From the Sector

Reset
163 results
23.04.2021

Oerlikon: Creating a new growth platform

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

The strategic acquisition is a significant step in expanding Oerlikon’s current manmade fibers business into the larger polymer processing market. The acquisition accelerates and enhances existing organic initiatives to diversify and strengthen the company’s core high-precision polymer flow control capabilities, products and services. The completion of the transaction is subject to customary regulatory approvals and is expected by the second quarter of 2021.

To reflect Oerlikon’s expansion into a larger high-growth market, the Manmade Fibers Division will be renamed as Polymer Processing Solutions Division. This division will have two business units: Flow Control Solutions and Manmade Fibers Solutions. The busines unit Flow Control Solutions will combine the expertise of Oerlikon Barmag’s existing gear metering pumps business line and INglass’ HRSflow operations. The business unit Manmade Fibers Solutions will continue to focus on growing the existing chemical fiber machinery and plant engineering business, offering plant solutions for the production of polyester, polypropylene and polyamide.

“Our new Polymer Processing Solutions Division and the acquisition of INglass S.p.A. and its HRSflow business are critical components of Oerlikon Group’s growth strategy. We are accelerating our efforts to drive sustainable organic and inorganic growth in all of our businesses. The acquisition enables new synergy opportunities between both Oerlikon divisions in specific end markets such as automotive. With INglass and its HRSflow operations, we acquire leading suppliers in their markets with proven success of their technologies and services,” said Dr. Roland Fischer, CEO Oerlikon Group.

“We firmly believe that within the Oerlikon Group we can further exploit the potential of our hot runner systems technology and, when combined with the capabilities of Oerlikon Barmag gear metering pumps and their melt distribution engineering competence, will position our business as one of the leading precision flow control specialists for multiple applications in a global growth market”, said Antonio Bortuzzo, CEO of INglass S.p.A.

New business unit offers great growth potential

The Oerlikon Barmag competence brand already offers high precision flow control related components, including a large selection of gear metering pumps for textile and non-textile markets. These highly efficient pumps are used in silicone casting, dynamic mixing and oil spraying for the chemical, paint, polymer processing and automotive industries. This double-digit million CHF business, which has grown in recent years, will be merged with INglass’ HRSflow hot runner technologies under the new business unit Flow Control Solutions. HRSflow’s excellent market access to many OEMs in and outside the automotive industry brings significant growth opportunities.

INglass is a leader in automotive and expanding in other sectors

INglass S.p.A. is an internationally operating successful company established in 1987. Its product portfolio includes hot runners as well as engineering and consultancy services for the advanced development of polymer processing products. INglass’ HRSflow hot runner systems are applied in multiple industries from automotive, consumer goods and household appliances to packaging, waste management, construction and transportation.

INglass is headquartered in San Polo di Piave, Italy, near Venice. 2020 revenues of INglass were approximately CHF 135 million and the acquisition is expected to be immediately accretive to Oerlikon’s margins and cash flows. INglass has more than 1 000 employees and 55 sites worldwide, including production plants in Italy, China and the US. Among these sites are INglass’ newly renovated headquarters and production at its primary location in San Polo di Piave near Venice, Italy. The investment modernized the facilities with automated production, underlining the company’s commitment to sustainability and the environment. The other two modern production sites are in Zhejiang (Hangzhou Province) in China and Michigan (Grand Rapids) in the USA.

Following the integration with Oerlikon Barmag’s gear metering pumps business of about 200 employees in Remscheid, Germany, the new Flow Control Solutions business unit will have round about 1 200 employees.

"We see great potential for growth in our new Flow Control Solutions business unit,” said Georg Stausberg, Polymer Processing Solutions Division CEO and Member of the Executive Committee of the Oerlikon Group. “The businesses form the two core growth pillars and benefit from each other in global market development, in modern and digitized production, and in customer services. We also see potential synergies in R&D by combining existing know-how in the field of polymer processing. New technological solutions between hot runner systems and gear metering pumps are conceivable. We also anticipate collaborating more closely with the Oerlikon Surface Solutions Division, particularly in future mobility applications and functional polymer component solutions for the automotive industry. All in all, we will offer our customers innovative and attractive solutions in the field of polymer processing and high precision flow control components.”

Next steps for further diversification of the division product portfolio are already ongoing

Combining the divisions plant engineering and process know how with expertise on high precision flow control components technologies has a significant impact on product quality in nearly all applications, which opens up a platform for further organic and inorganic growth. "We are closely observing the megatrends in the markets and developing new business models to match. In the area of sustainability, covering topics such as circular economy, the recycling of materials using mechanical and chemical recycling solutions, as well as the handling of new, more environmentally friendly and biodegradable materials, we are on the verge of a breakthrough. We are ready to actively participate in these growth areas,” added Georg Stausberg.

“In realigning the Polymer Processing Solutions Division, Oerlikon will continue to apply our successful recipe of a lean organizational structure to efficiently manage the business. This means clear processes, short decision-making paths and competent teams in a diverse and multicultural organization in which everyone can contribute innovatively to create customer value,” said Georg Stausberg.

Swiss weaving machinery manufacturers are in the forefront of novel application development ©Stäubli
Multilayer Aramid
17.03.2021

Swiss weaving: Fabrics of the future

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

  • Swiss weaving machinery manufacturers are in the forefront of novel application development

Shoes and electronic calculators are probably not the first products people would associate with the textile weaving process. But they certainly signpost the future for woven fabrics, as two examples of the ever-wider possibilities of latest technology in the field. Fashion and function already combine in the increasing popularity of woven fabrics for shoes, and this is a present and future trend. Calculators in fabrics? That’s another story of ingenious development, using so-called ‘meander fields’ on the back and keys printed on the front of the material.

These glimpses of the outlook for modern weavers are among the highlights of developments now being pioneered by Swiss textile machinery companies. All weaving markets require innovation, as well as speed, efficiency, quality and sustainability. Member firms of the Swiss Textile Machinery Association respond to these needs at every point in the process – from tightening the first thread in the warp to winding the last inch for fabric delivery. They also share a common advantage, with a leading position in the traditional weaving industry as well as the expertise to foster new and exciting applications.

Technology and research cooperation
The concept of a ‘textile calculator’ was developed by Jakob Müller Group, in cooperation with the textile research institute Thuringen-Vogtland. Müller’s patented MDW® multi-directional weaving technology is able to create the meander fields which allow calculator functions to be accessed at a touch. A novel and useful facility, which suggests limitless expansion.

Today, the latest woven shoes are appreciated for their precise and comfortable fit. They score through their durability, strength and stability, meeting the requirements of individual athletes across many sports, as well as leisurewear. Stäubli is well known as a leading global specialist in weaving preparation, shedding systems and high-speed textile machinery. Its jacquard machines offer great flexibility across a wide range of formats, weaving all types of technical textiles, lightweight reinforcement fabrics – and shoes.

It’s possible to weave new materials such as ceramics, mix fibers such as aramid, carbon and other, and produce innovative multi-layers with variable thicknesses. Such applications put special demands on weaving machines which are fulfilled by Stäubli high-performance TF weaving systems.

