From the Sector

Reset
226 results
Photo Autoneum
15.08.2023

Autoneum’s Re-Liner nominated as finalist for 2023 PACE Award

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Using recovered resin from discarded car bumpers, Autoneum’s sustainable Re-Liner technology transforms a previously unusable waste product into lightweight and durable wheelhouse outer liners. In addition to their high recycled content, the eco-friendly components require significantly less energy to produce than conventional alternatives. The innovation presents another important step towards a more sustainable circular economy and has now been nominated for the 2023 PACE Award.

Autoneum has been selected as one of the finalists for the 2023 Automotive News PACE Awards. Entering its 29th year, this prestigious award honors superior innovation, technological advancement and business performance among automotive suppliers.

Re-Liner is based on a core of polyolefins recovered from post-consumer bumpers and has a textile top layer made of fibers from recycled materials. “Autoneum has recognized the untapped potential of recovered resin from automotive bumper covers as a resource and is giving this former waste product a second life,” explained Dan Moler. “The core resin of Re-Liner is 100% automotive post-consumer recycled material, not just a filler or additive to a virgin material. Lightweight, durable, and sustainable wheelhouse outer liners based on this technology are expected to reduce waste generated by bumper covers by nearly one million kilograms in 2023.”

For more than a quarter century of a century, the PACE Award has honored innovations driven by automotive suppliers. The award is known in the global automotive industry for identifying and recognizing the latest game-changing innovation: from the plant floor to the product to the showroom. In 2000, Autoneum (then Rieter Automotive) already received a PACE Award for its Ultra-Light technology. In addition, two of the Company’s technologies have also been nominated as finalists in the past: Ultra-Silent in 2010 and Theta-Fiber in 2012.

More information:
Autoneum Re-Liner PACE award
Source:

Autoneum

Graphik CHT
08.08.2023

CHT Group publishes Sustainability Report 2022

The Sustainability Report 2022, which is now digitally available summarizes key ecological, economic, and social developments.
The report shows that the CHT Group has defined and anchored sustainability as an integral part of its corporate strategy.
 

  • The group of companies is pursuing the goal of becoming climate-neutral by 2045
  • At the end of 2021, the CHT Group subscribed to the Science Based Targets initiative (SBTi) to meet the targets of the Paris Climate Agreement and committed to the 1.5 °C target
  • 77 % of sales were achieved with sustainably classified products

The issue of sustainability has been anchored in the DNA of the internationally active foundation-owned group of companies for 70 years. No less an aspiration is derived from this than to support all customers with the most innovative, most sustainable products and solutions and thus to become the leading supplier of sustainable chemical products and solutions in all target markets.

The Sustainability Report 2022, which is now digitally available summarizes key ecological, economic, and social developments.
The report shows that the CHT Group has defined and anchored sustainability as an integral part of its corporate strategy.
 

  • The group of companies is pursuing the goal of becoming climate-neutral by 2045
  • At the end of 2021, the CHT Group subscribed to the Science Based Targets initiative (SBTi) to meet the targets of the Paris Climate Agreement and committed to the 1.5 °C target
  • 77 % of sales were achieved with sustainably classified products

The issue of sustainability has been anchored in the DNA of the internationally active foundation-owned group of companies for 70 years. No less an aspiration is derived from this than to support all customers with the most innovative, most sustainable products and solutions and thus to become the leading supplier of sustainable chemical products and solutions in all target markets.

"Climate neutrality" and comprehensive social responsibility  
In the implementation of the sustainability strategy of the CHT Group, the field of action "climate neutrality" takes a central role. The CHT Group has set itself the goal of being climate neutral both in its own production and in the supply chain from the year 2045. The path to climate neutrality by 2045 is illustrated in the report as part of the strategic goal.

In addition to climate protection, social responsibility is also a top priority for the CHT Group. The continuous improvement of health protection and occupational safety is a top priority for the company.

From CHT's point of view, qualified and committed employees make a significant contribution to the company's future success. For this reason, the CHT Group promotes the professional and personal development of its workforce to a high degree and invests in future-oriented and targeted training and further education of its workforce.

For the CHT Group, the respect for human rights is an indispensable pillar of the corporate culture and an essential part of the group-wide Code of Conduct. In 2022, the Human Rights Compliance Policy Statement was developed, and compliance processes and measures were put in place to prevent any violations and identify and mitigate human rights related risks.

 

More information:
CHT Group Sustainability Report
Source:

CHT Gruppe

28.07.2023

RadiciGroup: Bibs made from recyclable materials for UCI Cycling World Championships

On the occasion of the 2023 UCI Cycling World Championships, the Union Cycliste Internationale chose Santini to make the bibs from recyclable materials. The UCI's partner brought together a pool of companies, all in the Bergamo area (Italy): RadiciGroup, Sitip, EFI Reggiani and Acerbis.

In 2022, the Union Cycliste Internationale released the UCI Climate Action Charter, which lays out an action plan to advance the environmental sustainability of the sport with a specific principle to reduce waste and accelerate the transition to a circular economy. This year, the UCI Cycling World Championships, which will be held from 3 to 13 August, are bringing together most of the cycling disciplines in a single location: Glasgow and across Scotland.

