From the Sector

Reset
127 results
26.11.2024

Cellulose Fibres Conference 2025: Preliminary Program released

The upcoming conference on 12-13 March 2025 in Cologne, Germany, will pave pathways to a sustainable textile industry.

Over the past few weeks, the Conference Advisory Board, and the experts from the nova-Institute, have thoroughly reviewed and evaluated over 40 submitted abstracts. The selected external experts bring new insights and perspectives from the pulp, fibre and further developing industries, promising to spark and deepen discussions at the event. Their expertise across the entire fibre value chain will enrich the topics covered and ensure a dynamic and insightful exchange of ideas. The presentations will provide a platform for the discussion at the conference after each session, and the Advisory Board members will foster a lively debate to drive innovation industry-wide.

The upcoming conference on 12-13 March 2025 in Cologne, Germany, will pave pathways to a sustainable textile industry.

Over the past few weeks, the Conference Advisory Board, and the experts from the nova-Institute, have thoroughly reviewed and evaluated over 40 submitted abstracts. The selected external experts bring new insights and perspectives from the pulp, fibre and further developing industries, promising to spark and deepen discussions at the event. Their expertise across the entire fibre value chain will enrich the topics covered and ensure a dynamic and insightful exchange of ideas. The presentations will provide a platform for the discussion at the conference after each session, and the Advisory Board members will foster a lively debate to drive innovation industry-wide.

Biosynthetics on the rise
Besides cellulose fibres, bio-based polymer fibres ("biosynthetics") are an excellent option to reduce fossil fibres in textiles. Biosynthetics offer a powerful alternative to traditional synthetic fibres, bringing both performance and technical properties that make them drop-in replacements. Derived wholly or partially from natural, renewable sources like lactic acids, sugar beet, sugarcane or wood, biosynthetics represent a bio-based option compared to fossil-based counterparts. In a special session “Biosynthetics - Replacing Traditional Synthetic Fibres”, experts will explore the latest advances, challenges and opportunities in the field. Discussing innovative approaches like biosynthetics is essential to drive sustainable transformation within the fashion and textile industries.

Fibre-to-Fibre Recycling: A Path to a Sustainable Textile Industry
The textile industry is at a crucial crossroad. The need for sustainable solutions to meet the EU's ambitious climate change targets is becoming increasingly urgent. Fibre-to-fibre recycling, which transforms discarded textiles into new, virgin fibres, holds great promise for reducing waste and resource consumption and helps to close the loop in textile production. While Europe has made progress in this area, challenges remain – in particular the management of mixed fibre textiles and the scaling up of recycling technologies. As new approaches are needed to tackle climate change, one session of the conference will focus on fibre-to-fibre recycling from textiles, exploring the latest innovations and technological advances, as well as the opportunities and barriers that need to be addressed to move the industry towards a circular, sustainable future.

Fibre Microplastic Formation versus Marine Biodegradability
The environmental impact of textiles extends far beyond landfill, with microplastics from synthetic fibres becoming a growing concern in marine ecosystems. A session at the conference will focus on the complex relationship between microplastic formation and marine biodegradability. While synthetic fibres shed microplastics during washing, these tiny particles, known as microfibres accumulate in the oceans and pose a serious threat to marine life. This session will explore the factors that influence fibre degradation in the marine environment and examine the potential of biodegradable fibres to reduce long-term pollution. Leading research institutes will discuss the challenges of balancing the prevention of microplastics with the development of fibres that can degrade naturally in marine ecosystems, and provide insights into innovative solutions that could help mitigate this pressing environmental issue.

Innovation Award “Cellulose Fibre Innovation of the Year 2025”
The nova-Institute, together with GIG Karasek, is looking for the best fibre innovations of the year. Applicants from the area of cellulose fibres as well as biosynthetics are welcome to submit their innovations. Technologie providers, research institutes or producers can apply until 30 November 2024. The innovation award “Cellulose Fibre Innovation of the Year 2025” is sponsored by GIG Karasek.

Apply for the “Cellulose Fibre Innovation of the Year 2025” award: cellulose-fibres.eu/award-application

Call for Posters
The poster exhibition is a highly anticipated scientific event at the conference, especially for early career scientists. Poster submission is open until 31 January 2025.

