From the Sector

Reset
374 results
Infinited Fiber Company
14.10.2022

Infinited Fiber Company accelerates scaling plans amid turbulence

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 
“We are not immune to the global market context in which we operate. The supply chain issues stemming from the Covid-19 pandemic are still wreaking havoc, and the ongoing war in Ukraine has dealt a heavy blow to the global utility, commodity, and financial markets – and to us. We are satisfied with the progress at the site of our planned commercial-scale factory and the opening of the factory remains our key priority. The current, unstable market environment has highlighted the need for us to also accelerate efforts to simultaneously pursue other avenues for scaling production, with the ultimate aim of serving our customers in the best possible way in the long run,” said Infinited Fiber Company CEO and cofounder Petri Alava.
 
Infinited Fiber Company said in June that it planned to build a factory to produce Infinna™, a textile fiber that can be created 100% from cotton-rich textile waste, at the site of a discontinued paper mill in Kemi, Finland. The factory is expected to create around 270 jobs in the area and to have an annual production capacity of 30,000 metric tons, equivalent to the fiber needed for about 100 million T-shirts. The future factory’s customer-base includes several of the world’s leading apparel companies, with most of the future production capacity already sold out for several years.
 
Since June, Infinited Fiber Company has advanced the site-specific basic engineering, recruitment planning, vendor selection, and permit processes according to plan. The limited component availability caused by the continuing impacts of the Covid-19 pandemic and the war in Ukraine have, however, prolonged significantly the delivery times for some of the key equipment and machinery needed for the factory. As a result of these developments, Infinited Fiber Company has re-evaluated its overall factory project timeline. The first commercial fiber deliveries from Kemi are now expected to begin in January 2026. The scope of the project remains unchanged and construction work at the site is expected begin during 2023 as previously communicated.
 
In addition, the European energy crisis sparked by the war in Ukraine has caused the electricity prices in Finland to roughly triple, and the prices of some of the key chemicals needed in the fiber regeneration process have risen by some 200-300% since the start of the war.
 
“We of course don’t have a crystal ball. But according to our advisors and other experts, utility and commodity prices are forecast to normalize before 2026, when we now expect the first commercial fiber deliveries from Kemi to be shipped. In addition to the likely normalization of the market, the extended timeline enables us to undertake the necessary measures to develop the profitability of the future factory. The growing demand for Infinna™, despite the general turbulence, is an encouraging and clear indication of the fashion industry’s commitment to circularity,” said Petri Alava.

Source:

Infinited Fiber Company

Photo: Indorama Ventures Limited
12.10.2022

Indorama Ventures: New plant for nylon yarn

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

  • Collaboration between Indorama Ventures and Toyobo to meet growing global demand for airbags
  • Newly completed plant in Thailand will supply high-performance nylon yarn to customers in the automotive safety sector

Indorama Ventures Public Company Limited (IVL) celebrated the completion of a plant to manufacture high-performance nylon yarn for automobile airbags. The new plant in Rayong, Thailand, was constructed by Toyobo Indorama Advanced Fibers Co., Ltd. (TIAF), a joint venture that Indorama Ventures established with Toyobo Co., Ltd in November 2020.

The plant, which has been built on the site of Indorama Polyester Industries PCL (IPI) in Rayong Province, will deliver 11,000 tons of high-performance yarn per year to meet global demand for airbags that is expected to grow by 3 percent to 4 percent annually as automakers equip vehicles with more airbags and emerging economies require cars to adopt more safety features. Test production is scheduled to start in October 2022 with the goal of starting commercial production in the middle of 2023.

In 2014, Indorama Ventures and Toyobo jointly acquired Germany’s PHP Fibers GmbH, a leading airbag yarn maker. Since then, both companies have strengthened their relationship with a focus to expand in the automotive safety sector. Mr Christopher Kenneally, based in Bangkok, leads IVL’s Fibers segment, which produces fibers and yarns across its Hygiene, Mobility and Lifestyle verticals. Mr Ashok Arora, with over 30 years of experience in fibers and polymer operations, will helm TIAF as CEO while maintaining his role as CTO with IVL Fibers.

Source:

Indorama Ventures Limited

Foto: (c) Starlinger & Co Gesellschaft m.b.H.
11.10.2022

Starlinger PET recycling lines in India: Bottle-to-fibre and bottle-to-bottle

Ganesha Ecopet Private Limited, a subsidiary of Indian PET recycling pioneer Ganesha Ecosphere Ltd., has recently opened its new Warangal facility under the brand name Go Rewise where it produces rPET for filament yarns and fibres, as well as for food-grade packaging.  