Great weaving results are impossible without perfect warp tension, now available thanks to the world-leading electronic warp feeding systems of Crealet. Some market segments in weaving industry today demand warp let-off systems which meet individual customer requirements. For example, the company has recognized expertise to understand that geotextile products often need special treatment, as provided by its intelligent warp tension control system. Individual and connective solutions are designed to allow external support via remote link. Crealet’s warp let-off systems are widely used in both ribbon and broadloom weaving, for technical textiles applied on single or multiple warp beams and creels.

Functional, sustainable, automated
Trends in the field of woven narrow fabrics are clearly focused on functionality and sustainability. The Jakob Müller Group has already embraced these principles – for example using natural fibers for 100% recyclable labels with a soft-feel selvedge. It also focuses as much as possible on the processing of recycled, synthetic materials. Both PET bottles and polyester waste from production are recycled and processed into elastic and rigid tapes for the apparel industry.

For efficient fabric production environments, it is now recognized that automated quality solutions are essential. Quality standards are increasing everywhere and zero-defect levels are mandatory for sensitive applications such as airbags and protective apparel.

Uster’s latest generation of on-loom monitoring and inspection systems offers real operational improvements for weavers. The fabric quality monitoring prevents waste, while the quality assurance system significantly improves first-quality yield for all applications. Protecting fabric makers from costly claims and damaged reputations, automated fabric inspection also removes the need for slow, costly and unreliable manual inspection, freeing operators to focus on higher-skilled jobs.

Smart and collaborative robotics (cobots) offer many automation possibilities in weaving rooms. Stäubli’s future oriented robotics division is a driver in this segment with first effective installations in warp and creel preparation.

Control and productivity
Willy Grob’s specialized solutions for woven fabric winding focus on reliable control of tension, keeping it constant from the start of the process right through to the full cloth roll. Continuous digital control is especially important for sensitive fabrics, while performance and productivity are also critical advantages. In this regard, the company’s large-scale batching units can provide ten times the winding capacity of a regular winder integrated in the weaving machine.

The customized concept by Grob as well as design and implementation result in great flexibility and functionality of the fabric winding equipment – yet another example of Swiss ingenuity in textile machinery.  
There is even more innovation to come in weaving – and in other segments – from members of the Swiss Textile Machinery Association in future! This confident assertion is founded on an impressive statistic: the 4077 years of experience behind the creative power of the association’s member firms. It’s proof positive that their developments grow out of profound knowledge and continuous research.

Archroma and Jeanologia launch ‘Pad-Ox G2 Cold’, a water-saving dyeing process (c) Jeanologia
Jeanologia G2 Dynamic machine.
16.03.2021

Archroma and Jeanologia launch ‘Pad-Ox G2 Cold’, a water-saving dyeing process

Archroma, a global leader in specialty chemicals towards sustainable solutions, and Jeanologia, a world leader in sustainable and efficient technology development, today announced the launch of ‘Pad-Ox G2 Cold’, a water-saving dyeing process at room temperature for casual looks.

Archroma initially introduced its eco-advanced Pad-Ox dyeing process for woven fabrics, and then used it as part of its ADVANCED DENIM concept. By combining the oxidation and fixation steps, it is possible to shorten the dyeing process and thus realize substantial resource savings in water, wastewater, cotton waste, and energy.

Over the years the company has worked with its textile manufacturers and partners to improve the Pad-Ox process, in particular woven applications such as chinos and casual wear. To achieve maximum positive impact, Archroma is using its Diresul® range of low sulfide sulfur dyes and, more recently, its innovative plant-based range of EarthColors®. A wide selection of dyes from these two ranges have received the Cradle-to-Cradle Product Innovation Institute’s Platinum Level Material Health Certification.

Archroma, a global leader in specialty chemicals towards sustainable solutions, and Jeanologia, a world leader in sustainable and efficient technology development, today announced the launch of ‘Pad-Ox G2 Cold’, a water-saving dyeing process at room temperature for casual looks.

Archroma initially introduced its eco-advanced Pad-Ox dyeing process for woven fabrics, and then used it as part of its ADVANCED DENIM concept. By combining the oxidation and fixation steps, it is possible to shorten the dyeing process and thus realize substantial resource savings in water, wastewater, cotton waste, and energy.

Over the years the company has worked with its textile manufacturers and partners to improve the Pad-Ox process, in particular woven applications such as chinos and casual wear. To achieve maximum positive impact, Archroma is using its Diresul® range of low sulfide sulfur dyes and, more recently, its innovative plant-based range of EarthColors®. A wide selection of dyes from these two ranges have received the Cradle-to-Cradle Product Innovation Institute’s Platinum Level Material Health Certification.

Meanwhile, Jeanologia has been working on the technology side, with laser and eco-finishing solutions for more than 25 years, accompanying the textile industry on their way to producing with zero discharge. In 2008, the company introduced its G2 Dynamic the first ozone treatment for continuous fabric that dramatically reduces the amount of water and chemicals used, while at the same time saving costs at the mill and eventually at the garment finishing facilities. This technology makes fabric more stable and consistent and prepares the fabric better for the use of other technologies like laser. This machinery can be used along with Pad-Ox technology to help cleaning fabric thus improve fastness results. While it allows process to work at room temperature.

Project focus on water saving
Archroma and Jeanologia therefore understandably decided to team up and combine their expertise in sustainable dyeing and finishing technologies. The objective of the project was to improve the Pad-Ox dyeing process even further, in particular in one area that still offered room for positive impact: temperature and fastnesses.

The new ‘Pad-Ox G2 Cold’ dyeing process works thanks to the insertion of very small machinery into the existing finishing range process, using cold processing and thus operating with much less water, carbon footprint and energy than traditional benchmark fabric finishing processes, whilst retaining the water and other resource savings offered by the Pad-Ox technology.

Maximum savings can be achieved by mills and garment manufacturers who wish to switch from a conventional dyeing process straight to ‘Pad -Ox G2 Cold’ to obtain high quality fabrics for comfortable and casual wear.

Elasticated melange tape by JUMBO-Textil for exacting requirements (c) JUMBO-Textil
JUMBO Textil Band schwarz
10.03.2021

JUMBO: The perfect melange

  • Elasticated melange tape by JUMBO-Textil for exacting requirements

Reliable functionality, select aesthetics, exceptional comfort – the new elasticated melange tape from JUMBO-Textil can really do a lot – and looks extremely good doing it.

Great functionality and an elegant design
To create this innovative elasticated tape, different premium-quality yarns are woven into a high-performance tape for especially exacting demands in terms of comfort and visual appeal. The elasticated material offers amazing performance and robustness beyond its elegant, shimmering melange look and its pleasant, fabric-like feel.

•    Ideal for all applications on visible textile surfaces
•    Premium fabric-like aesthetic and feel
•    Shimmering melange effect
•    Can be manufactured in many individual types and fabrications
•    Additional designs possible: water repellent, flame retardant, etc.
•    For applications in vehicle interiors, functional clothing, the furniture industry, medical technology, and much more

  • Elasticated melange tape by JUMBO-Textil for exacting requirements

Reliable functionality, select aesthetics, exceptional comfort – the new elasticated melange tape from JUMBO-Textil can really do a lot – and looks extremely good doing it.

