From the Sector

Reset
25 results
Oerlikon feiert vier Weltpremieren zur ITMA Barcelona 2019 (c) Oerlikon
Oerlikon Shuttle ITMA 2019
08.05.2019

Oerlikon celebrates four world premieres at ITMA Barcelona 2019

  • Clean Technology. Smart Factory.

Remscheid – Oerlikon invites all visitors to this year's ITMA in Barcelona on a journey into the future of manmade fiber production. From 20 to 26 June 2019, the world market leader will show all its guests its vision of a sustainable and automated manmade fiber production in a virtual 4D showroom at its 1,000 m² stand in Hall 7, A101: "Clean Technology. Smart Factory." is the motto of the future. And this is only a stone's throw away from reality at the stand. Because today Oerlikon is presenting four world premieres for efficient machine and plant concepts in a new, innovative industrial design. Together with numerous other innovations, all this forms the new DNA of the Oerlikon Manmade Fibers segment.

The challenges for the manmade fiber industry are manifold and Oerlikon shows its customers solutions:

  • Clean Technology. Smart Factory.

Remscheid – Oerlikon invites all visitors to this year's ITMA in Barcelona on a journey into the future of manmade fiber production. From 20 to 26 June 2019, the world market leader will show all its guests its vision of a sustainable and automated manmade fiber production in a virtual 4D showroom at its 1,000 m² stand in Hall 7, A101: "Clean Technology. Smart Factory." is the motto of the future. And this is only a stone's throw away from reality at the stand. Because today Oerlikon is presenting four world premieres for efficient machine and plant concepts in a new, innovative industrial design. Together with numerous other innovations, all this forms the new DNA of the Oerlikon Manmade Fibers segment.

The challenges for the manmade fiber industry are manifold and Oerlikon shows its customers solutions:

1. Choosing the right business model
Price pressure on fiber and yarn manufacturers is growing due to global market consolidation. Here it is important to position oneself correctly. Are you producing polyester, nylon or polypropylene for the niche market and skimming off good margins with innovative products and ingenious material properties, or are you looking for business success through economies of scale in the volume market such as the constantly growing apparel sector? Oerlikon has the right answers for both business models. And the most important thing: the market leader supplies all solutions from a single source. See for yourself at the world premieres of the machine and system concepts of WINGS FDY PA6, BCF S8 Tricolor and the revolutionary eAFK Evo texturing machine.

2. Finding alternatives for good personnel
Finding good operators in the manmade fiber industry is becoming increasingly difficult, even in emerging industrial nations such as China, India and Turkey. The solution is obvious. What, for example, the automotive industry achieved years ago with the 3rd Industrial Revolution is now also taking its course in the textile industry. And at the same time it is even shifting up a gear. In the next step, automation in combination with digitization will lead to new, sustainable production. Oerlikon will be showing how automation and digitization interact at ITMA. Self-learning machines and systems, artificial intelligence (AI), remote services and edge computing are just a few of the key words in the digital half of the new Oerlikon Manmade Fibers DNA.

3. Guarantee quality and traceability
The qualities of the fibers and yarns must meet the highest demands and their production must be traceable throughout the textile value chain. This no longer only plays an important role in the automotive industry, where safety is of paramount importance. Other branches of industry that use fibers, yarns and nonwovens also want to know where the raw materials they produce for consumer articles come from. Legal regulations are demanding this more and more frequently. Oerlikon offers optimal solutions with its DIN ISO certified manufacturing processes. More than half of the world's manmade fiber producers are convinced every day that the qualities produced on Oerlikon Barmag, Oerlikon Neumag and Oerlikon Nonwoven equipment are right – and all visitors to ITMA can do the same on site.

4. Efficient and sustainable production
In the future, the materials produced from manmade fibers must become part of a further improved global recycling economy. The recycling of polyester – with over 80% market share the most frequently used manmade fiber in the world – has not only been on the agenda since today. Oerlikon already has solutions at hand: from PET bottles to fibers and filaments, to textiles and carpets. ITMA is the next step. With the VacuFil® Oerlikon in cooperation with the subsidiary company BBEngineering presents the world premiere No. 4 – a recycling solution within a running polyester production with a waste-free approach.