The company has installed two Starlinger PET recycling lines in its facility in Warangal, Telangana state. Ganesha Ecopet plans to supply the produced rPET granulates under its newly introduced brand enterprise Go Rewise. Launched under the umbrella of one of India's rPET industry leaders, Go Rewise is committed to supplying highest quality rPET products that are produced in a resource-efficient process.
One Starlinger recycling line, a recoSTAR PET 165 H-VAC, processes washed PET bottle flakes for the Go Rewise polyester filament yarn applications and reaches an output of approx. 14,000 tons per year. With the second Starlinger recycling line, Ganesha is producing food-grade rPET resins.

Ganesha Ecopet Private Limited, a subsidiary of Indian PET recycling pioneer Ganesha Ecosphere Ltd., has recently opened its new Warangal facility under the brand name Go Rewise where it produces rPET for filament yarns and fibres, as well as for food-grade packaging.  

The company has installed two Starlinger PET recycling lines in its facility in Warangal, Telangana state. Ganesha Ecopet plans to supply the produced rPET granulates under its newly introduced brand enterprise Go Rewise. Launched under the umbrella of one of India's rPET industry leaders, Go Rewise is committed to supplying highest quality rPET products that are produced in a resource-efficient process.
One Starlinger recycling line, a recoSTAR PET 165 H-VAC, processes washed PET bottle flakes for the Go Rewise polyester filament yarn applications and reaches an output of approx. 14,000 tons per year. With the second Starlinger recycling line, Ganesha is producing food-grade rPET resins.

Ganesha Ecosphere looks back on 30 years of experience in the PET recycling business and can be considered a role model regarding sustainable business activities. Founded in 1987, the company started out as a yarn processing facility. It was among the first companies in India to start reprocessing PET waste to manufacture recycled polyester staple fibre (RPSF) and recycled polyester spun yarns (RPSY) in 1994. By today, the group has established a large network of over 300 scrap vendors located across the country and operates four factories in India - two in Uttar Pradesh, one in Uttarakhand, and the recently opened one in Telangana. It also recently operationalised its first factory outside India in Nepal. With over 500 customers and exports to more than 18 countries, the company ranks among the largest rpet producers in India with 130,000 tonnes per year and currently recycles around 16 - 18 % of India's total PET waste.

Source:

Starlinger & Co Gesellschaft m.b.H.

Photo: FET
FET-103 Monofilament meltspinning system
10.10.2022

RHEON LABS: Fibre with unique strain-rate sensitive characteristics

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

For close-fitting activewear and sports bras, the ability to actively control muscle mass or soft tissue movement during exercise will be a game-changing advancement. It will allow brands to engineer garments that relax during everyday use but actively stiffen during exercise for improved support and performance.
The Innovate UK grant was awarded under the category of Hyper-Viscoelastic Fibre Extrusion for Textile Manufacture. Fibre Extrusion Technology Limited (FET) enabled the customer trials at its bespoke Fibre Development Centre in Leeds, England using its in-house FET-103 Monofilament meltspinning facilities, in harness with RHEON and FET technical operatives. The next phase will be to upscale the trials of preferred materials on RHEON’s own new FET-103 meltspinning line, with FET’s continued support and expertise on hand.
 
Creating a fibre with unique strain-rate sensitive characteristics could be as radical a change in the market as the initial introduction of stretch fibre with the launch of Lycra™. The textiles would have a multitude of beneficial properties and would provide significantly less compression in the garment than conventional materials, substantially improving user comfort, support and performance.

Source:

DAVID STEAD PROJECT MARKETING LTD

Graphic Hologenix
06.10.2022

CELLIANT® Viscose now as flock coating and flock fabric

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

Flocking is an application method in which tiny fibers are piled on to the surface of a textile, creating textures for both decorative and functional purposes. CELLIANT Viscose in a flocked material has many potential applications in the medical field for tapes, bandages, braces and orthopedic products, home textiles and decor, dog beds, clothing, and more.  CELLIANT features natural, ethically sourced minerals, which convert body heat into infrared energy for increased local circulation and cellular oxygenation.  These CELLIANT minerals are then embedded into viscose plant-based fibers. The Viscose fibers are then flocked onto a base material. CELLIANT Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as the fiber enhancements from CELLIANT infrared technology.

CELLIANT Viscose is the first IR flocked material that Spectro is producing. CELLIANT Viscose also represents a further expansion into sustainable products for Spectro. In addition, Spectro products are made in the USA, as is CELLIANT’s mineral blend.

Source:

Hologenix

04.10.2022

Hexcel HexPly® M9.6 Prepregs receive Bureau Veritas Type Approval

Hexcel Corporation has received Type Approval for its HexPly® M9.6GF prepreg products from Bureau Veritas (BV), a leader in testing, inspection, and certification services.

This certification enables carbon fiber-reinforced epoxy prepregs to be used in the production of parts for all BV-approved marine vessels. It also guarantees the quality, performance and consistency of the prepregs for ship and boat builders.