Great functionality and an elegant design
To create this innovative elasticated tape, different premium-quality yarns are woven into a high-performance tape for especially exacting demands in terms of comfort and visual appeal. The elasticated material offers amazing performance and robustness beyond its elegant, shimmering melange look and its pleasant, fabric-like feel.

•    Ideal for all applications on visible textile surfaces
•    Premium fabric-like aesthetic and feel
•    Shimmering melange effect
•    Can be manufactured in many individual types and fabrications
•    Additional designs possible: water repellent, flame retardant, etc.
•    For applications in vehicle interiors, functional clothing, the furniture industry, medical technology, and much more

Wide range of applications in numerous industries
The new melange tape is specially designed and made for all visible applications: from multimedia holding tapes or document retainers in vehicle interiors to the functional and attractive cuff on sleeves, trousers or braces of outdoor or work clothing through to tensioning straps on backpacks, in exoskeletons or upholstered furniture.

"Elasticated tapes are often developed and considered primarily from a functional point of view. In our case it is different: our new melange tape combines great functionality with an elegant design and shows that elasticated narrow textiles can also be aesthetic highlights," as Patrick Kielholz, Business Development Manager at JUMBO-Textil emphasises. "The potential applications for our melange tape are almost limitless. Exciting solutions are available for almost all industries."

The most important properties at a glance:

Colours: grey melange, black melange; optionally, various other colour options
Sample: single-colour melange; optionally, longitudinal stripes, melange
Width, Standard: 40.0 mm
Width, Customized: 10 mm – 320 mm
Elasticity: up to 60%

Source:

JUMBO-Textil GmbH & Co. KG

OFFICINA+39 reduces use of water with AQUALESS MISSION (c) OFFICINA+39
04.03.2021

OFFICINA+39 reduces use of water with AQUALESS MISSION

A technology to reduce 75% of the water typically used in denim and garment laundry processes, this innovation is evidence of the commitment by Officina+39 to a more sustainable production and planet.

An Italy-based reality with a thirty-year experience on research and chemical application in the textile sector, Officina+39 brings to the table its latest innovation, launched in occasion of Kingpins 24 Flash: the AQUALESS MISSION. It features three products for one innovative process suitable for conventional machines: REMOVER BC, a laser booster, AQUALESS AGED, a waterless compound to give denim abrasion effects and OZ-ONE POWDER, an advanced product to give garments a bleached yet eco-friendly treatment, for a worn and distressed look.

REMOVER BC
This special compound increases laser effect on indigo or dischargeable dyestuff, saving time and energy for a swifter production. Due to the speedy process it also prevents fabric tearing whilst focusing on giving a used look.

A technology to reduce 75% of the water typically used in denim and garment laundry processes, this innovation is evidence of the commitment by Officina+39 to a more sustainable production and planet.

An Italy-based reality with a thirty-year experience on research and chemical application in the textile sector, Officina+39 brings to the table its latest innovation, launched in occasion of Kingpins 24 Flash: the AQUALESS MISSION. It features three products for one innovative process suitable for conventional machines: REMOVER BC, a laser booster, AQUALESS AGED, a waterless compound to give denim abrasion effects and OZ-ONE POWDER, an advanced product to give garments a bleached yet eco-friendly treatment, for a worn and distressed look.

REMOVER BC
This special compound increases laser effect on indigo or dischargeable dyestuff, saving time and energy for a swifter production. Due to the speedy process it also prevents fabric tearing whilst focusing on giving a used look.

AQUALESS AGED
Ideal to give abrasion effects on denim, this waterless treatment has a reduced impact on the environment and can be applied in combination with Oz-One powder both on black and indigo denim.

OZ-ONE POWDER
The sustainable (chlorine and potassium permanganate free) way to give denim that distressed and worn look, with no need of water or high temperatures.

AQUALESS MISSION meets the needs of the industry to reduce water in manufacturing operations, pledging to meet UN’s 2030 SDG 6 of clean water and sanitation, and by doing so protects the planet and its resources.

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates (c) MaruHachi
16.02.2021

MaruHachi/AMAC: High-temperature thermoplastic tapes and laminates

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

With their recently installed high-temperature unidirectional tape line, Japan-based composites manufacturer MaruHachi enables new opportunities for high-end applications in demanding market segments like aerospace, automotive or others outperforming traditional materials based on PP and PA which are already widely available.

In the first phase, MaruHachi will produce up to 40 tons/year and focuses now specifically on high-temperature thermoplastic uni-directional (UD) tapes and multi-layer sheet laminates. The material is based on high-performance fibers like carbon, aramid, glass or natural fibers and the matrix can be high-performance polymers like PPS, PEEK or other higher temperature polymers, which are much tougher than epoxies and easy to recycle. With a width of 500 mm, a specific weight from 60 to 350 g/m2, depending on the chosen material, the lines can operate under temperatures up to 420 degrees Celsius. Working under these extremely high temperatures allows for better material properties of the final application, higher performance, increased resistance and integrated high-performance functionalities e.g. by overmoulding.

Since 2017, MaruHachi Group is active in the European market in cooperation with Dr. Michael Effing,the CEO of AMAC GmbH, who advises and supports the company strategically. The established, family-owned MaruHachi Group has a strong history in automotive and medical textiles and has been active in the innovative composites market for more than 15 years.

Toshi Sugahara, CEO of MaruHachi: “For many years, we have already been cooperating with domestic and international partners on high-demand applications and therefore, MaruHachi decided now to invest over 1 million EUR in this new line in phase 1, including a funding participation from the Japanese government NEDO. New developments in phase 2 will be be undertaken by end of 2021 on the downstream technologies like the automated preforming and consolidation. With our new products, we want to contribute to significant weight reductions of the final products, thus improve energy efficiency while offering a cost-efficient and high-quality solution.”

Dr. Effing, CEO of AMAC GmbH confirms: „The focus on the niche of high-temperature products based on PPS and PEEK allows MaruHachi on very demanding high-end applications such as structural frames on space and aircrafts, aircraft seats or engine components etc. The tapes are fully recyclable and can be processed e.g. with high-speed with laser-based tape placement machines and robots.”

Source:

AMAC GmbH

(c) BB Engineering GmbH
26.11.2020

BBE's VacuFil recycling line for PET

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

BB Engineering has developed an innovative solution for the recycling of post-production polyester fibre waste, called VacuFil. Decades of experience in the areas of extrusion, filtration and spinning systems have been bundled into a new, innovative core component – the vacuum filter. It unites gentle large-scale filtration and controlled intrinsic-viscosity build-up for consistently outstanding melt quality. The attached vacuum swiftly and reliably removes volatile contamination and ensures a controlled IV-increase. Comprising an inline viscosity measuring unit connected with the vacuum unit the IV can be controlled continuously and reliably. Hence, producers are able to generate that specific kind of recycled polyester they need for their application.

