From the Sector

Reset
57 results
(c) Messe Düsseldorf / ctillmann
09.01.2025

FET ends 2024 with COMPAMED success.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK enjoyed a highly successful exhibition at COMPAMED 2024 in Düsseldorf. This was the first time that FET had exhibited at this leading international trade fair for the medical technology supplier sector, a reflection of the company’s growing role in the global medical sector. In 2023-24, over 60% of FET’s turnover was derived from the medical market.

“It is never certain whether a new exhibition will prove to be a successful venture until it is tested in practice” commented FET’s Managing Director Richard Slack, “but we are delighted to report that COMPAMED 2024 exceeded all expectations. In fact, we have already booked a stand for next year’s exhibition in November, albeit in a slightly different location”.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK enjoyed a highly successful exhibition at COMPAMED 2024 in Düsseldorf. This was the first time that FET had exhibited at this leading international trade fair for the medical technology supplier sector, a reflection of the company’s growing role in the global medical sector. In 2023-24, over 60% of FET’s turnover was derived from the medical market.

“It is never certain whether a new exhibition will prove to be a successful venture until it is tested in practice” commented FET’s Managing Director Richard Slack, “but we are delighted to report that COMPAMED 2024 exceeded all expectations. In fact, we have already booked a stand for next year’s exhibition in November, albeit in a slightly different location”.

COMPAMED 2024 attracts suppliers of a comprehensive range of high-quality medical technology components, services and production equipment for the medical industry. FET’s expertise in this sector therefore proved to be a perfect fit. With almost 40 serious customer leads taken at the show from both existing and previously unidentified clients, the initial outlook is for a very successful exhibition which will be followed up by future participation at this annual event.

FET’s established expertise lies in laboratory and pilot melt spinning equipment for a vast range of applications, especially precursor materials used in high value medical devices and specialised novel fibres from exotic and difficult to process polymers. In cases where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

Central to FET’s success has always been its ability to provide customers with advanced testing facilities and equipment at its Fibre Development Centre in Leeds, complemented by unrivalled knowledge and expertise in research and production techniques.

FET has successfully processed over 100 different polymer types and its systems can melt spin resorbable polymers in multifilament, monofilament and nonwoven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes.

Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo Photo (c) Citizens of Humanity Group
Spring 2025 collections of Citizens of Humanity and AGOLDE with Pili biobased indigo
06.01.2025

Pili partners with Citizens of Humanity and Orta

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili, a French pioneer in biobased dyes and pigments, partners with Orta, the Turkish denim mill and Citizens of Humanity, a California-based high-end denim brand known for its commitment to quality and sustainability.

They are beginning a transformative shift in the denim industry with the commercial launch of the first products dyed with Pili’s biobased indigo. The first products will debut in January in the Spring 2025 collections of Citizens of Humanity and AGOLDE.

A New Ecological Standard for the Denim Industry
In 2024, Pili achieved a major milestone by producing its first tons of biobased indigo, enabling the creation of sustainable denim articles, a turning point in the company's efforts to decarbonize the textile industry especially denim.

Pili has developed unique processes combining fermentation and organic chemistry to offer a high-performance, eco-friendly alternative to petrochemical dyes. Their ecological alternative significantly reduces the use of toxic chemicals and fossil resources, while aiming to cut CO2 emissions up to 50%. It meets the same performance as petrochemical indigo while seamlessly integrating into existing dyeing processes without requiring additional investment in commercial dyeing equipment.

Pili’s colors development is based on standardized Life Cycle Assessments (LCAs), ensuring a rigorous process to measure and minimize their environmental impact.

A Partnership Driving Sustainable Transformation in the Industry
Fiber and dye are the two main components of denim products and also the ones with the greatest impact on their production. The partnership between Citizens of Humanity, Pili, and Orta establishes one of the highest ecological standards in the market with the use of regenerative cotton and biobased indigo.