BV-approved HexPly M9.6GF prepregs can be reinforced with unidirectional, non-crimp and twill-weave fabrics. They are particularly suitable for use in the manufacture of masts and other large structural components for wind-assisted ship propulsion (WASP). To reduce reliance on engines and cut fuel usage, WASP vessels harness the power of ocean winds often using large carbon fiber-reinforced masts flying durable composite solid sails.

Hexcel Corporation has received Type Approval for its HexPly® M9.6GF prepreg products from Bureau Veritas (BV), a leader in testing, inspection, and certification services.

This certification enables carbon fiber-reinforced epoxy prepregs to be used in the production of parts for all BV-approved marine vessels. It also guarantees the quality, performance and consistency of the prepregs for ship and boat builders.

BV-approved HexPly M9.6GF prepregs can be reinforced with unidirectional, non-crimp and twill-weave fabrics. They are particularly suitable for use in the manufacture of masts and other large structural components for wind-assisted ship propulsion (WASP). To reduce reliance on engines and cut fuel usage, WASP vessels harness the power of ocean winds often using large carbon fiber-reinforced masts flying durable composite solid sails.

HexPly M9.6 prepregs were recently used to manufacture the mast for the Chantiers de l’Atlantique Silenseas project. The HexPly M9.6 prepregs satisfied all the requirements of the Silenseas consortium’s mast-section manufacturers for quality, mechanical performance, and processing characteristics, while also proving to be cost effective.

Source:

Hexcel Corporation / 100% Marketing

27.09.2022

Lenzing awarded by EcoVadis for sustainability

  • Lenzing has been awarded the highest CSR rating from EcoVadis for the second consecutive time
  • Global rating standard evaluates 90,000 companies: Lenzing among top 1 percent of its industry
  • enzing joins the UN Global Compact sustainability initiative

Lenzing Group has been awarded platinum status in the CSR rating from EcoVadis. This comprehensive assessment covers the four key practices of corporate social responsibility: the environment, fair working conditions and human rights, ethics and sustainable procurement.

This is the second time that EcoVadis, a leading international provider of sustainability ratings for businesses, has awarded platinum status to Lenzing for its sustainability performance. As a result, Lenzing ranks among the world’s top 1 percent of companies in its sector that are rated by EcoVadis.

  • Lenzing has been awarded the highest CSR rating from EcoVadis for the second consecutive time
  • Global rating standard evaluates 90,000 companies: Lenzing among top 1 percent of its industry
  • enzing joins the UN Global Compact sustainability initiative

Lenzing Group has been awarded platinum status in the CSR rating from EcoVadis. This comprehensive assessment covers the four key practices of corporate social responsibility: the environment, fair working conditions and human rights, ethics and sustainable procurement.

This is the second time that EcoVadis, a leading international provider of sustainability ratings for businesses, has awarded platinum status to Lenzing for its sustainability performance. As a result, Lenzing ranks among the world’s top 1 percent of companies in its sector that are rated by EcoVadis.

In line with its “Naturally positive” sustainability strategy, the Lenzing Group has set ambitious targets in each of its core strategic areas, aimed at bolstering its capacity to move from a linear to a circular model. Lenzing reports the corresponding implementation measures and the progress it has made in its annual sustainability report. This high level of accountability and transparency was particularly praised in the assessment by EcoVadis. The rating provider also highlighted Lenzing’s comprehensive measures to reduce air pollution, wastewater and greenhouse gases, in addition to its provision of skills development training and health care programs for staff members.

Partnerships for systemic change
Lenzing forges strategic partnerships with various stakeholders to meet its ambitious climate and sustainability targets and drive forward systemic change in the textile and nonwoven industries. This is why Lenzing, as one of 15,000 companies worldwide, joined the United Nations Global Compact. As a member, Lenzing is committed to upholding human rights, respecting the rights of employees and their representatives, protecting the environment, enabling fair competition and combating corruption.

Source:

Lenzing AG

(c) adidas
23.09.2022

adidas by Stella McCartney: Industry-First, with Viscose Sportswear

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

It’s currently estimated that just under 1% of all textiles worldwide are recycled into new textiles, so it’s vital the textile industry comes together to learn and knowledge-share. Scheduled across a three-year period, the consortium which includes partners such as Frankenhuis have collected and sorted post-consumer end-of-life textiles, which using pioneering Infinited Fiber technology have been regenerated into a new man-made cellulosic fiber called Infinna™ - which looks and feels just like virgin cotton. This is then turned into a yarn blended with organic cotton, for garment production.

Designing the tracksuit, made using viscose (60% viscose, 40% organic cotton) as a consortium member took the process from a linear to a circular model , as the apparel’s function and style were of equal focus to the garment’s end of life existence.

At the end of the project, consortium partner Aalto University, a Finnish multidisciplinary community specialising in science, art, technology , and design, will distribute learnings with the industry and bring this potential circular design solution to the ever-eco-conscious consumer.