Source:

BB Engineering GmbH

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

13.11.2020

The AVK presents its awards virtually for the first time

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

The AVK – Industrievereinigung Verstärkte Kunststoffe e.V. – has once again announced the winners of its prestigious Innovation Awards. Decided by an expert jury, the awards recognise and honour sustainable innovations in three categories: “Innovative Products/Applications”, “Innovative Processes” and “Research and Science”.

Overview of all the winners in the three categories:

Category “Innovative Products/Applications”
1st Place: “Directly-cooled electric motor with integral lightweight housing made of fibre reinforced polymers - DEmiL” – developed by the Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany, in partnership with the Karlsruhe Institute of Technology and Sumitomo Bakelite Co., Ltd.*

2nd Place: “Intrinsically Reprocessable, Repairable and Recyclable (3R) thermoset composites for more Competitive and Sustainable Industries” – developed by cidetec, Donostia-San Sebastian, Spain*

3rd Place: “Fireproof composite metal hybrid structure – LEO® fire protection sandwich with integrated Hyconnect steel-glass hybrid connector” – developed by SAERTEX GmbH & Co. KG and Hyconnect GmbH.*

Category “Innovative Processes”
1st Place: “Robotised Injection Moulding (ROBIN)” – developed by Robin, Dresden with the Institute for Lightweight Engineering and Polymer Technology at the TU Dresden*

2nd Place: “Omega stringer from the roll” – developed by the German Aerospace Center, Braunschweig*

3rd Place: “Hybrid die-casting – manufacturing of intrinsic CFRP-aluminium composite structures in aluminium high-pressure die-casting” – developed by Faserinstitut Bremen e. V. with Fraunhofer IFAM, Bremen*

Category “Research and Science”:
1st Place: “New high-temperature resistant UP resins and toughening agents” – developed by Münster University of Applied Sciences with BASF SE Global New Business Development, Leibniz Institute for Polymer Research e. V., Saertex multicom GmbH*

2nd Place: “Scientific basis for the industrial application of the thermoplastic resin transfer moulding (T-RTM) process” – developed by Fraunhofer Institute for Chemical Technology ICT, Pfinztal*

3rd Place: “The material- and energy-efficient production of turbine struts by the integrative combination of thermoset fibre reinforced materials” – developed by the Institute of Polymer Technology, University of Erlangen-Nuremberg with the German Aerospace Center, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.

Award ceremony on the Internet for the first time
For the first time, due to the Covid-19 pandemic, the award ceremony took place as an online event on 12 November 2020. Many of the award winners’ innovations will be presented again in this year’s AVK Innovation Award brochure. This will be available online: https://www.avk-tv.de/innovationaward.php

 

*Please see attached document for more information.

 

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

ECONNECTION: new collaborative business model (c) GB Network
11.11.2020

ECONNECTION: new collaborative business model

  • A new collaborative business model gives life to ECONNECTION: an eco-high-tech collection designed thinking of the “end of life”

Three premium textile companies, one common goal: jointly offer ready to use, coordinated solutions that are design driven, performing and responsible also at the end of life.

Penn Textile Solutions/Penn Italia - international company producing and developing innovative fabrics through warp and weft knitting technologies, Tessitura Colombo Antonio, famous for the processing of lace and ribbons dedicated to the world of corsetry , Elastici Besana specialized in the production of narrow elastic for corsetry and underwear, have been working together to expand the frontiers of sustainable manufacture practices and to offer an innovative collection , a new set of incredible eco high tech innovations delivering a responsibility concept including also the end of life : ECONNECTION.

The responsible ECONNECTION collection, in which the words ECO and CONNECTION mixed to underline the importance of connect and come together for a sustainable project, features:

  • A new collaborative business model gives life to ECONNECTION: an eco-high-tech collection designed thinking of the “end of life”

Three premium textile companies, one common goal: jointly offer ready to use, coordinated solutions that are design driven, performing and responsible also at the end of life.

Penn Textile Solutions/Penn Italia - international company producing and developing innovative fabrics through warp and weft knitting technologies, Tessitura Colombo Antonio, famous for the processing of lace and ribbons dedicated to the world of corsetry , Elastici Besana specialized in the production of narrow elastic for corsetry and underwear, have been working together to expand the frontiers of sustainable manufacture practices and to offer an innovative collection , a new set of incredible eco high tech innovations delivering a responsibility concept including also the end of life : ECONNECTION.

The responsible ECONNECTION collection, in which the words ECO and CONNECTION mixed to underline the importance of connect and come together for a sustainable project, features:

  • 7 advanced knitted stretch fabrics by Penn Textile Solutions/Penn Italia,
  • 3 precious laces by Tessitura Colombo Antonio
  • 3 functional bands by Elastici Besana

So, 3 key leading companies with a key target : to design and deliver the market amazing responsible fabrics able to offer a responsible end of life. This opened up the door to new generation of ingredients such as:

  • ROICA™ V550 made by leading fiber manufacturer Asahi Kasei, a premium sustainable stretch yarn that at the end of his life smartly breaks down without releasing harmful substances in the environment according to Hohenstein Environment Compatibility Certification and also boasting the Gold Level Material Health Certificate by Cradle-to-Cradle Product Innovation Institute** as it has been evaluated for impact on human and environmental health.
  • Amni Soul Eco®, the world’s first biodegradable in anaerobic conditions polyamide 6.6 yarn that degrades in around 5 years* after disposing in landfill, developed by SOLVAY and produced and distributed in Italy by FULGAR.

The collection is presented in its BIO -BOX that will be sent to selected brands at worldwide level

A smart project that highlights the importance of synergies between companies know how, and new generation of materials , that is able to take products to a new level of responsible innovation, technology and exceptional performances where beauty and function will be able to carry the smart factor for the values they represent for the consumer and highlighting for the first time also the importance of their end of life.

Moncler launches Grenoble collection with Dyneema® Composite Fabric (c) DSM Protective Materials
DSM Protective Materials DSMPMPR003b
11.11.2020

Moncler launches Grenoble collection with Dyneema® Composite Fabric

  • Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announced that, for the first time, Dyneema® Composite Fabrics are used by Moncler in the Fall/Winter 2020 Grenoble collection, which fuses form and function into high performance skiwear.

Moncler Grenoble is born of a passion for research and implements cutting-edge technology to push the limits of its potential. The design team identified Dyneema® as an innovative fabric it could use to push the level of its performance to the next peak, incorporating the material into the new collection as a departure from the conventional use of cotton and polyester.

  • Royal DSM, a global science-based company in Nutrition, Health and Sustainable Living, today announced that, for the first time, Dyneema® Composite Fabrics are used by Moncler in the Fall/Winter 2020 Grenoble collection, which fuses form and function into high performance skiwear.

Moncler Grenoble is born of a passion for research and implements cutting-edge technology to push the limits of its potential. The design team identified Dyneema® as an innovative fabric it could use to push the level of its performance to the next peak, incorporating the material into the new collection as a departure from the conventional use of cotton and polyester.

Sandro Mandrino, the Head of Design for Moncler Grenoble, was the first designer of the luxury fashion brand to incorporate Dyneema® into one of his creations through the Moncler Genius project. The Moncler Genius project advocates radical co-creation where multiple designers create their own signature collections in collaboration with the house. Together, these collections translate into one vision of the future and, as one of the nine designers, Mandrino’s interpretation of the future of fashion features Dyneema® Composite Fabric.