On the occasion of the 2023 UCI Cycling World Championships, the Union Cycliste Internationale chose Santini to make the bibs from recyclable materials. The UCI's partner brought together a pool of companies, all in the Bergamo area (Italy): RadiciGroup, Sitip, EFI Reggiani and Acerbis.

In 2022, the Union Cycliste Internationale released the UCI Climate Action Charter, which lays out an action plan to advance the environmental sustainability of the sport with a specific principle to reduce waste and accelerate the transition to a circular economy. This year, the UCI Cycling World Championships, which will be held from 3 to 13 August, are bringing together most of the cycling disciplines in a single location: Glasgow and across Scotland.

To mark the occasion, the UCI turned to its Official Partner, Santini, to make the bibs that the staff (judges, volunteers, commissaires etc.) and accredited photographers wear throughout the event. The bibs are "eco-designed", which means they are specifically created to have a second life after use. Once the event is over, the bibs could be collected and sent to RadiciGroup and transformed into new material, to be then processed by Acerbis to create X-Elite handguards for mountain bikes. This project is a concrete example of the circular economy at work, allowing 100% of the materials used to be recovered.

To optimise the production cycle of the bibs for the 2023 UCI Cycling World Championships, the products must be eco-friendly from the very first phase. The fabrics were therefore made from Italian nylon yarn produced by RadiciGroup. The choice of nylon – an infinitely recyclable thermoplastic material – is intertwined with UCI's sustainability goals for "limited-use" garments: RadiciGroup was able to channel its know-how and expertise in the field of chemistry to create "circular" bibs, working alongside the other partners. As the innovative yarn selected by RadiciGroup allows for easy and high-quality printing, the fabric is also customisable. The yarn is then provided to Sitip to create the "ARAS NG" warp-knitted fabric (95 g/100 m2): a recyclable single-fibre material made from 100% polyamide. The resulting fabric is the first nylon of its kind, designed to meet the transfer printing needs of the third project partner, EFI Reggiani, as well as the recyclability standards requested by RadiciGroup. The choice of fabric was born from extensive applied research, in which EFI Reggiani tested a wide range of fabrics to find the best colour results and the best resistance to rubbing and perspiration, which is vital for the bibs' intended use. In addition to using the new GOTS-certified EFI Reggiani IRIS Plus water-based inks, EFI Reggiani opted for a printing solution on transfer paper that does not consume water and requires a minimal amount of energy per square metre. Finally, the white fabric from Sitip and the transfer paper printed by EFI Reggiani arrived at Santini, who were responsible for transferring all the graphics for the 2023 UCI Cycling World Championships bibs from the paper onto the fabric. Santini also took care to assemble the garments using only thread and components made from nylon or chemically similar materials, allowing the bibs to enter the recycling process at the end of their lives without any further processing.                   

Source:

RadiciGroup

(c) gr3n
26.07.2023

gr3n: First manufacturing plant for depolymerization of PET in Spain

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

To reach its goal of being the world’s leading supplier of enhanced recycled polyethylene terephthalate (PET), gr3n is signing a binding Memorandum of Understanding (MOU) with its shareholder Intecsa Industrial to set up a Joint Venture.

gr3n together with Intecsa Industrial will join forces and build a “First-of-a-Kind” manufacturing facility able to produce 40.000 tons of virgin-like PET, commencing EPC phase in Q4-2024 and aiming to be operational in 2027. gr3n’s chemical recycling technology is capable of processing PET from various industries including textile waste, closing the loop for hard-to-recycle PET applications.

The world’s first industrial-scale MADE PET recycling plant will have the capability to process post-industrial and post-consumer PET waste including hard-to-recycle waste, to produce approximately 40.000 tons of virgin PET chips from the recycled monomers saving nearly 2 million tons of CO2 during its operating life. The post-consumer and/or post-industrial polyesters will be both from bottles (colored, colorless, transparent, opaque) and textiles (100% polyester but also mixtures of other materials like PU, cotton, polyether, polyurea, etc. with up to 30% of presence in the raw textile).

The technical concept of the MADE plant is to break down PET into its main components (monomers) so they can potentially be re-polymerized endlessly to provide brand new virgin PET or any other polymer using one of the monomers. Polymers obtained can be used to produce new bottles/trays and/or new garments, essentially completely displacing feedstock material from fossil fuels, as the recycled product has the same functionality as that derived traditionally. This means that gr3n can potentially achieve bottle-to-textile, textile-to-textile, or even textile-to-bottle recycling, moving from a linear to a circular system.

gr3n’s process has the potential to change the way PET is recycled worldwide, enabling huge benefits for both the recycling industry and the entire polyester value chain. Many efforts have been made in the past to transfer enhanced recycling from research laboratories to the manufacturing industry, but the economics and skepticism of the first adopters have constantly blocked the progress of the proposed solutions. Thanks to the MADE technology developed by gr3n, this approach is now feasible and makes gr3n one of the few companies with the potential to provide a reliable enhanced recycling solution that closes the life cycle of PET, and also offers food grade polymer material, processes a large variety of waste and reduces the carbon footprint of these materials usually destined for incineration or landfill.

More information:
gr3n PET Intecsa
Source:

gr3n

Innovation Award for Indorama Ventures and Polymateria Photo Indorama Ventures
21.07.2023

INDA Innovation Award for Indorama Ventures and Polymateria's Biotransformation Technology

Indorama Ventures, in partnership with Polymateria, has been honoured with the INDA Innovation Award for their collaboration in developing pioneering Biotransformation technology to create wipes, which totally biodegrade, leaving no harmful substance or microplastics behind.

