research projects, but is also available for new projects and tasks. The smart textiles competence team at KARL MAYER and Grabher is looking forward to supporting the ideas and work of interested parties also outside the research network with its know-how and the possibilities of the MJ 52/1-S.

The MJ 52/1 S is also an extremely flexible project machine. The 138″ model in gauge E 28 produces a wide range of warp-knitted fabrics and incorporates conductive material directly into the textile surface - exactly where it is needed and with the structure that is required. The basis for the tailor-made fiber placement is KARL MAYER's string bar technology. The system for controlling the pattern guide bars ensures a fast, established textile production process and a high degree of pattern freedom.

Source:

KARL MAYER GROUP

Baldwin presents spray finishing system at Techtexil (c) Baldwin Technology Company Inc.
13.03.2024

Baldwin presents spray finishing system at Techtexil

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

Baldwin Technology Co. will join Elmatex GmbH at Techtexil (April 23-26 in Frankfurt, Germany) to demonstrate its TexCoat™ G4 precision spray finishing system.

With Baldwin’s system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates. Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry.
 
Furthermore, the system offers automated speed tracking, fabric-width compensation, and real-time monitoring to track system uptime, performance and chemistry usage, as well as active care alerts.
 
In addition, the TexCoat™ G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water repellents, softeners, antimicrobials, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, and no special auxiliaries are required. The recipe is adjusted by increasing the concentration and reducing the pickup by a corresponding amount, so that the same level of solids is applied.
 
Some applications, such as durable water repellents, are only applied on the face of the fabric, instead of the traditional method of saturation through dipping and squeezing. Drier fabric entering the stenter means lower drying temperatures and faster process speeds. Single-side applications also open up the opportunity to process back-coated or laminated fabrics in a single pass of the stenter, instead of two passes.

Composites production volume in Europe since 2011 (in kt) Graphik AVK – Industrievereinigung Verstärkte Kunststoffe e. V.
Composites production volume in Europe since 2011 (in kt)
06.03.2024

European composites market on the level of 2014

After a long phase of continuous growth, the composites market has seen strong fluctuations since 2018. In 2023, the overall market for composites in Europe fell by 8%.

The current mood on the markets in Germany and Europe is rather negative within the industry. The main drivers are the persistently high energy and raw material prices. Added to this are problems in logistics chains and a cautious consumer climate. A slowdown in global trade and uncertainties in the political arena are fueling the negative sentiment. Despite rising registration figures, the automotive industry, the most important application area for composites, has not yet returned to its pre-2020 volume. The construction industry, the second key application area, is currently in crisis. These factors have already caused the Eu-ropean composites production volume to fall significantly in recent years. There has now been another decline in Europe for 2023.

After a long phase of continuous growth, the composites market has seen strong fluctuations since 2018. In 2023, the overall market for composites in Europe fell by 8%.

The current mood on the markets in Germany and Europe is rather negative within the industry. The main drivers are the persistently high energy and raw material prices. Added to this are problems in logistics chains and a cautious consumer climate. A slowdown in global trade and uncertainties in the political arena are fueling the negative sentiment. Despite rising registration figures, the automotive industry, the most important application area for composites, has not yet returned to its pre-2020 volume. The construction industry, the second key application area, is currently in crisis. These factors have already caused the Eu-ropean composites production volume to fall significantly in recent years. There has now been another decline in Europe for 2023.

Overall development of the composites market
The volume of the global composites market totalled 13 million tons in 2023. Compared to 2022, with a volume of 12.3 million tons, growth was around 5%. In comparison, the European composites production volume fell by 8% in 2023. The total European composites market thus comprises a volume of 2,559 kilotons (kt) after 2,781 kt in 2022.

The market is therefore declining and falling back to the level of 2014. Overall, market momentum in Europe was lower than in the global market. Europe's share of the global market is now around 20%.

As in previous years, development within Europe is not uniform. The differences are due to very different regional core markets, the high variability of the materi-als used, a wide range of different manufacturing processes and widely differing areas of application. Accordingly, there are different regional trends, especially with regard to the individual processes, although there were declines in all re-gions and for almost all processes in 2023. At almost 50% of the market volume, the transportation sector accounts for the largest share of total composites pro-duction in terms of volume. The next two largest areas are the electri-cal/electronics sector and applications in construction and infrastructure.

The entire market report 2023 is available for download: https://www.avk-tv.de/publications.php.

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

adidas: Study on effect of pressure in sports (c) adidas AG
19.02.2024

adidas: Study on effect of pressure in sports

Under adidas’ ambition to help athletes overcome high pressure moments in sport, it has teamed up with leading sport neuroscientists, neuro11, to understand the impact it has within a game of football, basketball, and golf during penalty shootouts, high-stake putts and must-make free-throws.

Working with Emiliano Martínez, Ludvig Åberg, Nneka Ogwumike, Rose Zhang, and Stina Blackstenius, as well as amateurs in the game, adidas and neuro11 delved into their minds to identify and analyse where pressure peaks, to help athletes across the globe to better understand it.

Understanding from this study that grassroots athletes and their elite counterparts experience similarly intense levels of pressure in the biggest sporting moments - but elite athletes were up to 40% more effective at managing pressure during these moments1 - a toolbox of techniques has been developed, built from the specific findings, to assist next-gen athletes in managing and overcoming the feeling within their game.

Under adidas’ ambition to help athletes overcome high pressure moments in sport, it has teamed up with leading sport neuroscientists, neuro11, to understand the impact it has within a game of football, basketball, and golf during penalty shootouts, high-stake putts and must-make free-throws.

Working with Emiliano Martínez, Ludvig Åberg, Nneka Ogwumike, Rose Zhang, and Stina Blackstenius, as well as amateurs in the game, adidas and neuro11 delved into their minds to identify and analyse where pressure peaks, to help athletes across the globe to better understand it.

Understanding from this study that grassroots athletes and their elite counterparts experience similarly intense levels of pressure in the biggest sporting moments - but elite athletes were up to 40% more effective at managing pressure during these moments1 - a toolbox of techniques has been developed, built from the specific findings, to assist next-gen athletes in managing and overcoming the feeling within their game.

Covering in-depth detail on what pressure looks like within each sport, how it has been proven to impact specific in-game moments, the brain zones that neuro11’s state-of-the-art brain technology measures and the main insights from each athlete’s training session, each report sets out to support all athletes in accessing the optimal zone - the brain state in which they perform at their best.

Rounded off with science-backed tips that reveal the optimal area of a goal to strike a penalty, how to use time to regain focus before netting a free throw, as well as the impact of dwell time on putting in golf – the guides are shaped around enhancing mental focus during some of the most pressured moments across sport.

1 Findings captured during athlete training sessions, as part of adidas SS24 Brand Campaign, in collaboration with neuro11 (November ’23- January ’24). Study carried out with Emiliano Martínez, Ludvig Åberg, Nneka Ogwumike, Rose Zhang, and Stina Blackstenius, in addition to 5 grassroot athletes.

Source:

adidas AG