Using variations of the fabric in both white and black allowed Mandrino to bring his vision to life by merging skiwear, space suits and technology all in one. “ 3 Moncler Grenoble is first and foremost about performance,” states Mandrino, who integrated constructive solutions with fabric technology to develop a line that was meant to perform both on and off the ski slopes.

Dyneema®, the world’s strongest and lightest fiber, is 15 times stronger than steel yet light enough to float on water. The unmatched performance and protection of products made with Dyneema® have made it the material of choice in critical applications where failure is not an option for more than 30 years. In fabric form, Dyneema® is available in composites, denim, knits, wovens and hybrids for composite reinforcements. And because Dyneema® fabrics are made using Dyneema® fiber, they intrinsically provide high strength, low weight, waterproof and breathable properties – allowing designers to fuse the technical performance of ultra-light products with aesthetic design that doesn’t sacrifice strength or durability.

The Moncler team used the Grenoble collection as an opportunity to experiment and further understand the nature and behavior of Dyneema® fabrics, while simultaneously incorporating material performance with practical design. “Future collections will focus on expanding to new designs and fabric options in collaboration with DSM,” adds Mandrino.

“We are very excited to be working with the Moncler team to launch a collection of wonderful garments that allow people to explore the outdoors more safely and for longer periods of time,” states Marcio Manique, Global Business Director, Consumer & Professional Protection, DSM Protective Materials. “We look forward to further supporting Moncler as they develop innovative, high-tech garments that are also sustainably sourced through the introduction of bio-based Dyneema® fabrics.”

In line with DSM’s commitment to protect people and the environment they live in, the world’s first-ever bio-based ultra-high molecular weight polyethylene fiber was introduced in May 2020. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE. DSM and Moncler’s continued partnership will not only provide high performance, light weight garments for outdoor enthusiasts but also environmentally sustainable alternatives that contribute to a more circular economy.

Erstklassige Wischtücher mit Phantom-Technologie (c) Oerlikon Manmade Fibers
Phantom technology enables greater freedom for formulating continuous and discrete fibers allows for more flexible and absorbent structures and highly textured materials.
22.10.2020

First class wipes with Phantom technology

Neumünster – Success is built by connecting the right people with the right product. In a global marketplace, this means collaboration is just as important as competition. Companies need to focus on their strengths, while finding practical ways to innovate and expand upon their capabilities.

An exclusive license from Procter & Gamble offers the best for nonwovens

In order to do so, working together often makes the most sense. This is what motivated Procter & Gamble and Oerlikon Nonwoven – Teknoweb Materials to agree on an exclusive license agreement to market and sell the Phantom platform worldwide.

Neumünster – Success is built by connecting the right people with the right product. In a global marketplace, this means collaboration is just as important as competition. Companies need to focus on their strengths, while finding practical ways to innovate and expand upon their capabilities.

An exclusive license from Procter & Gamble offers the best for nonwovens

In order to do so, working together often makes the most sense. This is what motivated Procter & Gamble and Oerlikon Nonwoven – Teknoweb Materials to agree on an exclusive license agreement to market and sell the Phantom platform worldwide.

The patented process for hybrid nonwovens combines the best of both airlaid and spunmelt technologies to deliver new, flexible ways of creating wet and dry wipes. Phantom technology offers additional benefits by reducing resources and cost, while increasing overall performance. The exclusive license gives Oerlikon Nonwoven – Teknoweb Materials distribute this technology worldwide. In addition, Oerlikon Nonwoven – Teknoweb Materials have further refined the process into their own Levra technology – an entry-level option which offers tailored production volumes with lower investment costs but is still suitable to be upgraded to the premium Phantom model in the future.

Quality products that cost less

Essentially, Phantom technology was developed to produce hybrid substrates. The spunmelt and airlaid processes are merged into one step to combine cellulose fibers, long fibers such as cotton, or even powders with polymer fibers in unprecedented ways. This technology has clear advantages in terms of resources, performance, and cost compared to the previous processes on the market. By removing hydroentanglement, it is no longer necessary to dry the material. Adjusting the process can optimize relevant product characteristics such as softness, strength, dirt absorption, and liquid absorption. In the end, this even increases the quality of the product itself.

The greater freedom for formulating continuous and discrete fibers allows for more flexible and absorbent structures and highly textured materials. Wipes feel softer to the touch while providing more protection for the hands. Up to 90% of the material can consist of pulp fibers, although natural alternatives like cotton or synthetic fibers can be added to the mix.

Phantom technology has not only found a practical application in a variety of wipes – such as hygiene wipes, anti-bacterial wipes, surgical wipes, or industrial wipes – but also in absorbent cores, for instance indiapers or fempro products. With so many applications, Oerlikon Nonwoven – Teknoweb Materials are fully prepared to deliver Procter & Gamble’s innovative Phantom technology to the global nonwovens market.

Source:

Oerlikon Manmade Fibers

Lenzing wins State Prize for Innovation with sustainable nonwovens technology (c) Lenzing Aktiengesellschaft
Lenzing Aktiengesellschaft
21.10.2020

Lenzing: State Prize for Innovation with sustainable nonwovens technology

  • On October, 20th, 2020, the State Prize for Innovation was awarded to the Lenzing Group for their LENZING™ Web Technology.
  • Lenzing thus received the highest award for particularly innovative achievements in Austria.

Lenzing – On Tuesday, October 20, 2020, the Lenzing Group was awarded the coveted “State Prize for Innovation”. Lenzing emerged as the winner with its project LENZING™ Web Technology and thus received the highest recognition for particularly innovative achievements in Austria. The novel process combines fiber and nonwovens production in only one step, setting new standards in terms of efficiency, circularity and ecological sustainability. Margarete Schramböck, Federal Minister for Digital and Economic Affairs, presented the award to Gert Kroner, Vice President Global Research & Development.

  • On October, 20th, 2020, the State Prize for Innovation was awarded to the Lenzing Group for their LENZING™ Web Technology.
  • Lenzing thus received the highest award for particularly innovative achievements in Austria.

Lenzing – On Tuesday, October 20, 2020, the Lenzing Group was awarded the coveted “State Prize for Innovation”. Lenzing emerged as the winner with its project LENZING™ Web Technology and thus received the highest recognition for particularly innovative achievements in Austria. The novel process combines fiber and nonwovens production in only one step, setting new standards in terms of efficiency, circularity and ecological sustainability. Margarete Schramböck, Federal Minister for Digital and Economic Affairs, presented the award to Gert Kroner, Vice President Global Research & Development.

“This award is a great recognition of our work. Our goal is to grow continuously with sustainable innovations and to look beyond our fibers, to the needs of our customers and partners and to the needs of consumers worldwide. With the LENZING™ Web Technology we have created an exciting and promising solution for eco-friendly products in line with our corporate strategy sCore TEN and support consumers in their daily needs in a sustainable way”, says Stefan Doboczky, Chief Executive Officer of the Lenzing Group.