The award was presented at the recent World of Wipes International Conference in Atlanta, USA, and recognizes the level of technical innovation and investment that led to developing wipes that both deliver against the sustainability challenges of today while meeting the demands of Indorama Ventures’ customers worldwide.

Through its 10-year partnership agreement with technology innovator Polymateria, Indorama Ventures is applying Polymateria’s unique biotransformation technology to fibers and spunmelt nonwovens. Biotransformation is the world's first biodegradation technology that is capable of delivering full biological consumption of Polyolefin products in the open terrestrial environment. Polyolefin-based materials produced by this technology are especially useful for applications where materials may be leaked into the environment as unmanaged waste.

Indorama Ventures, in partnership with Polymateria, has been honoured with the INDA Innovation Award for their collaboration in developing pioneering Biotransformation technology to create wipes, which totally biodegrade, leaving no harmful substance or microplastics behind.

The award was presented at the recent World of Wipes International Conference in Atlanta, USA, and recognizes the level of technical innovation and investment that led to developing wipes that both deliver against the sustainability challenges of today while meeting the demands of Indorama Ventures’ customers worldwide.

Through its 10-year partnership agreement with technology innovator Polymateria, Indorama Ventures is applying Polymateria’s unique biotransformation technology to fibers and spunmelt nonwovens. Biotransformation is the world's first biodegradation technology that is capable of delivering full biological consumption of Polyolefin products in the open terrestrial environment. Polyolefin-based materials produced by this technology are especially useful for applications where materials may be leaked into the environment as unmanaged waste.

“We are constantly innovating to live up to our responsibility to optimize the Earth’s resources, as we combine nature and science in our Biotransformation PP - designed to be recycled or returned to nature,” he said. “By bringing Biotransformation technology to Hygiene markets, we hope to offer a real-world solution to waste management. We particularly hope to address aspects of the creation of fugitive waste and remove this from the environment without causing additional, and potentially more dangerous, problems.”

Freudenberg: Sustainable microfiber solution for artificial leather applications (c) Freudenberg Performance Materials Holding GmbH
Evolon® sustainable microfiber coating substrate for artificial leather
19.07.2023

Freudenberg: Sustainable microfiber solution for artificial leather applications

Freudenberg Performance Materials (Freudenberg) will be presenting new applications for its European environmentally-friendly Evolon® microfiber technology for Fall/Winter 24/25 fashion and leather goods collections at Lineapelle, from September 19-21. These include solutions for artificial leather applications suitable for the shoe, furniture and automotive industries.

Freudenberg Performance Materials (Freudenberg) will be presenting new applications for its European environmentally-friendly Evolon® microfiber technology for Fall/Winter 24/25 fashion and leather goods collections at Lineapelle, from September 19-21. These include solutions for artificial leather applications suitable for the shoe, furniture and automotive industries.

Evolon® sustainable microfiber coating substrates
Evolon® microfiber fabrics are ideal coating substrates for artificial leather applications in the shoe, furniture and car industries. They are particularly suitable as a carrier material for PU and PVC coatings. Evolon® microfiber materials have non-fraying edges, which makes converting easier and quicker. They contain 80% recycled PET from Freudenberg’s in-house bottle recycling plant. Furthermore, they are manufactured with no solvent and no chemical binder in the company’s Evolon® plant located in Colmar, France. The plant is accredited according to OEKO-TEX STeP sustainability manufacturing certification and the DETOX TO ZERO criteria. European manufacturing offers logistic benefits to European customers through shorter supply chain and transport routes.

Reinforcement material for leather goods
Manufacturers of leather goods also benefit from Evolon® microfiber when they use it as a reinforcement material for original leather. It is drapable and soft and provides optimal shaping support for leather. In addition, Evolon® materials offer important sustainability advantages for the manufacturing of luxury leather bags, such as being 100% made in Europe, eco-friendly and socially-responsible production, and the use of recycled raw materials.

Source:

Freudenberg Performance Materials Holding GmbH

06.07.2023

Alternative to synthetics: MAS Holdings invests in HeiQ AeoniQ™

MAS Holdings, a global apparel & textile manufacturing and tech conglomerate, headquartered in Sri Lanka, secures a stake in HeiQ AeoniQ™ as part of its Plan for Change initiative to support the development of next-generation cellulosic filament fibers to replace polyester and nylon.

HeiQ from Switzerland and MAS Holdings entered a partnership for MAS to secure a stake in HeiQ AeoniQ GmbH, a subsidiary of HeiQ Group that will produce HeiQ AeoniQ™, a climate-positive cellulosic yarn.

With this investment, MAS Holdings becomes the first manufacturer to partner with HeiQ AeoniQ™ in their efforts to provide a sustainable alternative to polyester and nylon. The investment to be made by MAS Holdings is part of the group’s strategy to drive a positive environmental impact. The MAS Plan for Change aims to generate 50% of the company’s revenue through sustainable products by 2025, revolutionizing the textile industry with a focus on innovation, sustainable sourcing, and pioneering circularity at scale.