Source:

adidas

Photo: C.L.A.S.S.
20.09.2022

Bemberg™ by Asahi Kasei taking part at White Sustainable Milano

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

A new yarn range that expands the company’s realm of applications for the fashion and luxury industry, including also knitwear, jersey and casualwear. Indeed, the fibre comes with a circular economy footprint obtained from cotton linters through a closed-loop process. Bemberg™ also ensures certified sustainability credentials through its transparent and traceable approach.

At WSM fair, the company proves it by unveiling a collection of t-shirts developed in collaboration with the MagnoLab smart network of Italian companies. Circular economy and environmental responsibility meet aesthetic research with a collaborative imprint.

The new t-shirt collection created in synergy with MagnoLab, a network of Biella-based companies bringing forward initiative and collabs related to sustainability and circular economy. Staple-fibre is the top ingredient of the collection. The cut t-shirts are presented both in sheer and blends with other certified fibers, including GOTS cottons and RWS wools, capable of enhancing both the hand of the final garment and the performance of the brand-new yarn.

Source:

C.L.A.S.S.

19.09.2022

Lenzing suspends guidance for 2022

In view of the drastic deterioration of the market environment in the current quarter, the Lenzing Group suspends its guidance for the development of earnings in the 2022 financial year.

The further course of the 2022 financial year can only be estimated to a limited extent due to the extremely low visibility on the demand side and the high volatility of energy and raw material costs.

In view of the drastic deterioration of the market environment in the current quarter, the Lenzing Group suspends its guidance for the development of earnings in the 2022 financial year.

The further course of the 2022 financial year can only be estimated to a limited extent due to the extremely low visibility on the demand side and the high volatility of energy and raw material costs.

More information:
prognosis Inflation Ukraine
Source:

Lenzing Group

15.09.2022

World Natural Fibre Update September 2022

World Natural Fibre Production in 2022 is estimated at 32.6 million tonnes, down 1.1 million tonnes from the estimate one month ago. Production reached 33.3 million tonnes in 2021 and 31.6 million in 2020.

A drought in Texas where over half of cotton produced in the United States is grown, and flooding in Pakistan, the fifth largest cotton producer, account for the decline (www.ICAC.org).

World Natural Fibre Production in 2022 is estimated at 32.6 million tonnes, down 1.1 million tonnes from the estimate one month ago. Production reached 33.3 million tonnes in 2021 and 31.6 million in 2020.

A drought in Texas where over half of cotton produced in the United States is grown, and flooding in Pakistan, the fifth largest cotton producer, account for the decline (www.ICAC.org).

  • Nearby cotton futures on the Intercontinental Exchange rose 14% from the end of July and finished August at $2.60 per kilogram.
  • The Eastern Market Indicator of wool prices in Australia, fell 1% from mid-July to mid-August to US$9.27 per kilogram.
  • Prices of jute fibre in India quoted by the Jute Balers Association (JBA) at the end of August converted to US$ fell 4% from a month earlier to 79 cents per kilogram.
  • Prices of silk in China equalled US$ 28.7 per kilogram at the end of August, compared with US$29.5 per kilogram in July 2022, a change of 3%.
  • Coconut coir fibre in India held at US cents 21 per kilogram in August.

World production of jute and allied fibres is estimated unchanged at 3.2 million tonnes in 2022 compared with 2021. High market prices in 2021 motivated farmers to expand planted area in both Bangladesh and India, but dry weather during June and July will limit yields per hectare. Normal monsoon rains resumed in South Asia during August, too late for the 2022 jute crop (https://www.wgc.de/en/).

Production of coir fibre rose by an average of 18,000 tonnes per year during the past decade, and production was at a record high of 1.12 million tonnes in 2021. Production is expected to remain high in 2022.

Flax has also been trending upward, rising by an average of 27,000 tonnes per year, and production in 2022 is estimated to remain above one million tonnes.

World wool production is forecast up by 5% in 2022 to 1.09 million tonnes (clean), the highest since 2018. Wetter weather in the Southern Hemisphere, following eight years of drought, is allowing farmers to rebuild herds (https://www.wool.com/market-intelligence/).

Natural fibres are heavily-traded commodities, and supply chain disruptions are causing significant economic losses as freight costs remain high and deliveries are delayed.

About 40% of world cotton production moves as fibre in international trade each season. Over half of world jute production moves as fibre or product, and around 55% of world wool production is exported as raw wool. Abaca, flax, and sisal are also heavily traded.

Most natural fibre exports traverse back-haul ocean freight routes from the Western Hemisphere to East Asia and the Middle East, from South Asia to East Asia and Europe, from Africa to East Asia and the Middle East, and from Australia and South Africa to China. Such routes are relatively underserved in the best of times, and reduced sailings since the start of Covid are restricting trade volumes.