Biodegradable nonwovens for a clean environment

The pollution of the environment by plastics is one of the most urgent problems of our time. Every day, millions of hygiene products and wipes around the globe end up in garbage and sewage. Most of them consist of up to 80 percent polyester or other fossil, non-biodegradable materials and therefore pollute the environment. With the LENZING™ Web Technology, Lenzing has developed a patented technology to counter this problem: Sustainable and eco-friendly nonwovens are produced from the renewable raw material wood. These are not only plastic-free, they also score points for their particularly high environmental friendliness. “Thanks to a unique self-bonding mechanism, in which the filaments bond with each other during the spinning process, binders, which are found in many nonwovens, are no longer needed. As a result, the nonwovens produced with LENZING™ Web Technology are 100 percent biodegradable and do not pollute either humans or the environment”, says Gert Kroner, Vice President Global Research & Development of the Lenzing Group.

The Austrian State Prize for Innovation is awarded annually by the Federal Ministry for Digital and Economic Affairs to the most innovative Austrian company. In 2020, the competition took place for the 40th time.

Baldwin Technology (c) Baldwin Technology Company Inc. / Barry-Wehmiller
29.09.2020

Customers invited to learn about Baldwin’s finishing systems at virtual textile events

Baldwin Technology Company Inc. will be offering two virtual opportunities for customers to learn more about the company’s innovative non-contact spray finishing systems. These technologies will be showcased in October during an in-depth webinar event, as well as during the Innovate Textile and Apparel Virtual Trade Show.

The interactive and free webinar “How to Deliver Sustainability with Non-Contact Spray” will be held twice on October 13, with a recording provided for all who register for later viewing. During this event, industry veteran Rick Stanford, Baldwin’s Business Development Leader for textiles, will discuss the sustainable functionality of the Precision Spray and Ahlbrandt Rotor Spray technologies.

Baldwin Technology Company Inc. will be offering two virtual opportunities for customers to learn more about the company’s innovative non-contact spray finishing systems. These technologies will be showcased in October during an in-depth webinar event, as well as during the Innovate Textile and Apparel Virtual Trade Show.

The interactive and free webinar “How to Deliver Sustainability with Non-Contact Spray” will be held twice on October 13, with a recording provided for all who register for later viewing. During this event, industry veteran Rick Stanford, Baldwin’s Business Development Leader for textiles, will discuss the sustainable functionality of the Precision Spray and Ahlbrandt Rotor Spray technologies.

The Innovate Textile and Apparel Virtual Trade Show will take place online October 15 to 30. In Baldwin’s virtual booth, the company will showcase its non-contact spray systems for finishing and remoistening. Its TexCoat G4, TexMoister G2 and Ahlbrandt Rotor Spray technologies are designed to save chemistry, time and production costs, while enabling sustainable textile production.

“We are excited to present our revolutionary non-contact spray systems during the webinar and the virtual Innovate Textile and Apparel show,” said Stanford. “Participants will learn how non-contact spray has become a game-changing technology in sustainable textile finishing. It dramatically cuts chemical waste and energy consumption, while increasing productivity and quality. We will show attendees how our systems work and in what applications they are ideal for, as well as take questions. These are great opportunities to experience innovations that drastically improve both the process and product quality, while saving time and chemistry, and contributing to a more sustainable future.”

More information:
spray application
Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

Xcut tissue saw (c) Paper Converting Machine Company PCMC
03.09.2020

PCMC’s Xcut tissue saw monitors blade condition via innovative technology

New blade edge and integrity sensors save operators time and money

Paper Converting Machine Company (PCMC), part of Barry-Wehmiller, has announced that the Xcut saw, its newest tissue saw, now includes innovative sensors that monitor saw blade condition. This new technology tracks the edge of the blade and monitors it for the earliest indications of a blade crash.

The blade edge sensor monitors the current diameter of the blade, and automatically adjusts functions like grinder depth and other blade wear compensations. This sensor also gathers data that can be used to study the blade wear rate. Using a blade diameter measurement, which is performed in real time, along with the number of cuts and grind parameters, the PLC can fit a regression function to this data to inform the operator of the estimated number of cuts remaining on the blade for a given product diameter. Understanding blade wear allows operators to more easily optimize the process and preplan for blade changes.

New blade edge and integrity sensors save operators time and money

Paper Converting Machine Company (PCMC), part of Barry-Wehmiller, has announced that the Xcut saw, its newest tissue saw, now includes innovative sensors that monitor saw blade condition. This new technology tracks the edge of the blade and monitors it for the earliest indications of a blade crash.

The blade edge sensor monitors the current diameter of the blade, and automatically adjusts functions like grinder depth and other blade wear compensations. This sensor also gathers data that can be used to study the blade wear rate. Using a blade diameter measurement, which is performed in real time, along with the number of cuts and grind parameters, the PLC can fit a regression function to this data to inform the operator of the estimated number of cuts remaining on the blade for a given product diameter. Understanding blade wear allows operators to more easily optimize the process and preplan for blade changes.

In addition, the Xcut saw features a fiber optic blade integrity sensor. A blade with a chip or portion of the edge missing will produce cuts with streaks or shreds that are unacceptable to most producers. The defect is usually detected only after a significant amount of product is cut and potentially passed on to the packaging operations. The material expense, lost production and time it takes to purge the product from the system are costly. During normal operation, the sensor is covered by the blade. If at any point the sensor becomes uncovered, it puts the saw into emergency stop mode. The sensor would only become uncovered if the blade crashes or breaks. The emergency stop prevents further damage to the saw caused by slinging blade fragments.

“The blade edge technologies, along with the many other innovations on the Xcut, make the saw easier to maintain and safer to operate,” said Jonathon Zahn, PCMC’s Lead Mechanical Engineer for the Xcut. “Ease of use and operator safety are always goals when developing new products at PCMC.”

 

Source:

Paper Converting Machine Company PCMC

Huntsman Textile Effects Delivers Sustainable Solution For Wool Dyeing: Lanasol® Ce Dyes, The Effective Alternative To After- Chrome Dyes (c) Huntsman Corporation
LANASOL® CE
02.09.2020

Huntsman Textile Effects Delivers Sustainable Solution For Wool Dyeing: Lanasol® Ce Dyes, The Effective Alternative To After- Chrome Dyes

Optimum wool dyeing solution aligned to ZDHC MRSL standards

Singapore – Huntsman Textile Effects’ LANASOL® CE dyes, provide the industry with the sustainable alternative to after-chrome dyes for wool. LANASOL® CE dyes offer a consistent, safe and reliable dyeing process that can effectively replace chrome dyes for wool. This helps mills conform to ZDHC MRSL standards and meet the stringent requirements of global brands and retailers.
The use of Chrome VI, including Dichromate, is banned in the ZDHC Manufacturing Restricted Substances List (ZDHC MRSL). Wool processors working for brands and retailers that have adopted ZDHC MRSL must therefore act quickly to finalize their chrome replacement developments.

Developed by Huntsman Textile Effects specifically to meet these challenges, LANASOL® CE is a state-of-the-art chrome-free dye range that allows mills to discontinue the use of after-chrome dyes. LANASOL® CE outperforms traditional after-chrome dyes across the board – at every level of dyeing and processing.