MAS Holdings, a global apparel & textile manufacturing and tech conglomerate, headquartered in Sri Lanka, secures a stake in HeiQ AeoniQ™ as part of its Plan for Change initiative to support the development of next-generation cellulosic filament fibers to replace polyester and nylon.

HeiQ from Switzerland and MAS Holdings entered a partnership for MAS to secure a stake in HeiQ AeoniQ GmbH, a subsidiary of HeiQ Group that will produce HeiQ AeoniQ™, a climate-positive cellulosic yarn.

With this investment, MAS Holdings becomes the first manufacturer to partner with HeiQ AeoniQ™ in their efforts to provide a sustainable alternative to polyester and nylon. The investment to be made by MAS Holdings is part of the group’s strategy to drive a positive environmental impact. The MAS Plan for Change aims to generate 50% of the company’s revenue through sustainable products by 2025, revolutionizing the textile industry with a focus on innovation, sustainable sourcing, and pioneering circularity at scale.

With the closing of this deal, HeiQ and MAS agreed to a 5-year Offtake Agreement for 3,000 tons of HeiQ AeoniQ™ yarn in 2025 and 5,000 tons per year from 2026 to 2029, valued by HeiQ in the aggregate to US$ 100 million. MAS will finalize this commitment within a stipulated time period after achieving milestone 1, and a mutual plan for commercialization. HeiQ and MAS firmly believe that rapid scaling is key to facilitating the fast adoption of sustainable, circular technologies such as HeiQ AeoniQ™.

The HeiQ AeoniQ™ pilot plant in Austria is manufacturing this revolutionary continuous cellulosic filament yarn since Q3 2022, with up to a 100 tons capacity to be upscaled up to 300 tons by the end of 2023.

The HeiQ AeoniQ™ production scale-up is planned to have its definitive boost by early 2026 with the construction of an entirely new gigafactory capable of a 30,000-ton output per year, in a 250M USD estimated investment.

Polyester and nylon, two oil-based fibers, virtually non-recyclable, account for about 70% of all the global textile production, they take between 350 to 1000 years to degrade in nature, are currently close loop recycled at less than 1%, and are at the origin of 35% of the microplastics that can be found in today's oceans. HeiQ AeoniQ™ was innovated and is being hyper-scaled up to change this course of action.

More information:
MAS Holdings HeiQ AeoniQ
Source:

HeiQ

Dibella supports cotton farmers with non-GMO seeds (c) Dibella
05.07.2023

Dibella supports cotton farmers with non-GMO seeds

Dibella supports organic Fairtrade cotton farmers in sourcing non-GMO seeds for the next harvest.

Together with the Chetna Organic cooperative, Dibella has long supported Indian smallholder farmers, on whose fields the organic Fairtrade cotton for the company's sustainable contract textiles grows. To secure the livelihoods of the smallholders, Dibella is taking action this year with a special measure: at the beginning of the new growing season, the company pre-finances the procurement of the genetically unmodified (GMO-free) seeds.

The beginning of the monsoon season (June to September) marks the start of the cotton year in India. The small family farms where the organic Fairtrade cotton for the sustainable Dibella range is grown prepare their fields for sowing. The seeds needed this year come directly from their buyer Dibella. The company organised and co-financed the procurement of the seeds together with the Chetna Organic cooperative.

Dibella supports organic Fairtrade cotton farmers in sourcing non-GMO seeds for the next harvest.

Together with the Chetna Organic cooperative, Dibella has long supported Indian smallholder farmers, on whose fields the organic Fairtrade cotton for the company's sustainable contract textiles grows. To secure the livelihoods of the smallholders, Dibella is taking action this year with a special measure: at the beginning of the new growing season, the company pre-finances the procurement of the genetically unmodified (GMO-free) seeds.

The beginning of the monsoon season (June to September) marks the start of the cotton year in India. The small family farms where the organic Fairtrade cotton for the sustainable Dibella range is grown prepare their fields for sowing. The seeds needed this year come directly from their buyer Dibella. The company organised and co-financed the procurement of the seeds together with the Chetna Organic cooperative.

Ending the debt trap
"At the beginning of the cotton season, smallholder farmers are often forced to take out a loan to finance the seeds they need. For this, very high double-digit interest rates are charged in India, which can lead to excessive debt for families, especially when there are crop failures due to pest infestations or unfavourable weather conditions, for example," reports Simon Bartholomes, Purchasing Manager at Dibella. "We decided years ago to break this vicious circle by pre-financing the genetically unmodified seed. It is procured by our partner Chetna Organic and distributed free of charge to the farming families whose organic cotton is processed into our organic Fairtrade textiles after the harvest. This year we have allocated a sum of USD 50,000 for this purpose.

Win-win situation
This measure offers advantages for all parties involved: Through direct access to the seeds, Dibella enables the farmer families to have a more adequate livelihood. At the same time, the farmers benefit from the expertise of Chetna Organic staff, who support them in organic farming. Dibella, in turn, covers its annual demand for organic Fairtrade cotton with a right of first refusal. This gives the company full control over its entire supply chain, which starts at the cotton field.