As of the end of August, Freightos (https://fbx.freightos.com/) quoted the cost of moving a 40’ container from the United States West Coast to East Asia at $793, compared with $1,020 in March 2022. Nevertheless, average freight costs on back -haul routes used by natural fibres remain approximately triple their pre-covid levels. In addition to ocean freight costs, inland transportation is also affected by high fuel prices and a lack of containers. As one example, charges for inland handling of export containers in Bangladesh, the largest exporter of raw jute, increased by 48 per cent during August.

More information:
DNFI
Source:

Discover Natural Fibres Initiative

13.09.2022

Ionofibres a new track for smart and functional textiles

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Currenty, the uniqueness of his research leans towards the strategies employed when coating. These strategies expand to the processes and the materials used.

Uses ionic liquid
One of the tracks he investigates is about a new kind of material as textile coating, ionic liquids in combination with commercial textile fibres. Just like salt water, they conduct electricity but without water. Ionic liquid is a more stable electrolyte than salt water as nothing evaporates.

"The processable aspect is an important requirement since textile manufacturing can be harsh on textile fibres, especially when upscaling their use. The fibres can also be manufactured into woven or knitted without damaging them mechanically while retaining their conductivity. Surprisingly, they were even smoother to process into fabrics than the commercial yarns they are made from," explained Claude Huniade.

Ionofibres could be used as sensors since ionic liquids are sensitive to their environment. For example, humidity change can be sensed by the ionofibers, but also any stretch or pressure they are subjected to.

"Ionofibres could truly shine when they are combined with other materials or devices that require electrolytes. Ionofibres enable certain phenomena currently limited to happen in liquids to be feasible in air in a lightweight fashion. The applications are multiple and unique, for example for textile batteries, textile displays or textile muscles," said Claude Huniade.

Needs further research
Yet more research is needed to combine the ionofibres with other functional fibres and to produce the unique textile devices.

How do they stand out compared to common electronically conductive fibres?
"In comparison to electronically conductive fibres, ionofibers are different in how they conduct electricity. They are less conductive, but they bring other properties that electronically conductive fibers often lack. Ionofibres achieve higher flexibility and durability and match the type of conduction that our body uses. They actually match better than electronically conductive fibres with how electricity is present in nature," he concluded.

Source:

University of Borås - The Swedish School of Textiles

09.09.2022

Lenzing invests in renewable energy expansion

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

In 2019, Lenzing became the first fiber manufacturer to set a target to reduce its carbon emissions by 50 percent by 2030 and to be climate neutral by 2050. This carbon reduction target has been confirmed by the Science Based Targets Initiative. Lenzing is also currently investing in reducing carbon emissions at other sites worldwide. Only recently, the Lenzing Group announced that its Indonesian site will also be relying on green energy in the future.

Source:

Lenzing AG

08.09.2022

Kelheim Fibres at the Global Fiber Congress 2022 in Dornbirn

Shorter product life cycles and rapid technological progress are changing the product landscape at an ever-faster pace. The ability to anticipate future changes and to proactively shape the change is therefore an increasingly decisive competitive factor for modern companies. Trends are considered to be important indicators of impending

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, stands out in the industry not least for its innovative strength, as evidenced by numerous awards such as the Techtextil Innovation Award 2022 in the “New Concept” category. At this year’s Global Fiber Congress Dornbirn, Innovation Manager Ilka Kaczmarek will give an insight into the innovation management of the Bavarian fibre experts in her presentation “Trend Management meets Open Innovation: Best Practice Examples from Kelheim”. Ilka Kaczmarek will show how successful product solutions were developed in a short time by focusing on customer needs and working closely with partners along the value chain.

Shorter product life cycles and rapid technological progress are changing the product landscape at an ever-faster pace. The ability to anticipate future changes and to proactively shape the change is therefore an increasingly decisive competitive factor for modern companies. Trends are considered to be important indicators of impending

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, stands out in the industry not least for its innovative strength, as evidenced by numerous awards such as the Techtextil Innovation Award 2022 in the “New Concept” category. At this year’s Global Fiber Congress Dornbirn, Innovation Manager Ilka Kaczmarek will give an insight into the innovation management of the Bavarian fibre experts in her presentation “Trend Management meets Open Innovation: Best Practice Examples from Kelheim”. Ilka Kaczmarek will show how successful product solutions were developed in a short time by focusing on customer needs and working closely with partners along the value chain.

Natalie Wunder, Project Manager at Kelheim Fibres, will explain one of these examples in detail in her presentation “Development of Menstruation Pants using Speciality Viscose Fibres”. Based on the current trend and the desire of end customers for reusable products, Kelheim Fibres was able to develop a washable and thus reusable, yet bio-based solution for feminine hygiene products.