Pili biobased indigo will make its debut in Citizens of Humanity and AGOLDE’s Spring 2025 collections. This long-term partnership between Citizens of Humanity, Orta, and Pili will continue to expand in future collections. The launch will be exclusive on NET-A-PORTER on January 6, 2025, before being extended to agolde.com, citizensofhumanity.com, and other global retailers.

A Key Step Towards the Decarbonization of the Color Industry
Building on this first success, Pili is accelerating the development of coloring solutions for various industrial applications, particularly in the inks, paints, and polymers sectors. The aim is to decarbonize everyday products using high-performance biobased pigments, with the first applicative tests set to begin this year. Pili continues its mission to decarbonize the color industry, paving the way for a sustainable revolution.

Winners of the Borealis Scientific Innovation Award 2024 (c) Borealis AG
06.12.2024

Winners of the Borealis Scientific Innovation Award 2024

On December 4, 2024 Borealis proudly announced the winners of the Borealis Scientific Innovation Award 2024 (BSIA) at the Borealis Innovation Day in Linz, Austria.

As a global industry leader, Borealis is rewarding pioneering ideas since 2008 with the Borealis Scientific Innovation Award, celebrating groundbreaking innovations with the potential to impact the world. This year’s focus was on new solutions for the environmentally sustainable production and use of plastics.

Innovative thinkers from the professional and academic scientific communities, entrepreneurs, start-ups, and university researchers were invited to submit their ideas. The winners were selected by a panel from Borealis' research team, who meticulously evaluated all submissions.

This year, submissions were accepted in the following key areas:

  • New catalysts for sustainable production
  • Energy-efficient polymerization processes
  • Recycling of polymers
  • Polymeric materials for energy transition

Winners of the 2024 Borealis Scientific Innovation Award 2024:

On December 4, 2024 Borealis proudly announced the winners of the Borealis Scientific Innovation Award 2024 (BSIA) at the Borealis Innovation Day in Linz, Austria.

As a global industry leader, Borealis is rewarding pioneering ideas since 2008 with the Borealis Scientific Innovation Award, celebrating groundbreaking innovations with the potential to impact the world. This year’s focus was on new solutions for the environmentally sustainable production and use of plastics.

Innovative thinkers from the professional and academic scientific communities, entrepreneurs, start-ups, and university researchers were invited to submit their ideas. The winners were selected by a panel from Borealis' research team, who meticulously evaluated all submissions.

This year, submissions were accepted in the following key areas:

  • New catalysts for sustainable production
  • Energy-efficient polymerization processes
  • Recycling of polymers
  • Polymeric materials for energy transition

Winners of the 2024 Borealis Scientific Innovation Award 2024:

  • First place: Clement Collins Rice (University of Oxford, UK) “Towards designer polyolefins: highly tuneable olefin copolymerisation using a single permethyl-indenyl post-metallocene Catalyst”
  • Second place: Elisabetta Carrieri (Ghent University, Belgium) “Development of a solvent based recycling process for agricultural film”
  • Third place: Esun Selvam (University of Delaware, USA) “Recycling polyolefin plastic waste at short contact times via rapid joule heating”

In addition to receiving monetary prizes, the winners were invited to the Borealis Innovation Headquarters in Linz, Austria, where they participated in the award ceremony during the Borealis Innovation Day 2024.  

The next call for applications for the BSIA will start in spring 2025.

Alterra’s Akron Plant in Ohio, 2024 Source: Alterra
Alterra’s Akron Plant in Ohio, 2024
04.11.2024

Cooperation to build chemical recycling plants

Neste, Alterra and Technip Energies have signed a collaboration agreement to advance the circularity of plastics by providing the industry a standardized technology solution for chemical recycling, also referred to as “advanced recycling”.

The partners aim to globally offer a standardized modular solution, based on Alterra’s proprietary liquefaction technology, to parties interested in building capacity for chemical recycling.