More information:
Dibella cotton organic cotton India
Source:

Dibella GmbH

DITF: Textile structures regulate water flow of rain-retaining "Living Wall" (c) DITF
Outdoor demonstrator on the Research CUBUS. At the top is the textile water reservoir with all inputs and outputs and textile valve for rapid emptying. Below are the substrate blocks with integrated hydraulic textiles
30.06.2023

DITF: Textile structures regulate water flow of rain-retaining "Living Wall"

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Innovative hydraulic textile structures regulate water flow. The rock wool plant substrate on which the plants grow has a large volume in a small space thanks to its structure. Depending on how heavy the precipitation is, the rainwater is stored in a textile structure and later used to irrigate the plants. In the event of heavy rainfall, the excess water is discharged into the sewage system with a time delay. In this way, the "Living Walls" developed at the DITF help to make efficient use of water as a resource in post-densified urban areas.

The research project also scientifically investigated the cooling performance of a green facade. Modern textile technology in the substrate promotes the "transpiration" of the plants. This creates evaporative cooling and lowers temperatures in the surrounding area.

The work of the Denkendorf research team also included a cost-benefit calculation and a life-cycle analysis. Based on the laboratory and outdoor studies, a "green value" was defined that can be used to evaluate and compare the effect of greening buildings as a whole.

28.06.2023

EPTA highlights contribution of pultruded composites to sustainable construction

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

The future of construction
As one of the largest global users of energy and raw materials, the construction industry is under immense pressure to improve its sustainability. At the same time, it must respond to demands for improved performance and reduced total cost of ownership. New materials will be needed to minimise the use of natural resources, enable a reduction of carbon footprint and facilitate circular economy practices. Choosing the optimum materials required for durability throughout the lifecycle will be increasingly important. A shift to off-site production is also forecast, where factory-controlled environments and automated processes can improve quality control, lower waste, and reduce work on site.

Lightweight pultruded parts can be pre-assembled into modules or complete structures in the factory for faster installation on site. Lightweight profiles lower energy use during transportation and installation, and a longer service life combined with minimal maintenance can deliver a reduced through-life carbon footprint. Pultruded parts such as profiles, gratings, beams, tubes and planks are increasingly found in a range of building, construction and infrastructure applications. Examples include bridge decks, fencing, stairs and handrails, train platforms, cladding, utility poles, modular building concepts, and window frames.

One application offering large growth potential for composites is bridges. Composite bridges are being designed to provide a service life of 100 years and unlike steel bridges do not require regular repainting to protect them from corrosion. Over recent years, pultruded glass fibre composite has become a highly popular choice for pedestrian and cycle bridges. Pre-fabricated ‘easy fit’ bridge decking planks, pre-assembled bridge modules and complete bridge ‘kits’ are now available. Corrosion-resistant composite bridges are ideal for use near water or on the coast, and in remote locations where regular maintenance operations would be difficult. A composite bridge can deliver the same performance as a steel structure with a weight saving of up to 50% or more. This enables more streamlined bridge designs which require less substantial supporting structures and foundations, greatly reducing consumption of materials and energy. Lightweight also results in easier logistics and simplified installation. Pultruded are more easily transported to the construction site, with lower fuel consumption, and easier to move on site, often reducing labour requirements and the capacity of lifting equipment.

A lifecycle approach
As the construction industry looks to the future, the environmental and economic benefits of composite materials linked to easier logistics and installation, durability and low maintenance are becoming increasingly valued. More projects are demonstrating the benefits of composite materials and standards covering the design, fabrication and installation of pultruded profiles are making it easier for the construction industry to use them. With ongoing development and collaboration, pultrusion has the potential to contribute to a more sustainable future for construction and many other industries. EPTA will continue to promote the advancement of pultrusion technology and its applications and foster sustainable practices within the industry.

Source:

The European Pultrusion Technology Association (EPTA)

(c) Autoneum
16.06.2023

Autoneum: Sustainable sound absorption for underbody shields

Silence and resource efficiency are the order of the day in the development and optimization of electric vehicles. On the one hand, ever stricter emissions regulations worldwide are increasing demand for components that reduce noise pollution while helping vehicle manufacturers meet their sustainability targets. On the other hand, the absence of noise from the combustion engine in e-cars amplifies the disruptive effects of other noise sources in the passenger compartment. With Ultra-
Silent Tune, Autoneum now presents a new lightweight and environmentally friendly technology for underbody shields that reduces tire rolling noise both outside and inside the vehicle, thus improving not only acoustic performance but also driver comfort in electric cars.

Silence and resource efficiency are the order of the day in the development and optimization of electric vehicles. On the one hand, ever stricter emissions regulations worldwide are increasing demand for components that reduce noise pollution while helping vehicle manufacturers meet their sustainability targets. On the other hand, the absence of noise from the combustion engine in e-cars amplifies the disruptive effects of other noise sources in the passenger compartment. With Ultra-
Silent Tune, Autoneum now presents a new lightweight and environmentally friendly technology for underbody shields that reduces tire rolling noise both outside and inside the vehicle, thus improving not only acoustic performance but also driver comfort in electric cars.

Autoneum's Ultra-Silent Tune technology owes its sound-absorbing performance to acoustic chambers of different shapes and sizes. The chambers are created by applying an embossed polyester foil to the side of the Ultra-Silent underbody shield facing away from the noise source: they capture the sound waves emitted by the car tires, modulate them according to their respective geometry and reflect them back onto the porous carrier material. Compared to conventional single-layer underbody shields, whose acoustic performance is mainly determined by the noise-reducing properties of the product side facing the tires, Ultra-Silent Tune exploits both sides of the component, which significantly improves its acoustic absorption. Autoneum thus makes innovative use of the proven concept of traditional chamber absorbers, reducing exterior tire rolling noise.