Source:

Kelheim Fibres

(c) adidas AG
08.09.2022

adidas introduces FW22 Made with Nature Capsule Collection

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

adidas has unveiled the latest in its Made with Nature Capsule Collection with a new Ultraboost 22 Made with Nature and Made with Nature apparel joining the range as the brand continues its mission to call time on conventional materials and design out finite resources.

Designed in balance with the planet, the women’s Ultraboost 22 Made with Nature takes the forward-thinking elements of the Ultraboost 22 and amplifies them with natural materials. The shoe is made in part with natural materials – 40% of the knitted upper is made with lyocell, a material created with cellulosic fibers made from sustainably grown wood.

Launching alongside the Ultraboost 22 Made with Nature is a new Made with Nature apparel range, including a performance running wear look for men and women. The apparel range is made with at least 50% organic cotton.

Christopher Wheat, Global Category Director Running Footwear said: “At adidas, we understand that change is not only possible, it’s an urgent necessity. With Made with Nature, we are on a journey to a world beyond plastic. We’re calling time on conventional materials and methods of make. Once depleted, there’s no coming back for fossil resources. But when we design in synergy with natural processes, when we make with nature, we can use materials that regrow or regenerate – and change the way products are made."

06.09.2022

SGL Carbon increases sales and earnings guidance again for 2022

Due to the continued good business development, especially in the Carbon Fibers Business Unit, SGL Carbon SE is increasing its Group sales and earnings guidance for the current fiscal year and now expects Group sales of approximately €1.2 billion (previously: approximately €1.1 billion). The company expects to achieve adjusted EBITDA (EBITDA pre = earnings before interest, taxes, depreciation and amortization before one-off effects and non-recurring items) of €170 - €190 million (previously: €130 - €150 million) in 2022.

Based on lower prices for acrylonitrile as main raw material of the Business Unit Carbon Fibers as well as higher than expected customer demand for acrylic and carbon fibers combined with consistently good production capacity utilization and capability, the management of SGL Carbon SE assumes an improved earnings development of this Business Unit.

Due to the continued good business development, especially in the Carbon Fibers Business Unit, SGL Carbon SE is increasing its Group sales and earnings guidance for the current fiscal year and now expects Group sales of approximately €1.2 billion (previously: approximately €1.1 billion). The company expects to achieve adjusted EBITDA (EBITDA pre = earnings before interest, taxes, depreciation and amortization before one-off effects and non-recurring items) of €170 - €190 million (previously: €130 - €150 million) in 2022.

Based on lower prices for acrylonitrile as main raw material of the Business Unit Carbon Fibers as well as higher than expected customer demand for acrylic and carbon fibers combined with consistently good production capacity utilization and capability, the management of SGL Carbon SE assumes an improved earnings development of this Business Unit.

SGL Carbon assumes that the factors mentioned will continue at least until the end of the year and that the earnings situation of the Business Unit Carbon Fibers will exceed previous expectations. Combined with the continued good business development of the other three Business Units (Graphite Solutions, Process Technology and Composite Solutions), an improvement in the sales and earnings situation at Group level is expected.

In line with the forecast increase for adjusted EBITDA (EBITDA pre) to between €170 and €190 million (previously: €130 - €150 million), the company is forecasting adjusted EBIT (earnings before interest and taxes and before one-off effects and non-recurring items) of between €110 and €130 million (previously: €70 - €90 million). The forecast for return on capital employed (ROCE) of originally 7% - 9% has been raised to 10% to 12% corresponding to the development of earnings. The expectations for free cash flow (significantly below previous year's level of €111.5 million) remain unaffected by the expected improvement in sales and earnings.

The updated forecast for fiscal 2022 has been prepared on the basis of the currently prevailing market environment and assumes no deterioration in the general conditions, in particular due to the war in Ukraine and its consequences for the global economy.
 
The definition of key figures used in this release is aligned to the Annual Report 2021. There were no changes in the scope of consolidation or accounting methods compared with the previous guidance.

Source:

SGL CARBON SE

(c) AZL. Comparison of battery casing in modular design and “cell-to-pack” design
Comparison of battery casing in modular design and “cell-to-pack” design
02.09.2022

AZL: Plastic-based multi-material solutions for cell-to-pack battery enclosures

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The design of battery housings is crucial for safety, capacity, performance, and economics. The Cell-to-Pack project, which is starting now, will focus on developing concepts for structural components and for producing them based on a variety of materials and design approaches. The concepts will be compared in terms of performance, weight and production costs, creating new know-how for OEMs, producers and their suppliers throughout the battery vehicle value chain. Companies are now invited to participate in this new cross-industry project to develop battery enclosure concepts for the promising and trend-setting cell-to-pack technology.