This solution will come in the form of readily designed and engineered liquefaction plant modules, which will allow for lower pre-investment costs, accelerated implementation time, high predictability on project economics and reduced overall capital costs. Contributing to more effective execution of chemical recycling capacity projects, the solution helps the industry to reduce dependency on virgin fossil resources and accelerate the circularity of polymers and chemicals.

Neste, Alterra and Technip Energies have signed a collaboration agreement to advance the circularity of plastics by providing the industry a standardized technology solution for chemical recycling, also referred to as “advanced recycling”.

The partners aim to globally offer a standardized modular solution, based on Alterra’s proprietary liquefaction technology, to parties interested in building capacity for chemical recycling.

This solution will come in the form of readily designed and engineered liquefaction plant modules, which will allow for lower pre-investment costs, accelerated implementation time, high predictability on project economics and reduced overall capital costs. Contributing to more effective execution of chemical recycling capacity projects, the solution helps the industry to reduce dependency on virgin fossil resources and accelerate the circularity of polymers and chemicals.

Alterra’s technology is a thermochemical liquefaction process, which converts hard-to-recycle plastics into a liquid hydrocarbon product. This liquid intermediate product can then be further refined into high-quality raw materials for new plastics and chemicals. As of today, Neste alone has processed more than 6,000 tons of plastic-derived feeds, including ISCC PLUS certified oil from Alterra’s industrial-scale site in Akron, Ohio.

Combining the expertise of three companies in one solution
Alterra and Neste started collaborating in chemical recycling in 2021, jointly improving aspects of Alterra’s technology and creating respective value chains. Alterra and Technip Energies started their collaboration in chemical recycling in 2022. The three companies now join efforts in a unique endeavor: Alterra and Neste will license the liquefaction technology and Technip Energies will design, engineer and deliver the standardized liquefaction plant solution to interested parties globally.

12.09.2024

INDA Showcases Sustainability Advancements in Nonwovens and Manufacturing

INDA, the Association of the Nonwoven Fabrics Industry, announces the release of the International Fiber Journal’s (IFJ) special sustainability issue dedicated to nonwovens. This special edition, which was sponsored by INDA, is a key piece of the association’s 2024 strategic sustainability initiative, launched at the beginning of 2024 in response to feedback that sustainability remains one of the nonwovens industry’s highest priorities.

The IFJ special issue features exclusive content from industry leaders, including Kimberly-Clark Corporation, Glatfelter, Lenzing Fibers, NatureWorks LLC, Hollingsworth & Vose, MANN+HUMMEL, Nexus Circular, Henkel Corporation, and INDA. This edition explores key sustainability topics, structured around three core pillars vital to the industry’s future: Responsible Sourcing, Innovations in Sustainability, and End-of-Life Solutions. Featured topics include:

INDA, the Association of the Nonwoven Fabrics Industry, announces the release of the International Fiber Journal’s (IFJ) special sustainability issue dedicated to nonwovens. This special edition, which was sponsored by INDA, is a key piece of the association’s 2024 strategic sustainability initiative, launched at the beginning of 2024 in response to feedback that sustainability remains one of the nonwovens industry’s highest priorities.

The IFJ special issue features exclusive content from industry leaders, including Kimberly-Clark Corporation, Glatfelter, Lenzing Fibers, NatureWorks LLC, Hollingsworth & Vose, MANN+HUMMEL, Nexus Circular, Henkel Corporation, and INDA. This edition explores key sustainability topics, structured around three core pillars vital to the industry’s future: Responsible Sourcing, Innovations in Sustainability, and End-of-Life Solutions. Featured topics include:

  • Environmentally sustainable nonwoven materials
  • Circularity in single-use plastics
  • Potential of post-consumer recycled (PCR) materials in nonwovens
  • Navigating regulatory challenges
  • Advances in bio-based nonwovens
  • The role of plastics and polymers in sustainability

“This special issue of the International Fiber Journal is a vital part of our multi-faceted sustainability initiative aimed at providing new and enhanced offerings to INDA members and the nonwovens industry. We are excited to see the industry come together to share insights on the sustainability challenges we face,” said Tony Fragnito, President of INDA.