More information:
Cellulose Fibres Conference
Source:

nova-Institut für politische und ökologische Innovation GmbH

26.11.2024

Cellulose Fibres Conference 2025: Preliminary Program released

The upcoming conference on 12-13 March 2025 in Cologne, Germany, will pave pathways to a sustainable textile industry.

Over the past few weeks, the Conference Advisory Board, and the experts from the nova-Institute, have thoroughly reviewed and evaluated over 40 submitted abstracts. The selected external experts bring new insights and perspectives from the pulp, fibre and further developing industries, promising to spark and deepen discussions at the event. Their expertise across the entire fibre value chain will enrich the topics covered and ensure a dynamic and insightful exchange of ideas. The presentations will provide a platform for the discussion at the conference after each session, and the Advisory Board members will foster a lively debate to drive innovation industry-wide.

The upcoming conference on 12-13 March 2025 in Cologne, Germany, will pave pathways to a sustainable textile industry.

Over the past few weeks, the Conference Advisory Board, and the experts from the nova-Institute, have thoroughly reviewed and evaluated over 40 submitted abstracts. The selected external experts bring new insights and perspectives from the pulp, fibre and further developing industries, promising to spark and deepen discussions at the event. Their expertise across the entire fibre value chain will enrich the topics covered and ensure a dynamic and insightful exchange of ideas. The presentations will provide a platform for the discussion at the conference after each session, and the Advisory Board members will foster a lively debate to drive innovation industry-wide.

Biosynthetics on the rise
Besides cellulose fibres, bio-based polymer fibres ("biosynthetics") are an excellent option to reduce fossil fibres in textiles. Biosynthetics offer a powerful alternative to traditional synthetic fibres, bringing both performance and technical properties that make them drop-in replacements. Derived wholly or partially from natural, renewable sources like lactic acids, sugar beet, sugarcane or wood, biosynthetics represent a bio-based option compared to fossil-based counterparts. In a special session “Biosynthetics - Replacing Traditional Synthetic Fibres”, experts will explore the latest advances, challenges and opportunities in the field. Discussing innovative approaches like biosynthetics is essential to drive sustainable transformation within the fashion and textile industries.

Fibre-to-Fibre Recycling: A Path to a Sustainable Textile Industry
The textile industry is at a crucial crossroad. The need for sustainable solutions to meet the EU's ambitious climate change targets is becoming increasingly urgent. Fibre-to-fibre recycling, which transforms discarded textiles into new, virgin fibres, holds great promise for reducing waste and resource consumption and helps to close the loop in textile production. While Europe has made progress in this area, challenges remain – in particular the management of mixed fibre textiles and the scaling up of recycling technologies. As new approaches are needed to tackle climate change, one session of the conference will focus on fibre-to-fibre recycling from textiles, exploring the latest innovations and technological advances, as well as the opportunities and barriers that need to be addressed to move the industry towards a circular, sustainable future.

Fibre Microplastic Formation versus Marine Biodegradability
The environmental impact of textiles extends far beyond landfill, with microplastics from synthetic fibres becoming a growing concern in marine ecosystems. A session at the conference will focus on the complex relationship between microplastic formation and marine biodegradability. While synthetic fibres shed microplastics during washing, these tiny particles, known as microfibres accumulate in the oceans and pose a serious threat to marine life. This session will explore the factors that influence fibre degradation in the marine environment and examine the potential of biodegradable fibres to reduce long-term pollution. Leading research institutes will discuss the challenges of balancing the prevention of microplastics with the development of fibres that can degrade naturally in marine ecosystems, and provide insights into innovative solutions that could help mitigate this pressing environmental issue.

Innovation Award “Cellulose Fibre Innovation of the Year 2025”
The nova-Institute, together with GIG Karasek, is looking for the best fibre innovations of the year. Applicants from the area of cellulose fibres as well as biosynthetics are welcome to submit their innovations. Technologie providers, research institutes or producers can apply until 30 November 2024. The innovation award “Cellulose Fibre Innovation of the Year 2025” is sponsored by GIG Karasek.

Apply for the “Cellulose Fibre Innovation of the Year 2025” award: cellulose-fibres.eu/award-application

Call for Posters
The poster exhibition is a highly anticipated scientific event at the conference, especially for early career scientists. Poster submission is open until 31 January 2025.