Vision becomes reality
The Oerlikon Manmade Fibers segment thus demonstrates what the ITMA in Barcelona promises as the world's leading trade fair for textile machinery and plant construction: "Innovating the world of textiles – sourcing for a sustainable future". In Hall 7, A101, this is already reality.

More information:
ITMA Oerlikon Fibers Automation
Source:

Oerlikon

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

(c) BASF
12.11.2018

BASF 3D Printing Solutions presents new products at formnext and announces pioneering strategic alliances for industrial 3D printing

New products for photopolymer and laser sinter printing methods from BASF 3D Printing Solutions GmbH (B3DPS) are on show from November 13 to 16 at Stand F20 in Hall 3.1 at this year’s formnext fair in Frankfurt. The BASF subsidiary is also announcing several new partnerships for the development and distribution of groundbreaking 3D printing solutions and products.

B3DPS has entered into a strategic partnership with the US company Origin, San Francisco, California for the further development of photopolymer printing processes. “Within the framework of an open business model, we are combining BASF’s material know-how with Origin’s expertise in printer software programming and the manufacture of the corresponding hardware,” explained Volker Hammes, Managing Director BASF 3D Printing Solutions GmbH. The collaboration has already shown the first signs of success. Origin has developed a new printing method where BASF’s new Ultracur3D photopolymers can be processed particularly well. The technology offers an optimal combination of a good surface finish and high mechanical stability, while also allowing for high material throughput.

New products for photopolymer and laser sinter printing methods from BASF 3D Printing Solutions GmbH (B3DPS) are on show from November 13 to 16 at Stand F20 in Hall 3.1 at this year’s formnext fair in Frankfurt. The BASF subsidiary is also announcing several new partnerships for the development and distribution of groundbreaking 3D printing solutions and products.

B3DPS has entered into a strategic partnership with the US company Origin, San Francisco, California for the further development of photopolymer printing processes. “Within the framework of an open business model, we are combining BASF’s material know-how with Origin’s expertise in printer software programming and the manufacture of the corresponding hardware,” explained Volker Hammes, Managing Director BASF 3D Printing Solutions GmbH. The collaboration has already shown the first signs of success. Origin has developed a new printing method where BASF’s new Ultracur3D photopolymers can be processed particularly well. The technology offers an optimal combination of a good surface finish and high mechanical stability, while also allowing for high material throughput.

B3DPS is working together with Photocentric, a manufacturer of 3D printers and their corresponding software and materials, on the development of new photopolymers and large-format photopolymer printers for mass production of functional components. Based in Peterborough, UK and Phoenix, USA, Photocentric has developed and optimized the use of LCD screens as image generators for its own printing systems. The two partners plan to offer the industry 3D printing solutions that replace parts of traditional manufacturing processes such as injection molding for small series, as well as enabling the production of large components.

The objective of the cooperation with Xunshi Technology, a Chinese printer manufacturer headquartered in Shaoxing, and operates in USA under the name Sprintray, will be opening new fields of application in 3D printing for the Ultracur3D product range of B3DPS.

Ultracur3D specialties for photopolymer printing processes
B3DPS has grouped well-established and new photopolymers designed for the respective 3D printing processes under the brand name Ultracur3D. BASF has developed unique raw materials for its new products that enable special part properties.
“Our Ultracur3D portfolio enables us to offer customers various UV-curable materials for 3D printing that provide far better mechanical properties and higher long-term stability than most available materials,” explained András Marton, Senior Business Development Manager at B3DPS. He added: “These materials have been developed for functional components that are subject to high stress.”

Expansion of distribution network for filaments
Innofil3D, a subsidiary of B3DPS, is entering into a partnership with Jet-Mate Technology, based in Tjanjin, China, for the distribution of plastic filaments in China. In parallel, a distribution agreement has been concluded with M. Holland in Northbrook, USA for the distribution of filaments in USA. “Since the USA is the largest market for filaments, we intend to strengthen our activities there,” said Jeroen Wiggers, Business Director 3DP Solutions for Additive Extrusion at B3DPS, adding: “Asia is another important market for us. We will be developing further distribution channels there and putting our Ultrafuse filaments on the Asian market in 2019.”

BASF’s portfolio of filaments for 3D printing are comprised of two categories; the well-established Innofil3D filaments based on generic polymers for conventional applications and polymer-based Ultrafuse filaments for advanced formulations used in demanding technical applications. One of the broadest filament selections on the market, this portfolio covers customer requirements ranging from prototype to industrial-scale production.