Source:

INDA, the Association of the Nonwoven Fabrics Industry

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves (c) DITF
06.09.2024

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

The biopolymer lignin is a natural component of plant cells that is produced in large quantities as a by-product of paper manufacturing. Due to its properties, it represents an environmentally friendly alternative to oil-based coating polymers.

The scientists developed biopolymer compounds containing lignin, which were used to produce thermoplastic materials that can be processed using 3D printing.

Lignin has few polar groups, which makes lignins hydrophobic and therefore insoluble in water. For this reason, they biodegrade slowly. This makes them particularly suitable for durable coating materials.

Despite this durability, lignin particles that are released into the environment through abrasion biodegrade faster than the abrasion of conventional coatings. This is due to the much higher surface/volume ratio.

The use of 3D printing makes it possible to produce the coating precisely and efficiently. The 3D printing process also makes it possible to adapt the glove to the individual needs of the wearer. This increases wearer comfort and promotes freedom of movement.

The research project shows that the use of lignin not only offers ecological benefits, but that protective gloves coated with it are also particularly durable and resistant. They meet safety standards and at the same time contribute to sustainability in the world of work.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Graphic by TBI
14.08.2024

Controlled biodegradation of PLA by incorporation of an optimized enzyme

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

It also describes the methodologies and challenges involved in obtaining homogeneous incorporation of the enzyme into PLA films at high temperatures (170°C), while retaining sufficient activity to enable the plastic produced to degrade completely and rapidly under domestic and industrial composting conditions, as well as in anaerobic digestion (methanization). It highlights the optimization process used to obtain an enzyme capable of withstanding the 170°C required to melt it into PLA by extrusion. The new enzymatic material is shown to disintegrate and biodegrade at a much faster rate than the 26 weeks required for certification for use in home composting, and also to help produce more biomethane, another source of waste recovery. It is also stated that the enzymatic material remains intact during long-term storage, and that its degradation will only be activated when transferred to composting or methanization conditions, thus guaranteeing its compatibility with PLA-based commercial applications such as flexible packaging or short-life items like food containers.

This work was mainly carried out within the INSA/Carbios PoPlaB (Polymers, Plastics and Biotechnology) cooperative laboratory at TBI and was supported by a grant for scientific research (THANAPLAST project, OSEO ISI contract number I 1206040W).

 

More information:
PLA enzymatic
Source:

Toulouse Biotechnology Institute (TBI)

07.08.2024

CARBIOS and FCC Environment: Joint project for UK-based PET biorecycling facility

CARBIOS and FCC Environment UK, a recycling and waste management companies in the UK, have signed a Letter of Intent (LOI) to jointly study the implementation of a UK-based plant using CARBIOS’ PET biorecycling licensed technology.  CARBIOS’ biorecycling technology is key to supporting FCC’s continuing goal of contributing to the circular economy by exploring new processes and technologies to produce recycled PET (r-PET) from PET plastic and textiles. For CARBIOS, this LOI confirms interest from the waste management sector, in addition to plastic producers, and would mean a foothold for its technology in the UK.

CARBIOS and FCC Environment UK, a recycling and waste management companies in the UK, have signed a Letter of Intent (LOI) to jointly study the implementation of a UK-based plant using CARBIOS’ PET biorecycling licensed technology.  CARBIOS’ biorecycling technology is key to supporting FCC’s continuing goal of contributing to the circular economy by exploring new processes and technologies to produce recycled PET (r-PET) from PET plastic and textiles. For CARBIOS, this LOI confirms interest from the waste management sector, in addition to plastic producers, and would mean a foothold for its technology in the UK.

FCC’s continuing contribution to the UK circular economy
Recycling has plateaued in the UK in recent years, but UK Government policy very much supports a continual move to a more circular economy which FCC Environment supports. Achieving a circular economy however requires innovation and investment to deliver real environmental change. Exploring biorecycling is one way of doing this, so FCC is keen to understand this technology better by seeking an evidence based view on the advantages of using enzymes for the treatment of PET such as lower energy consumption and better circularity of the polymers back into the PET production lines. The depolymerization process developed by CARBIOS also facilitates the recycling of all kinds of PET waste, including problematic fractions such as polyester textiles, into high-quality recycled PET.