More information:
Cellulose Fibres Conference
Source:

nova-Institut für politische und ökologische Innovation GmbH

13.11.2024

Dornbirn Global Fiber Congress 2025: Call for Papers

The Dornbirn GFC invites researchers, experts, manufacturers, and practitioners to submit papers for the 64th congress in September 2025, providing a platform for presenting innovations shaping the fiber and textile industries' future.

Submissions on the following topics are welcome:

Work- & Protective Wear & Defense

  • Smart textiles providing real-time data for first responders
    (e.g., firefighters, soldiers, police, industrial workers)
  • Flame-resistant fabrics for multi-risk environments, combining protection with flexibility and comfort
  • Sustainability in production, eco-friendly materials, and recycling innovations for workwear and protective apparel

Carbon Stewardship: Harnessing Biomass & Recycling & Capture for a Sustainable Future

  • Use of sustainable biomass in textile production
  • Innovations in post-consumer textile recycling and chemical recycling methods
  • Carbon capture technologies integrated across the value chain

Fiber Innovations: From Production to Application

The Dornbirn GFC invites researchers, experts, manufacturers, and practitioners to submit papers for the 64th congress in September 2025, providing a platform for presenting innovations shaping the fiber and textile industries' future.

Submissions on the following topics are welcome:

Work- & Protective Wear & Defense

  • Smart textiles providing real-time data for first responders
    (e.g., firefighters, soldiers, police, industrial workers)
  • Flame-resistant fabrics for multi-risk environments, combining protection with flexibility and comfort
  • Sustainability in production, eco-friendly materials, and recycling innovations for workwear and protective apparel

Carbon Stewardship: Harnessing Biomass & Recycling & Capture for a Sustainable Future

  • Use of sustainable biomass in textile production
  • Innovations in post-consumer textile recycling and chemical recycling methods
  • Carbon capture technologies integrated across the value chain

Fiber Innovations: From Production to Application

  • Biopolymer & Natural Fibers
  • Textile Processing & Application
  • Nonwoven Processing & Application

Cross-Industry Session

  • Energy Transition
  • Pulp & Paper & Packaging Innovation
More information:
Dornbirn GFC call for papers
Source:

AUSTRIAN FIBERS INSTITUTE

VDMA Press Conference ITMA ASIA 2024 VDMA Textile Machinery
VDMA Press Conference ITMA ASIA 2024
14.10.2024

Smart technologies for green textile production at ITMA ASIA + CITME 2024

With 42 exhibiting member companies, ITMA ASIA + CITME 2024 is once again marked by a strong presence of VDMA companies. They cover nearly all different machinery chapters with a focus on spinning and man-made fibers, nonwovens, weaving, braiding, knitting & warp knitting, finishing & dyeing as well as technologies for textile recycling and processing of recycled material.
In total, the German participation at the fair is the largest from outside China.

The VDMA team in Shanghai is staffed again with colleagues from the VDMA headquarters in Germany as well as from VDMA China. With these joined forces, the team is well prepared to support the exhibiting member companies on site.

With 42 exhibiting member companies, ITMA ASIA + CITME 2024 is once again marked by a strong presence of VDMA companies. They cover nearly all different machinery chapters with a focus on spinning and man-made fibers, nonwovens, weaving, braiding, knitting & warp knitting, finishing & dyeing as well as technologies for textile recycling and processing of recycled material.
In total, the German participation at the fair is the largest from outside China.

The VDMA team in Shanghai is staffed again with colleagues from the VDMA headquarters in Germany as well as from VDMA China. With these joined forces, the team is well prepared to support the exhibiting member companies on site.

Dr. Harald Weber, Managing Director VDMA Textile Machinery Association, summarised: “Although facing a difficult market situation, this year’s ITMA ASIA is an essential showcase for the member companies of the VDMA Textile Machinery Association. There is definitely no shortage of chances and opportunities in China and other Asian markets. The exhibiting members will demonstrate their smart technologies that can pave the way to a green textile production and are looking forward to welcoming numerous visitors from various countries to their booths in Shanghai.”