SLS: new 3D printing material with fire protection classification
New flame-resistant Ultrasint Polyamide PA6 Black FR meets UL94 V2 fire protection standards and is a new material class for use in selective laser sintering (SLS) processes, distinguished by high stiffness and thermal stability. In cooperation with one of the global leaders of public transportation vehicles, B3DPS has developed new components that meet vehicle fire protection requirements. “Together with our partner, we are currently producing prototypes, spare parts, and small series components, and are working to further improve flame resistance to meet additional certification specifications,” explained Hammes.
BASF introduced Ultrasint Grey PA6 LM X085 at AMUG this spring and now is followed by another product on show at formnext. Ultrasint PA6 Black LM X085 is based on polyamide 6, and can be processed at 175-185 degrees Celsius therefore making it suitable for most current SLS machines.

B3DPS adds polypropylene to its 3D printing portfolio
Through the acquisition of Advanc3D Materials GmbH in July 2018, B3DPS has expanded its range with numerous materials for use on laser sinter machines, including polyamide Adsint PA12, Adsint PA11, Adsint PA11CF and Adsint TPU flex 90.
Ultrasint PP is a special highlight. This polypropylene-based product exhibits outstanding mechanical properties and is frequently used in standard industrial production as it offers a good balance between price and performance. Ultrasint PP is distinguished by excellent plasticity, low moisture uptake, and resistance to liquids and gases. Prototypes and small batches can now be produced from the same material as used for traditional serial production. Post treatments such as thermoforming, sealing, and dyeing can be performed after printing.

More information:
BASF 3D printing materials
Source:

BASF 3D Printing Solutions GmbH

CHOMARAT extends its C-TAPE™ line with a new carbon tape (c) Gilles Martin-Raget - Beneteau
26.04.2018

CHOMARAT extends its C-TAPE™ line with a new carbon tape

CHOMARAT, the composite reinforcement specialist, has developed a new unidirectional woven tape for its C-TAPETM line of products. Designed to meet the standards of industrial production, the new C-TAPE™ is reinforcing the foils of the “Figaro Beneteau 3”. These appendages improve the monohull’s stability and performance.

“For the series production of the foils, the Beneteau Group chose MULTIPLAST, the well-known builder of racing boats, which engaged the CHOMARAT Group to provide project support and achieve the best cost/performance balance,” explains Vincent CHOLVY, CHOMARAT’s Manager for the boating market.

C-TAPE™, a high-performance carbon reinforcement with great design flexibility
C-TAPETM offers a lot of flexibility in terms of weight, width and construction. It has been optimized to facilitate series production, yet provide the foils with maximum performance.
The weft yarn developed by CHOMARAT makes the tape easy to handle and to work with. It is produced in 50-cm widths in order to adapt better to the mould, thus reducing both scrap and production cost.

CHOMARAT, the composite reinforcement specialist, has developed a new unidirectional woven tape for its C-TAPETM line of products. Designed to meet the standards of industrial production, the new C-TAPE™ is reinforcing the foils of the “Figaro Beneteau 3”. These appendages improve the monohull’s stability and performance.

“For the series production of the foils, the Beneteau Group chose MULTIPLAST, the well-known builder of racing boats, which engaged the CHOMARAT Group to provide project support and achieve the best cost/performance balance,” explains Vincent CHOLVY, CHOMARAT’s Manager for the boating market.

C-TAPE™, a high-performance carbon reinforcement with great design flexibility
C-TAPETM offers a lot of flexibility in terms of weight, width and construction. It has been optimized to facilitate series production, yet provide the foils with maximum performance.
The weft yarn developed by CHOMARAT makes the tape easy to handle and to work with. It is produced in 50-cm widths in order to adapt better to the mould, thus reducing both scrap and production cost.

“The project was an ambitious one,” says MULTIPLAST General Manager Yann PENFORNIS. “We had to reach a lower target cost, achieve a perfect foil shape, guarantee identical weight for all parts, and produce a set of foils per week over a period of one year.”