UK PET biorecycling plant would process hard-to-recycle waste
In order to tackle the plastic waste crisis, CARBIOS has developed a enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products. CARBIOS has ambitious plans to become a leading technology provider in the recycling of PET by 2035. In addition to the world’s first industrial-scale enzymatic PET recycling plant which is currently under construction in Longlaville, France, this UK-based plant would process PET waste that is currently not recyclable using conventional recycling technologies, such as colored, multilayered or textile waste.

05.08.2024

CARBIOS and SASA enter discussions for PET biorecycling facility in Turkey

CARBIOS and SASA, a manufacturer of polyester, fiber, filament yarn, polyester-based polymers, specialty polymers and intermediates, have signed a Letter of Intent (LOI) to cooperate through SASA’s potential acquisition of a license for CARBIOS’ unique PET biorecycling technology. This licensing agreement would allow SASA to construct and operate an enzymatic depolymerization plant in Adana, Turkey, with a capacity of 100,000 tons per year of prepared PET waste, and would give access to a circular recycling technology, enabling the production of polyester pellets, fibers and textiles from various waste sources, including polyester textile waste. With CARBIOS' biorecycling technology, SASA would diversify its offering to meet the growing global demand for sustainable materials in the textile industry, primarily catering to the European market.

CARBIOS and SASA, a manufacturer of polyester, fiber, filament yarn, polyester-based polymers, specialty polymers and intermediates, have signed a Letter of Intent (LOI) to cooperate through SASA’s potential acquisition of a license for CARBIOS’ unique PET biorecycling technology. This licensing agreement would allow SASA to construct and operate an enzymatic depolymerization plant in Adana, Turkey, with a capacity of 100,000 tons per year of prepared PET waste, and would give access to a circular recycling technology, enabling the production of polyester pellets, fibers and textiles from various waste sources, including polyester textile waste. With CARBIOS' biorecycling technology, SASA would diversify its offering to meet the growing global demand for sustainable materials in the textile industry, primarily catering to the European market.

Less than 1% of textile waste is currently recycled into new textile fibers[1].  With European regulations moving towards the incorporation of more recycled content (at least 20% of recycled fibers by 2030), demand for recycled polyester in the EU is anticipated to increase, naturally positioning Turkey as a major producer alongside Asian countries.  In this context, SASA is striving to become the largest supplier of high value-added polyester in the region and beyond. To achieve this, SASA aims to introduce recycling as part of its activities, which already encompass the whole value chain from PET production to fiber and textile conversion. CARBIOS’ PET biorecycling technology plays an important part in SASA’s ongoing transformation strategy, which includes back integration, capacity expansion, even higher competitiveness, as well as circularity.

CARBIOS has developed a enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products. CARBIOS has ambitious plans to become a leading technology provider in the recycling of PET by 2035. After the recent announcement of a joint Letter of Intent with Zhink Group in China, this new Letter of Intent for a potential licensing agreement in Europe confirms global traction for CARBIOS biorecycling technology, and marks another significant step in the international roll-out of its licensing model. In addition to the world’s first industrial-scale enzymatic PET recycling plant which is currently under construction in Longlaville, France, this potential plant in Turkey would process PET waste that is currently not recyclable using conventional recycling technologies.

[1] System Circularity and Innovative Recycling of Textiles | Circular Cities and Regions Initiative (europa.eu)

Source:

Carbios

Charlotte Witts Photo FET
Charlotte Witts
12.07.2024

New R&D appointment for FET wet spinning team

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Furthermore, FET has a development policy of bringing young people into the industry and has invested heavily in recent years to this end, helping to address the skills gap in the UK textile industry. The company’s R&D department comprises ten scientists and engineers who work closely with customers on process development and new product trials.