Moreover, Ultra-Silent Tune combines optimized acoustic performance with the sustainability benefits of Autoneum's Pure technology Ultra-Silent. In addition to the high proportion of recycled PET fibers, underbody shields made from Ultra-Silent Tune can be manufactured from 100% polyester and thus be fully recycled at the end of vehicle life. Furthermore, the thickness of the multilayer construction can be flexibly adapted to the packaging spaces of different vehicle models. Underbody shields made from Autoneum's new Ultra-Silent Tune technology are already in pre-development at various vehicle manufacturers in Europe.

Source:

Autoneum Management AG

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

01.06.2023

Euratex criticizes European Parliament: No balance between sustainability and competitiveness

June 1, the European Parliament has adopted its Report on an EU Strategy for Sustainable and Circular Textiles. The Report wants to step up the EU’s ambition towards sustainability and circularity even further, but it has failed to recognise the strategic role of the European textile industry to scale up sustainability, nor to appreciate the global competitive threat which our companies are facing.

Director General Dirk Vantyghem commented on the MEP Report: “We welcome the strong interest of the European Parliament in the textile and fashion industry, but encourage MEPs to develop a balanced vision which reconciles sustainability and competitiveness. Developing a new business model for our industry requires carefully crafted legislation at global level, and an open dialogue between the industry, the brands and the consumer.”

June 1, the European Parliament has adopted its Report on an EU Strategy for Sustainable and Circular Textiles. The Report wants to step up the EU’s ambition towards sustainability and circularity even further, but it has failed to recognise the strategic role of the European textile industry to scale up sustainability, nor to appreciate the global competitive threat which our companies are facing.

Director General Dirk Vantyghem commented on the MEP Report: “We welcome the strong interest of the European Parliament in the textile and fashion industry, but encourage MEPs to develop a balanced vision which reconciles sustainability and competitiveness. Developing a new business model for our industry requires carefully crafted legislation at global level, and an open dialogue between the industry, the brands and the consumer.”

EURATEX supports the EU Textile Strategy, as it was presented over a year ago by the European Commission. The 160.000 European textile companies are committed to invest in sustainability, develop new circular business models and produce high quality textile products – not just in fashion, but also in home and medical textiles, construction, agriculture or cars. To do so, indeed a new regulatory framework is needed, with clear definitions, coherent rules and effective controls. But also, the companies should be able to comply with these rules and remain globally competitive.

The EP Report has failed to respect that balance between sustainability and competitiveness. Instead, it suggests even more rules and restrictions, totally disregarding the current economic challenges caused by high energy prices, loss in consumer confidence and assertive trade partners. Putting the bar even higher will simply mean that the European textile industry will be pushed out of the market, resulting in a bigger environmental footprint and increased dependency on foreign supplies. Quite the opposite of what the EU wants to achieve with its open strategic autonomy plans.

The Report also fails to differentiate between textile products. There is a mix up between fashion and technical textiles, between products made in Europe and outside, between high quality and durable products and low-quality items. It is regretful that the European Parliament did not make that distinction and simply refers to “textiles” as a general cause of concern, without acknowledging e.g. the high quality products, made by European textile and fashion companies.

The Report puts a strong responsibility on the supply side – the industry and the brands – and does not sufficiently address the role of the consumer. Initiatives therefore are essential to create a stronger demand for sustainable textiles, which includes better communication and transparency (avoid greenwashing), fiscal measures, green public procurement and better control of online marketplaces.

On a positive note, the EP Report does recognise the importance to invest in research and innovation, to support reskilling and upskilling, the need of scaling up circular economy and pay attention to the needs of SMEs. EURATEX has always insisted that such massive transition can only be successful if accompanied by significant and dedicated support programmes. The EU Textiles Transition Pathway should offer a clear perspective in this regard.

Source:

Euratex

(c) Hologenix
31.05.2023

CELLIANT® with REPREVE® wins third Consecutive Award

CELLIANT® with REPREVE®, introduced by Hologenix with global textile solutions provider UNIFI®, makers of REPREVE®, has been awarded a Top 5 Selection in the Accelerated Eco category of the Spring/Summer ISPO Textrends 2025 Awards.

Last fall CELLIANT with REPREVE was also awarded a Selection in the Fibers & Insulation Category of the ISPO Textrends Fall/Winter 2024/2025. In addition, in the spring the fiber was shortlisted in the Drapers Sustainable Fashion 2023 Awards in the Sustainable Textile Innovation category.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that this innovation, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved these honors. CELLIANT with REPREVE is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.  

CELLIANT® with REPREVE®, introduced by Hologenix with global textile solutions provider UNIFI®, makers of REPREVE®, has been awarded a Top 5 Selection in the Accelerated Eco category of the Spring/Summer ISPO Textrends 2025 Awards.

Last fall CELLIANT with REPREVE was also awarded a Selection in the Fibers & Insulation Category of the ISPO Textrends Fall/Winter 2024/2025. In addition, in the spring the fiber was shortlisted in the Drapers Sustainable Fashion 2023 Awards in the Sustainable Textile Innovation category.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that this innovation, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved these honors. CELLIANT with REPREVE is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.  