A reinforcement that facilitates flow in multi-ply carbon structures
Fifty plies of tape are used to make the foil so that it can resist high levels of stress and achieve optimal performance.
The specific structure of C-TAPETM facilitates resin flow throughout the thickness. The reinforcement provides the desired mechanical performance and also cuts down on production time.
The result is an ultra-innovative foil, both for its geometry and for the fabrication process (infu-jection) used.

“This new C-TAPE™ is the fruit of close co-operation between the MULTIPLAST and CHOMARAT development teams, and it rounds out our broad range of tapes. We are working on different fibres and adapting the widths to our customers’ processes in order to reduce costs,” concludes Vincent CHOLVY.

By the end of summer 2018, some one hundred foils will have been produced for assembly on the first 50 “Figaro Beneteau 3” monohulls.

More information:
CHOMARAT C-TAPE™
Source:

Agence APOCOPE

Logo CHOMARAT (C) CHROMARAT
26.02.2018

CHOMARAT presents its latest innovations at the 2018 JEC World

CHOMARAT, the composite reinforcement specialist group, is launching its multiaxial glass NCF for thermoplastic composites. The unique patented stitching yarn used can withstand processing temperatures to 400°C, making it an innovative industrial solution for thermoplastic composites and an alternative to the woven reinforcements used especially in the automotive sector. For the first time, CHOMARAT is also exhibiting a unidirectional carbon NCF reinforcement that is adapted to the productivity and performance requirements in the wind energy sector.

CHOMARAT, the composite reinforcement specialist group, is launching its multiaxial glass NCF for thermoplastic composites. The unique patented stitching yarn used can withstand processing temperatures to 400°C, making it an innovative industrial solution for thermoplastic composites and an alternative to the woven reinforcements used especially in the automotive sector. For the first time, CHOMARAT is also exhibiting a unidirectional carbon NCF reinforcement that is adapted to the productivity and performance requirements in the wind energy sector.

AN INNOVATIVE INDUSTRIAL SOLUTION TO REINFORCE AUTOMOTIVE THERMOPLASTICS
Thanks to a unique patented stitching yarn, the glass NCF reinforcement (G-PLY™) developed by CHOMARAT offers new possibilities in thermoplastic RTM and organosheet processes. “This is an especially innovative solution, utilizing stitching yarns that are compatible with processing temperatures to 400°C. These multiaxials improve the performance and provide a lot of construction freedom in terms of fibre orientation. These new design possibilities contribute to structural optimization. The quest for more lightweight vehicles, shorter cycle times and lower cost is a major issue for all builders,” explains CHOMARAT Automotive Market Manager Francisco De Oliveira.
This new heat-stable G-PLY™ reinforcement can withstand very high processing temperatures without deformation and provides optimal mechanical performance.

A CARBON UD TO REINFORCE EXTRA-THICK WIND TURBINE STRUCTURES
For the first time, CHOMARAT is exhibiting an infusion-moulded laminate made with 150 plies of its new unidirectional carbon C-PLY™. This 600g/m², high-permeability NCF can be used to create extra-thick structures, in particular the wind-turbine blade stiffeners, or spar caps. “Cost reduction is the challenge in the wind energy industry. Increasing the blade length by incorporating carbon stiffeners increases power, and so it also lowers the cost of the energy,” says CHOMARAT Wind Energy Market Manager Raphaël PLEYNET. The carbon UD developed by CHOMARAT provides a solution to achieve the goal to optimize the weight/power ratio. The UD’s high permeability reduces cycle times and lowers the blade production costs.

Professor Sung Ha from the University of Hanyang will give a conference on composite challenges in the wind energy sector at 11:30 am on Wednesday, 7 March 2018 at JEC World.
Established in 1898, CHOMARAT is an international industrial textile group, involved in three businesses: Composites Reinforcements, Construction Reinforcements, Coatings & Films–Textiles. The privately held company operates in France, Tunisia, the United States and China to service its global customers.
CHOMARAT leads a strong innovation strategy, rising to challenges, developing materials for the future. Hence, the Group invests in new technologies and enters into collaborative research programs with universities and technical centers worldwide.
CHOMARAT offers strong technical know-how and mastery of complex technologies in fields ranging from automotive, aerospace, sports, energy, marine, construction, and also in markets requiring creativity and expertise, like luxury goods.

More information:
CHOMARAT JEC World 2018
Source:

Dorothée DAVID & Marion RISCH, AGENCE APOCOPE