Optimum wool dyeing solution aligned to ZDHC MRSL standards

Singapore – Huntsman Textile Effects’ LANASOL® CE dyes, provide the industry with the sustainable alternative to after-chrome dyes for wool. LANASOL® CE dyes offer a consistent, safe and reliable dyeing process that can effectively replace chrome dyes for wool. This helps mills conform to ZDHC MRSL standards and meet the stringent requirements of global brands and retailers.
The use of Chrome VI, including Dichromate, is banned in the ZDHC Manufacturing Restricted Substances List (ZDHC MRSL). Wool processors working for brands and retailers that have adopted ZDHC MRSL must therefore act quickly to finalize their chrome replacement developments.

Developed by Huntsman Textile Effects specifically to meet these challenges, LANASOL® CE is a state-of-the-art chrome-free dye range that allows mills to discontinue the use of after-chrome dyes. LANASOL® CE outperforms traditional after-chrome dyes across the board – at every level of dyeing and processing.

“LANASOL® CE dyes have always been recognized as the leading brand in the wool industry. Our innovative dyeing auxiliaries and successful dyeing systems with LANASOL® CE provide the highest technical performance, helping customers to protect the natural beauty of wool, achieve water, energy and time savings while rendering chrome dyes obsolete,” said Alessandro Larghi, Global Marketing Manager for Wool at Huntsman Textile Effects.

As a champion of a sustainable textile industry, Huntsman Textile Effects has long been a strong advocate for the shift away from after-chrome dyes. Huntsman Textile Effects first introduced LANASOL® CE in 1997, before the introduction of any regulation on the restricted use of dichromate.

20.08.2020

Energy efficiency in textile dyeing and finishing - VDMA continues technology webtalks

  • Energy efficiency will be the topic of VDMA’s next edition of Textile Machinery Webtalks on 27 August 2020 (2 pm - 4 pm CEST).  

Efficient energy management is of increasing importance in textile dyeing and finishing. Innovative machine designs with minimal water and energy consumption as well as the recovery and use of the heat energy produced in the processes represent valuable potential savings for any modern company.

The presenters at a glance:

  • Energy efficiency will be the topic of VDMA’s next edition of Textile Machinery Webtalks on 27 August 2020 (2 pm - 4 pm CEST).  

Efficient energy management is of increasing importance in textile dyeing and finishing. Innovative machine designs with minimal water and energy consumption as well as the recovery and use of the heat energy produced in the processes represent valuable potential savings for any modern company.

The presenters at a glance:

  • Ludger Sommer, Thies, will show how to manage heat energy in wetprocessing.
  • Benjamin Schnabel, Brückner Textilmaschinen is going to demonstrate how to make one of the most energy consuming processes in textile manufacturing more sustainable, eco-friendly and cost effective.
  • Fabian Buckenmayer, PLEVA Sensors and Controls will inform about the specific opportunities for an energy-efficient textile production via measuring and controlling process parameters.  

After the presentations, the experts will be available to answer the participants' questions. The webtalk series is very well received by the textile industry. During the first three webtalks, VDMA welcomed almost 900 registered participants from more than 50 countries. Registration is still possible.

Source:

VDMA e. V. Textilmaschinen

 

CHEMLOGIS and SANITIZED AG: New strategic sales partnership for the Sanitized® antimicrobial polymer additives in Mexico (c) SANITIZED AG
CHEMLOGIS’s CEO Ing. León Freiman K.
30.07.2020

CHEMLOGIS and SANITIZED AG: New strategic sales partnership for the Sanitized® antimicrobial polymer additives in Mexico

Mexico and Switzerland - SANITIZED customers in the polymer industry in Mexico will profit from CHEMLOGIS’s expertise and established sales network. The Sanitized® antimicrobial additives for hygiene function and material protection for polymers will be marketed in Mexico by our new sales partner.

SANITIZED and CHEMLOGIS, two experts in their fields with similar understanding of values, have joined forces; both deal in high-performance products for the Polymer industry combined with the best possible service, which begins with the conception of value-added products and their optimum use. This collaboration with SANITIZED is a good fit for the portfolio as both companies focus on innovative, customer-specific solutions.

Mexico and Switzerland - SANITIZED customers in the polymer industry in Mexico will profit from CHEMLOGIS’s expertise and established sales network. The Sanitized® antimicrobial additives for hygiene function and material protection for polymers will be marketed in Mexico by our new sales partner.

SANITIZED and CHEMLOGIS, two experts in their fields with similar understanding of values, have joined forces; both deal in high-performance products for the Polymer industry combined with the best possible service, which begins with the conception of value-added products and their optimum use. This collaboration with SANITIZED is a good fit for the portfolio as both companies focus on innovative, customer-specific solutions.

With the addition of the antimicrobial Sanitized® additives at CHEMLOGIS, the Polymer industry gets a new overall package, offering more than just products for hygiene function and material protection. As an addition to the core product services, SANITIZED supports development and production, regulatory queries and marketing through the use of the Sanitized® Ingredient Brand, which characterizes the end products within their differentiation and emphasis on quality.

The antimicrobial additives for Polymers from SANITIZED protect end products from bacterial infestation, growth of algae and mildew, material degradation, biofilms, pink stain, and odors caused by microbes. The Polymer industry uses the antimicrobial additive in flooring, industrial coatings, artificial leather, roof membranes, pool liners, tarpaulins, and all extruded products.

“Everyone at CHEMLOGIS is very excited to partner with SANITIZED for the sale of their antimicrobial products to the Polymer processors in Mexico. Together we bring a highly focused approach to customer´s needs in terms of technology service and products” says CHEMLOGIS’s CEO Ing. León Freiman K.” “The technical competence and the strong customer focus impress me about CHEMLOGIS”, says Michael Lüthi, Head of BU Polymer at SANITIZED AG.

Source:

EMG

Sustainable leadership for GtA with new Monforts Montex wide width lines (c) AWOL Media
GtA Managing Director Andreas Niess
27.07.2020

Sustainable leadership for GtA with new Monforts Montex wide width lines

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

Following the successful commissioning of two new Monforts Montex wide-width stenter lines and additional environmental management equipment at its plant in Germany, GtA – Society for Textile Equipment GmbH – is aiming to be the first textile finishing company to become entirely CO2-neutral in the manufacture of all of its products by 2025.

GtA is a partner company to Germany’s large-format digital printing fabric leader, Georg and Otto Friedrich GmbH, which has has this year been able to considerably expand its portfolio due to the new Monforts lines.

Headquartered in Gross-Zimmern, close to Frankfurt, Georg and Otto Friedrich GmbH and its partners in Germany have an annual production of 37 million square metres of warp knits for a range of end-use applications, including garments, automotive interiors and technical textiles, but increasingly with a concentration on digital printing substrates.

Fault-free textiles

A new standard in pure white, 100% clean and fault-free textile substrates has been demanded by this market in recent years due to the rapid growth in digitally-printed banners and billboards – often referred to as ‘soft signage’.