CELLIANT is a natural blend of IR-generating bioceramic minerals, which, when embedded into textiles, allows them to convert body heat into infrared energy, returning it to the body and temporarily increasing local circulation and cellular oxygenation. This aids in muscle recovery, increases endurance, and improves overall performance in healthy individuals, among other benefits.
 
REPREVE recycled performance fiber consists of high-quality fibers made from 100% recycled materials, including post-consumer plastic bottles and pre-consumer waste. It is also certified and traceable with UNIFI’s U TRUST® verification and FiberPrint™ technology, which provide assurance that the product comes from recycled materials. Compared to virgin fiber, REPREVE helps to offset the use of petroleum, conserving water and energy and emitting fewer greenhouse gasses.

This award marks the third year in a row that Hologenix has had its CELLIANT technology recognized in the ISPO Textrends Awards. CELLIANT in pure white was a Top Ten Winner in 2022. The prior year, CELLIANT Viscose was a Selection Winner as well. 

Source:

Hologenix, LLC

(c) Beaulieu International Group
22.05.2023

B.I.G. Yarns launches Sustainable Yarns at Clerkenwell Design Week

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

B.I.G. Yarns unveils its new “SustainableYarns” platform, with Clerkenwell Design Week visitors the first to be invited to get on board and focus on what matters most for the design and manufacture of sustainable soft floorings.

The expert in polyamide (PA) 1 step 3 ply yarns offers a range of options for manufacturers to introduce sustainable yarns into carpet solutions and reach sustainability targets faster and more efficiently.

The Sustainable Yarns range creates opportunities to design with recycled content yarn (EqoCycle), to work with renewable resources (EqoBalance), and, following the launch of new polyamide 6 (PA6) EqoYarn at Clerkenwell Design Week, to also leverage the low-impact value chain.

New addition EqoYarn is a new low-impact PA6 carpet yarn based on the most recent innovations in polymer production, which enable yarn manufacturers to lower their carbon footprint by nearly 50% and give carpet manufacturers more options to reduce their impact.

For its EqoYarn Bulk Continuous Filament (BCF) production process, B.I.G. Yarns has selected the few best-in-class partners that have made major steps forward in terms of sustainability, and reduced their greenhouse gas emissions thanks to continuous investments in process efficiency, green energy, heat optimization and waste reduction. The result is EqoYarn with a carbon footprint of 4 kg CO2 eq/kg yarns, which is a CO2 reduction of up to 50% compared to conventional PA yarns.

EqoBalance PA6 yarns enable customers to reach an even higher CO2 reduction of up to 75%. Manufactured with polymers made from renewable resources such as organic waste from cooking oil instead of virgin or fossil feedstock, these yarns have a carbon footprint of 1.98 kg CO2 eq./ kg yarns. They help carpet manufacturers to create products with an extremely low carbon footprint.

EqoCycle PA6 yarns are fully recyclable and incorporate 75% recycled content originating from recycled and regenerated PA6 granules. With a carbon footprint of 4.64 kg CO2 eq./ kg yarns, they deliver the same high-quality performance of virgin PA6 yarn with the benefit of 37% CO2 reduction. EqoCycle yarns offer carpet manufacturers a sustainable alternative to help reduce the ecological footprint of their products and move towards a circular economy without jeopardizing the end-product quality.

In addition to the different CO2-reducing options, B.I.G. Yarns’ customers can access an unlimited colour range to elevate their designs. Its BCF technology for polyamide yarns, twisted and heat-set yarns, one-colour to multi-colour, between 650 and 15000 dTex, along with its colour studio, are available to support their creation of customised collections.

Source:

Beaulieu International Group

05.05.2023

Stahl's emissions reduction targets approved by Science Based Targets initiative (SBTi)

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Maarten Heijbroek, CEO of Stahl: “The validation of our Scope 1, 2, and 3 emissions reduction targets by the SBTi is an important milestone on our ESG journey as we strive to limit our contribution to global warming, in line with the Paris Agreement. Our targets are ambitious, and rightly so. Realizing our goal to help create a more responsible coatings value chain starts with being accountable for our own environmental impact, and taking concrete steps to reduce our emissions wherever possible.”

A clear strategy to reduce GHG emissions
Stahl’s approach to realizing its near-term emissions reduction targets is outlined in the company’s Environmental, Social, and Governance (ESG) Roadmap to 2030. This strategy defines the specific metrics against which progress on the company’s ESG commitments will be measured.

Stahl’s Scope 1 and 2 GHG emissions reduction targets, as submitted to the SBTi, cover emissions from all manufacturing sites where Stahl products are produced, as well as the company’s largest non-manufacturing locations. Stahl aims to lower these emissions by reducing its overall energy consumption and increasing the use of renewable energy at its sites. To achieve this, the company plans to increase its self-generated electricity capacity (using solar power, for example) and continue investing in more energy-efficient equipment.

Stahl plans to reduce its Scope 3 upstream emissions primarily by replacing fossil-based raw materials in its products with renewable alternatives, such as bio-based and recycled-based feedstocks. In addition, the company plans to introduce more low-impact raw materials into its product design.

* The target boundary includes biogenic land-related emissions and removals from bioenergy feedstocks.