Charlotte Witts will be focusing on the wet spinning process which is fortuitous as FET has just finished commissioning their own in-house low viscosity wet spinning system. Over the coming year she will focus on spinning a number of bio-sourced polymers (e.g. alginate, chitosan, gelatin, recombinant proteins). These materials require a strong scientific understanding of the underlying chemistry to successfully produce a high-quality yarn. Furthermore, FET regularly gets customer requests to conduct trial work on these materials to de-risk the equipment purchase process.

Source:

Fibre Extrusion Technology Limited

BioTurf Bild TFI - Institut für Bodensysteme an der RWTH Aachen e.V.
BioTurf
01.07.2024

Aachen researchers develop sustainable artificial turf

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

"Every year, around 500 kilograms of plastic granules are produced per artificial turf pitch, which have to be refilled as infill. This also corresponds to the amount that potentially enters the environment as microplastics per sports pitch," explains Dr Claudia Post from TFI. With an estimated 25,000 artificial turf pitches in the EU, artificial turf in Europe alone produces 12,750 tonnes of microplastics that end up in the environment every year! The TFI - Institut für Bodensysteme an der RWTH Aachen e.V., Institute for Research, Testing and Certification in Europe for Indoor Building Products, has developed the innovative artificial turf system together with the ITA (Institute for Textile Technology at RWTH Aachen University) and in collaboration with the company Morton Extrusionstechnik (MET), a specialist in artificial turf fibres.

"New artificial turf pitches will be phased out by 2031 at the latest due to the ban on plastic granules. Even now, artificial turf pitches with infill material are no longer being subsidised," says Dr Claudia Post. For grassroots sports, clubs, cities and local authorities, converting their existing artificial turf pitches will be a mammoth task in the coming years, as artificial turf pitches have to be replaced every 10-15 years. With BioTurf, an environmentally friendly alternative is now available! The surface can be played on like any other, whether running, passing or kicking. Short, heavily crimped blades support longer blades and this simple approach increases playing comfort. BioTurf fulfils all quality requirements and standards for the highest footballing demands.

"BioTurf is an innovative, holistic solution," emphasises Dirk Hanuschik from TFI. "We use rapeseed oil and agricultural waste that does not compete with food production. BioTurf is also almost completely recyclable".
This is in stark contrast to conventional artificial turf, which can currently only be thermally utilised, i.e. burned to generate heat.

As BioTurf does not require the traditional latex process at all, the energy-intensive drying process can be dispensed with, which has a positive effect on the price. Latex is also difficult to recycle. In contrast, BioTurf uses the new thermobonding technology. Here, the thermoplastic pile yarns are thermally fused to the backing. Further development steps still need to be taken in the endeavour to develop a 100% mono-material artificial turf, as a few percent polypropylene still needs to be processed in the backing in addition to the polyethylene fibre material in order to protect it during thermobonding. However, this does not hinder its recyclability.

Source:

TFI - Institut für Bodensysteme an der RWTH Aachen e.V.

03.05.2024

Stahl joins GO!PHA alliance

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

More information:
Stahl PHA polymers GO!PHA
Source:

Stahl

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

13.03.2024

IDEA®25: Call for abstracts

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

  • Natural Fibers (Cotton, Hemp, Bamboo, Banana, Wood Pulp, Regenerated Cellulose, Wool, Fur, Chitin, Feathers)
  • Polymers (Biopolymers, Regenerated and Recycled polymers, Unconventional and Alternatives to Traditional Polymers)
  • Sustainable Chemistries (finishes, lubricants, adhesives, and additives)

INNOVATIONS IN SUSTAINABILITY

  • Process Improvements with Sustainability Impact (reduced waste, reduced energy, reduced water consumption)
  • Product Design Improvements with Sustainability Impact (lightweighting, designs for end-of-life, “good enough” design)

END-OF-LIFE SOLUTIONS

  • End-of-Life or Next-Life Considerations (compostability, biodegradability, recycling, advanced recycling and circularity)
  • Presenting is an opportunity for technical professionals to showcase pioneering research, innovative solutions, and expert insights with technology scouts.