The basis for the project is the lightweight engineering expertise of the AZL experts, which they have already demonstrated in previous projects for multi-material solutions for module-based battery housings. Together with 46 industry partners, including Audi, Asahi Kasei, Covestro, DSM, EconCore, Faurecia, Hutchinson, Johns Manville, Magna, Marelli and Teijin, 20 different multi-material concepts were optimized in terms of weight and cost and compared with a reference component made from aluminum. All production steps were modelled in detail to obtain reliable cost estimates for each variant. Result: depending on the concept, 20% weight or 36% cost savings potential could be identified by using multi-material composites compared to the established aluminum reference.

It is expected that the design concept of battery enclosures will develop in the direction of a more efficient layout. In this case, the cells are no longer combined in modules in additional production steps, but are integrated directly into the battery housing. The elimination of battery modules and the improved, weight-saving use of space will allow for higher packing density, reduced overall height and cost saving. In addition, various levels of structural integration of the battery housing into the body structure are expected. These new designs bring specific challenges, including ensuring protection of the battery cells from external damage and fire protection. In addition, different recyclability and repair requirements may significantly impact future designs. How the different material and structural options for future generations of battery enclosures for the cell-to-pack technology might look like and how they compare in terms of cost and environmental impact will be investigated in the new AZL project. In addition to the material and production concepts from the concept study for module-based battery enclosures, results from a currently ongoing benchmarking of different materials for the impact protection plate and a new method for determining mechanical properties during a fire test will also be incorporated.

The project will start on October 27, 2022 with a kick-off meeting of the consortium, interested companies can still apply for participation until then.

02.09.2022

RGE: Closed-loop urban-fit textile-to-textile recycling solutions in Singapore

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings.

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings. The research centre will develop new technologies to recycle textile waste into fibre and create new, next-generation eco-friendly and sustainable textiles.

This move comes on the back of the tightening of waste import bans in countries such as China, India and Indonesia, which are among the world’s largest waste processors. The stricter import bans have left cities in need of viable local textile recycling solutions to tackle the immense textile waste generated.

RGE Executive Director, Mr Perry Lim, said, “Current textile recycling technologies, which rely primarily on a bleaching and separation process using heavy chemicals, cannot be implemented due to environmental laws. At the same time, there is an urgent need to keep textiles out of the brimming landfills.” He added, “As the world’s largest viscose producer, we aim to catalyse closed-loop, textile-to-textile recycling by developing optimal urban-fit solutions that can bring the world closer to a circular textile economy.”

Globally, an estimated 90 million tonnes of textile waste is generated and disposed of every year, with less than 1% being upcycled into new clothing or other textile materials. By 2030, the amount of global textile waste, which currently accounts for almost 10% of municipal solid waste, is expected to reach more than 134 million tonnes. The textile industry is also responsible for 10% of global greenhouse gas emissions – more than international flights and maritime shipping combined.

At present, most of the available textile recycling technologies are open-loop, where textile waste is typically downcycled to lower-quality products (insulating materials, cleaning cloths, etc.) or be used in waste-to-heat recycling.

“Closed-loop textile-to-textile recycling processes, particularly chemical recycling, are still under development. Scaling up the technologies to industrial scale remains a challenge. A key bottleneck is that refabricating textile waste into fibre needs purity standards for feedstock. However, most of the clothes that we wear are made of a mixture of different synthetic and natural fibres, which makes separating the complex blends of materials challenging for effective recycling.

“Our aim is to address this industry pain point by developing viable solutions that use less energy, fewer chemicals and produces harmless and less effluents, and then potentially scale up across our global operations,” Mr Lim said.

To tackle the key challenges in closed-loop textile recycling, RGE-NTU SusTex is looking into four key research areas, namely cleaner and more energy efficient methods of recycling into new raw materials, automated sorting of textile waste, eco-friendly dye removal, and development of a new class of sustainable textiles that is durable for wear and, at the same time, lends itself to easier recycling.

Technologies developed by RGE-NTU SusTex will be test bedded at RGE’s pilot urban-fit textile recycling plant in Singapore, which is projected for completion as early as 2024. If successful, RGE has plans to replicate the plant in other urban cities within its footprint.

 

Source:

Royal Golden Eagle

31.08.2022

DNFI Award 2022 – Deadline 9 Sept

As every year, in 2022 the Discover Natural Fibers Initiative (DNFI) called on individuals, universities, textile researchers and companies to submit their products, projects, processes and ideas in the field of Natural Fibres from the following categories:

  • Innovative products, components or applications
  • Innovative processes and procedures
  • Innovative research and science

The DNFI Innovation in Natural Fibres Award aims to promote the development of new products/components and applications using natural fibres as well as new processes for manufacturing of environmental friendly products. Universities, institutes, industry and individuals working in the area of scientific research are invited to participate. “Sustainability” should be just one important aspect of each submission considered by the judges.