Source:

Stahl Holdings B.V.

(c) Freudenberg Performance Materials
19.04.2023

Freudenberg: Launch of sustainable carpet backings

Freudenberg Performance Materials (Freudenberg) announces the launch of sustainable carpet backing products for the flooring industry. Sustainable backings support customers in their transition towards producing more sustainable carpets. The range is introduced as Colback ECO and Lutradur ECO and is part of the Freudenberg portfolio of high-performance spunbond nonwoven technical textiles.

Freudenberg Performance Materials (Freudenberg) announces the launch of sustainable carpet backing products for the flooring industry. Sustainable backings support customers in their transition towards producing more sustainable carpets. The range is introduced as Colback ECO and Lutradur ECO and is part of the Freudenberg portfolio of high-performance spunbond nonwoven technical textiles.

Reduced CO2 footprint
Freudenberg follows a ‘less is more’ principle: the best raw materials are the materials that are not needed at all. For the ECO product range, Freudenberg R&D teams developed a solution to save raw materials in their carpet backings. Freudenberg redefined its proprietary yarn production technology allowing for extremely thin filaments with a diameter up to 30% smaller than the standard portfolio for carpet backings.  
The new thin yarn technology is one of Freudenberg’s sustainable initiatives benefitting the carpet industry. Other developments supporting sustainability include backings with a high recycled content and backings using alternative approaches to facilitate carpet recyclability. They will extend the ECO portfolio in the future.

ECO-CHECK-Label
The currently launched thin yarn ECO-backings have been awarded the ECO-CHECK label. Freudenberg introduced this label in early 2021 to identify particularly sustainable products within its portfolio.

Source:

Freudenberg Performance Materials

Frau am Meer Photo Pixabay
17.04.2023

Kelheim Fibres, Sandler and pelzGROUP develop plastic-free panty liner

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

The partnership between the three companies was formed under the Open Innovation principle, which allowed for creative idea exchange and facilitated the development of an innovative product. According to Jessica Zeitler, R&D Specialist at Sandler, “Our collaboration with Kelheim Fibres and pelzGROUP is a great example of how companies can work together to create solutions that benefit both the environment and consumers. We are proud to be part of this project and the opportunities it offers.”

For hygiene product manufacturer pelzGROUP, it is important to combine sustainability and performance to achieve broad acceptance in the market. “Our panty liner meets the strict requirements of the European Single-Use Plastics Directive (SUPD) while also matching the performance of conventional synthetic products. At the same time, our new panty liner has a completely European supply chain. This means short distances and therefore low CO2 emissions, and – especially in times of global disruption – reliability for our customers,” emphasizes Dr. Henning Röttger, Head of Business Development at pelzGROUP.

"Our viscose speciality fibres are an environmentally friendly and high-performance alternative to synthetic materials," says Dominik Mayer, Project Manager Fibre & Application Development at Kelheim Fibres. "They are at the very beginning of the product value chain and yet have an enormous impact on the functionality of the end product. Open innovation allows us to bring all partners in the value chain to the table, to find the best solution together in a very short time and bring it to commercialisation - the collaboration with Sandler and pelzGROUP is an important milestone in our AHP journey."

Source:

Kelheim Fibres GmbH

Photo: ANDRITZ
12.04.2023

Lotus Teknik Tekstil A.Ş.: Production line for biodegradable wet wipes by ANDRITZ

Lotus Teknik Tekstil A.Ş., Türkiye, has successfully started up a complete line to produce nonwoven roll goods for biodegradable, plastic-free wet wipes. This line has been delivered, installed, and commissioned by international technology group ANDRITZ.

The neXline wetlace CP line combines the benefits of two technologies: wetlaid and spunlace. Natural fibers are processed gently to create a high-performance and sustainable wipe. This next-generation wipe, called Newipe®, combines the benefits of spunlace fabric, in particular remarkable strength in all directions, with the biodegradability and softness of a WetlaceTM fabric. It is produced with a lower carbon footprint, has a low lint rate, and does not generate dust during production.

Lotus Teknik Tekstil A.Ş., Türkiye, has successfully started up a complete line to produce nonwoven roll goods for biodegradable, plastic-free wet wipes. This line has been delivered, installed, and commissioned by international technology group ANDRITZ.

The neXline wetlace CP line combines the benefits of two technologies: wetlaid and spunlace. Natural fibers are processed gently to create a high-performance and sustainable wipe. This next-generation wipe, called Newipe®, combines the benefits of spunlace fabric, in particular remarkable strength in all directions, with the biodegradability and softness of a WetlaceTM fabric. It is produced with a lower carbon footprint, has a low lint rate, and does not generate dust during production.

Lotus Teknik Tekstil A.Ş. is a leading nonwoven roll good producer and a member of a group company. The group company consists of 4 companies that operate end-to-end manufacturing including nonwovens, cardboard packings, plastics, and finished wet wipe products. Headquartered in Istanbul, Sapro is the leader in Türkiye and one of the four leaders in the manufacturing of wet wipes in Europe. The company produces, converts, and supplies 161 million sheets of wipes per day for personal, household, and industrial use, exporting 70% of its production to 65 countries all over the world. Sustainability plays a prominent role in Sapro’s business strategy.

Source:

ANDRITZ AG