Abstracts must be submitted via the INDA website by June 7, 2024.

Source:

INDA - Association of the Nonwoven Fabrics Industry

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

RadiciGroup at Phygital Sustainability Expo photo: Phygital Sustainability Expo/RadiciGroup
07.07.2023

RadiciGroup at Phygital Sustainability Expo presenting Biofeel® eleven

RadiciGroup took part in the Phygital Sustainability Expo, this year in its fourth edition, which was held in Rome on 5 and 6 July. This event is entirely dedicated to the ecological transition of fashion and design brands through technological innovation. The show is an important platform for discussion on sustainable transition issues, involving Italian and international brands, fashion tech start-ups, representatives from the institutional, business and educational fields, and consumers.

RadiciGroup took part in the Phygital Sustainability Expo, this year in its fourth edition, which was held in Rome on 5 and 6 July. This event is entirely dedicated to the ecological transition of fashion and design brands through technological innovation. The show is an important platform for discussion on sustainable transition issues, involving Italian and international brands, fashion tech start-ups, representatives from the institutional, business and educational fields, and consumers.

RadiciGroup's participation in the event was further evidence of the Group's commitment to making a contribution to sustainability and circularity in the fashion and textile industry, in collaboration with all the other players in the supply chain. During the narrated fashion show, held on the evening of Wednesday, 5 July, in the evocative archaeological complex of the Imperial Forum Museum, RadiciGroup presented a maxi dress made of Biofeel® eleven, a yarn of completely natural origin featuring high technical, aesthetic and environmental performance. This yarn is produced starting from a small bean cultivated in India on semi-arid land and thus does not compete with human food production. These beans yield a special oil ideal for obtaining biopolymers, such as the one produced by Arkema and spun into yarn at RadiciGroup in Italy.

The dress is not only made from a low environmental impact raw material, but is also an example of ecodesign: the garment was realized on a Shima Seiki WholeGarment knitting machine, where the entire item was knit directly from spools of Biofeel® eleven yarn, bypassing the traditional stages of weaving and tailoring. It is a zero-waste process, as only the quantity of yarn strictly needed for the garment is used.

Biofeel® eleven yarn endows the dress with unique characteristics, including low moisture absorption, greater lightness and high resistance and durability. Besides being 100% biobased, the yarn is also 100% recyclable because it is made of a mono-material polymer, which facilitates its end-of-life recycling and processing into new materials suitable for any application requiring high performance.

12.06.2023

Circular Polymers by Ascend launches Cerene™

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

Nylon 6, nylon 6,6, polypropylene, PET and calcium carbonate are available through the company’s proprietary carpet recycling process

Circular Polymers by Ascend, a market-leading recycler of post-consumer carpet, today the launch of Cerene™, a line of recycled polymers and materials made from the company’s proprietary carpet reclaiming technology. Cerene is available as polyamide 6 and 66, PET, polypropylene and calcium carbonate as a consistent,
sustainable feedstock for many applications, including molding and compounding.
Recycling experts from Circular Polymers will be showcasing Cerene at Compounding World Expo on June 14-15 at the Messe Essen in Germany.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials and the majority owner of Circular Polymers by Ascend, is known for its innovations in nylon 6,6. Cerene will continue that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

“Customers around the globe are seeking consistent and reliable post-consumer recycled materials,” said Maria Field, business director of Circular Polymers by Ascend. “Cerene is mechanically recycled using a process that minimizes our carbon footprint and environmental impact.”

Circular Polymers by Ascend converts post-consumer carpet into fiber and pellets. The company uses a proprietary process in its California-based facilities to achieve high efficiency in recycling, successfully providing a new life for virtually every component of the carpet and backing. The company has redirected 85 million pounds of carpet from landfills into new goods since 2018.

Source:

Circular Polymers by Ascend