The substrates of choice for digital printing are 100% polyester warp knits which are resilient and allow excellent take-up of inks, and vibrant colours and clear and precise images to be achieved with digital printing techniques. The knitted construction also has the advantage of elasticity, which is a plus in terms of flexibility for installers.

Critically, the warp knitted fabrics have extremely smooth surfaces which is becoming increasingly important due to the general move away from PVC coatings which were the standard in the past.

It was to finish these fabrics for Georg and Otto Friedrich GmbH as well as providing such services for many other customers, that the GtA plant in Neresheim, Baden-Württemberg, was established in 2015.

The purpose-built plant on a greenfield site was initially equipped with a fully-automated, 72 metre long Monforts installation comprising a washing machine integrated with a 3.6 metre wide, seven-chamber Montex stenter. The line quickly went from single to double shift production and then to 24/7 operation  to meet demand.

Expanded widths

Building on the success of this installation, GtA has now installed two more Montex stenter lines – both in expanded working widths of 5.6 metres and purpose-built at Montex GmbH in Austria.

A six-chamber Montex unit is combined with a washing machine to guarantee the purity of the substrates, while a five-chamber line is integrated with a wide-width coating machine. This new coating capability at GtA has led to a number of new additions to the Georg and Otto Friedrich DecoTex range for digital printing, including wide width fabrics with flame retardant, antimicrobial and non-slip finishes.

The new Montex stenter lines benefit from all of the latest innovations from Monforts, including the Smart Sensor system for the optimised maintenance planning of key mechanical wear components on the stenters. A comprehensive overview of the condition of all parts at any time is now available for operators within the highly intuitive Qualitex visualization software.

With Qualitex, all article-specific settings can be stored and the formulations for thousands of treatment processes called up again at any time. Individual operators can also personalise their dashboards with the most important machine functions and process parameters.

Environmental commitment

GtA is run by a seasoned team of textile professionals led by Managing Director Andreas Niess.

“We have received excellent service from Monforts from the outset and we were happy to place the order for these two new lines as part of our ongoing cooperation,” he says. “With all of the latest Monforts advances in technology we are fully in control of all production and quality parameters with these lines, as part of our significant commitment to innovative environmental technology.”

The GtA plant, which operates in near-cleanroom conditions, has also been equipped with proprietary technology to fully exploit the Monforts air-to-air heat recovery systems that are now standard with Montex stenters.

“Around 30 per cent of our investment volume at the site goes to energy-saving measures and we are sure that this commitment is worthwhile,” Mr Niess says. “As an example, our integrated heat recovery system fully exploits the waste heat from the process exhaust air and the burner exhaust gases of the Monforts stenters, allowing us to achieve an exhaust air temperature of  between 30 to 34°C, compared to what would conventionally be between 140 to 160°C. Another focus has been on exhaust air purification technology and here too, the latest technology has been installed with integrated heat recovery elements.”

This, he adds, saves 52% of the energy that would normally be used – equating to 5,800,000 KwH per year. The necessary audits for energy-efficient companies are also carried out annually.

In addition, GtA has purpose-designed the automatic chemical mixing and dosing systems that feed the padders for the key treatments that are carried out on the fabrics through the stenters.

The company is going further, however, in its pursuit of clean production and raw materials.

"We want to be an asset and not a burden on our immediate environment and therefore do not use any additives containing solvents," Mr Niess says. “We were the first to use fully halogen-free flame retardant chemistry, and we use bio-based, finely ground alumina products for the washing process instead of surfactants. PES polyester yarns made from recycled material are also increasingly used and the latest additions to our raw materials portfolio, the RC-Ocean products, are made from recycled sea plastic.

“We are now planning a combined heat and power plant for the production of electrical energy and heat and we will also build a photovoltaic system that converts solar radiation into electrical energy. GtA wants to be the first textile finishing company to be CO2-neutral in the manufacture of all of its products by 2025. The complete heat supply and heating for the 13,000 square metre production hall, as well as the office building and the hot water supply for the domestic water, is already energy-neutral. We are convinced that this commitment will pay off in the long term and our positive business development proves that sustainability and business profitability are perfectly compatible.”

In addition to the products for Georg and Otto Friedrich GmbH, GtA  offers its manufacturing capacities for other customers as a contract service.

All products are manufactured in accordance with Öko-Tex Standard 100, product class 1 and the company is also involved in the research and development of new sustainable manufacturing processes, in cooperation with many regional universities and funding project partners.

Source:

AWOL Media for A. Monforts Textilmaschinen GmbH & Co. KG

TAL - Eliminating EtO issues with Low Shrink SAF Fabrics (c) AWOL Media
SAF nonwovens can absorb up to 200 times their own weight in water.
21.07.2020

TAL - Eliminating EtO issues with Low Shrink SAF Fabrics

  • Technical Absorbents Limited (TAL) has developed a new grade of superabsorbent fibre (SAF) specifically for use within a new range of SAF nonwoven fabrics that are more resistant to shrinkage.

The new SAF was developed in response to the demand from the medical industry for a superabsorbent fabric suitable for use in advanced wound pad dressings. The fibre had to be capable of withstanding the moisture used in the EtO sterilization process that is frequently employed in the production of the pads, in order to ensure product safety and compliance.

EtO sterilization is a low-temperature process (typically between 37 and 63°C) that uses ethylene oxide gas to reduce the level of infectious agents. While generally applied in gas form, however, the EtO is usually mixed with other substances – and often steam.

  • Technical Absorbents Limited (TAL) has developed a new grade of superabsorbent fibre (SAF) specifically for use within a new range of SAF nonwoven fabrics that are more resistant to shrinkage.

The new SAF was developed in response to the demand from the medical industry for a superabsorbent fabric suitable for use in advanced wound pad dressings. The fibre had to be capable of withstanding the moisture used in the EtO sterilization process that is frequently employed in the production of the pads, in order to ensure product safety and compliance.

EtO sterilization is a low-temperature process (typically between 37 and 63°C) that uses ethylene oxide gas to reduce the level of infectious agents. While generally applied in gas form, however, the EtO is usually mixed with other substances – and often steam.

“Obviously superabsorbents and moisture generally aren’t a good combination at this stage in processing and can cause problems,” says TAL Product Development Director Dr Mark Paterson. “Other methods can be used, but when silicone materials are included, which is more frequently becoming the case, EtO is the preferred treatment method. Regular SAF grades tend to shrink a little and can become hard, which is often not desirable. This innovative SAF grade significantly reduces such potential problems.”

The amount of shrinkage caused by EtO sterilization depends very much on the product design and construction, he adds, but in general, the new SAF has been tested and proven to reduce fabric shrinkage by around 70%. It is suitable for use in all SAF nonwoven formats, whether needlepunched, thermally bonded or airlaid.

While the proprietary process developed at TAL for the production of this new fibre and resulting fabrics was prompted by the specific requirements of wound pad dressings, TAL sees opportunities for its application in other areas as well.

“It’s an extremely flexible fibre that can be easily switched with existing SAF grades when manufacturing fabrics and we have a number of current projects in which we’re exploring other end-uses,” Mark concludes. “We believe this new range could also open up entirely new application areas on the market.”