The DNFI Innovation in Natural Fibres Award aims to recognise the innovations as well as the people and institutions responsible for them with the goal of raising public awareness of the achievements of the natural fibre sector as a whole.

As every year, in 2022 the Discover Natural Fibers Initiative (DNFI) called on individuals, universities, textile researchers and companies to submit their products, projects, processes and ideas in the field of Natural Fibres from the following categories:

  • Innovative products, components or applications
  • Innovative processes and procedures
  • Innovative research and science

The DNFI Innovation in Natural Fibres Award aims to promote the development of new products/components and applications using natural fibres as well as new processes for manufacturing of environmental friendly products. Universities, institutes, industry and individuals working in the area of scientific research are invited to participate. “Sustainability” should be just one important aspect of each submission considered by the judges.

The DNFI Innovation in Natural Fibres Award aims to recognise the innovations as well as the people and institutions responsible for them with the goal of raising public awareness of the achievements of the natural fibre sector as a whole.

Get the details online.

More information:
DNFI DNFI award
Source:

European Industry and Research Exchange on Technical Textiles

(c) Allmann Sattler Wappner Architekten, München; Menges Scheffler Architekten, Frankfurt; Jan Knippers Ingenieure, Stuttgart
31.08.2022

Neues Ausbildungsjahr für Textil- und Bekleidungsberufe startet

Ein Garn zu spinnen, ein Gewebe oder Gestrick zu produzieren, anschließend zu veredeln und zu einem fertigen Textil mit breiten Anwendungsfeldern zu konfektionieren, benötigt viel Know-how. Passend dazu bieten Textil- und Bekleidungsunternehmen Ausbildungsberufe an, deren Anwendungsfelder ganz nach dem Motto „Textil kann viel“ nicht vielfältiger sein könnten. Produktionsmechaniker*innen Textil können ihr Geschick im Umgang mit Maschinen unter Beweis stellen; Produktveredler*innen Textil sind direkt in das Veredeln und Färben eingebunden; Textil- und Modeschneider*innen verwandeln Stoffe in Kleidungsstücke und andere Produkte. Auch Ausbildungen im kaufmännischen Bereich, in Logistik oder IT hat die Industrie zu bieten.

Ein Garn zu spinnen, ein Gewebe oder Gestrick zu produzieren, anschließend zu veredeln und zu einem fertigen Textil mit breiten Anwendungsfeldern zu konfektionieren, benötigt viel Know-how. Passend dazu bieten Textil- und Bekleidungsunternehmen Ausbildungsberufe an, deren Anwendungsfelder ganz nach dem Motto „Textil kann viel“ nicht vielfältiger sein könnten. Produktionsmechaniker*innen Textil können ihr Geschick im Umgang mit Maschinen unter Beweis stellen; Produktveredler*innen Textil sind direkt in das Veredeln und Färben eingebunden; Textil- und Modeschneider*innen verwandeln Stoffe in Kleidungsstücke und andere Produkte. Auch Ausbildungen im kaufmännischen Bereich, in Logistik oder IT hat die Industrie zu bieten.

„Wir möchten noch mehr junge Menschen für eine Ausbildung in unserer spannenden und innovativen Branche begeistern. Deshalb investiert Südwesttextil mit dem Bau des Texoversums auf dem Campus der Hochschule Reutlingen in die Zukunft der Ausbildung. Das Texoversum ist einer der Orte, an dem die textile Aus- und Weiterbildung ihre Innovation und Attraktivität aufzeigt und vorantreibt“, so Edina Brenner, Hauptgeschäftsführerin des Wirtschafts- und Arbeitgeberver-bands Südwesttextil.

In den Nachwuchs zu investieren hat beim Verband der Südwestdeutschen Textil- und Bekleidungsindustrie e.V. Südwesttextil Tradition: Seit 1980 sind in der Gatex, der überbetrieblichen Aus- und Weiterbildungsstätte der Branche, mehr als 1.000 Menschen erfolgreich qualifiziert worden. Auszubildenden ermöglicht die Gatex das Lernen entlang der textilen Kette, sodass sie im Anschluss im Betrieb auch vor- oder nachgelagerte Stufen der Produktion mitdenken können.
 
Mit dem Umzug der Gatex von Bad Säckingen nach Reutlingen setzt Südwesttextil auf einen zentralen Ort und die Verknüpfung mit dem Studienangebot der Hochschule. Schon jetzt schnuppern die Auszubildenden Campusluft, denn das überbetriebliche Ausbildungsjahr beginnt direkt in Reutlingen. Das Texoversum wird im Frühsommer des nächsten Jahres eröffnet und bietet dem textilen Nachwuchs Raum fürs Lernen, Ausprobieren und Vernetzen. Denn in den 3.000 Quadratmetern des innovativ gebauten Gebäudes befinden sich neben Schulungsräumen auch Werkstätten, Labore und Think-Tank-Flächen.