China is aiming at a green and low CO2 development of its textile industry. At a press conference on the first day of ITMA ASIA + CITME, Georg Stausberg, member of the board of VDMA Textile Machinery and CEO of the Oerlikon Polymer Processing Solutions Division said: “Topics, such as energy efficiency and the careful use of resources have become increasingly important for Asian customers in recent years, not least due to stricter legal framework conditions. VDMA members and their technologies are the right partners on the road to a greener and low CO2 textile production.”
 
Export performance
Already in 2023, the global textile machinery exports decreased by 18.6 % compared to 2022. This was a challenge all major textile machinery producing countries had to face. However, the German exports remained relatively strong and only declined by 3.4 % in 2023. 2024 did not see a change in the global textile industry and thus the German exports have now also dropped significantly. Between January and July 2024, German exports of textile machinery and accessories summed up to 1.2 billion € (2023: 1.6 billion €). The shipping to almost all major markets decreased between January and July: China: 242 million € (2023: 384 million €), Turkey: 140 million € (2023: 180 million €), USA: 118 million € (2023: 152 million €), India: 100 million € (2023: 153 million €).

Sales opportunities in Asia
An economic survey of VDMA in September, to which 20 textile machinery companies replied, reflects the global challenging situation. Around 36 % assessed their current business situation as satisfactory, 54 % said it was bad. Only very few companies expect the global situation to improve in the next six months.

However, looking at the sales opportunities by regions/countries in Asia, most of the responding companies expect a better business situation in the Asian markets except China in six months. The business situation is expected to be on a satisfactory level then. With regard to this, a presence at ITMA ASIA in Shanghai and next year in Singapore is important for VDMA members to continuously show their innovations and to keep contact with the customers in Asia.

Source:

VDMA Textile Machinery

Photo Envision Racing Team, Teijin Carbon Europe GmbH
02.10.2024

Advanced Composite Technologies for Formula E Racing

Teijin has teamed up with Germany's herone GmbH and the UK's Envision Racing to develop a composite wishbone which has the capability be used in a Formula E racing car using Tenax™ ThermoPlastics.

The new component is specifically designed to maximize performance while minimizing weight. By utilizing recycled materials from the aerospace industry and implementing herone's innovative pressing process, the partners are setting an example of environmental consciousness and technological excellence.

Multiple demonstrator parts were produced utilizing Tenax™ ThermoPlastic UniDirectional (TPUD) tapes. The material was braided to form the rod structure of the component. Recycled offcuts from part manufacturing in the aerospace industry were used for the functional elements. Those offcuts were injection molded to sockets which are needed for load introduction into the rod structure. herone’s innovative pressing process then compression molded the braids and at the same time co-consolidated the sockets into the rod structure to form the final part. All materials in this study were based on PPS polymer - thus making it attractive for further end-of-life recycling.

Teijin has teamed up with Germany's herone GmbH and the UK's Envision Racing to develop a composite wishbone which has the capability be used in a Formula E racing car using Tenax™ ThermoPlastics.

The new component is specifically designed to maximize performance while minimizing weight. By utilizing recycled materials from the aerospace industry and implementing herone's innovative pressing process, the partners are setting an example of environmental consciousness and technological excellence.

Multiple demonstrator parts were produced utilizing Tenax™ ThermoPlastic UniDirectional (TPUD) tapes. The material was braided to form the rod structure of the component. Recycled offcuts from part manufacturing in the aerospace industry were used for the functional elements. Those offcuts were injection molded to sockets which are needed for load introduction into the rod structure. herone’s innovative pressing process then compression molded the braids and at the same time co-consolidated the sockets into the rod structure to form the final part. All materials in this study were based on PPS polymer - thus making it attractive for further end-of-life recycling.

The use of these advanced materials makes it possible to reduce weight, minimize emissions, and increase performance at the same time. The combination of design and functionality opens new possibilities for future developments in the field of motorsport and beyond. We look forward to continuing to develop innovative solutions based on thermoplastic composites together with our partners and customers.

Source:

Teijin Carbon Europe GmbH

Freudenberg Apparel´s Film Bonding series product in tape form. © Freudenberg Performance Materials
Freudenberg Apparel´s Film Bonding series product in tape form.
12.09.2024

Freudenberg: New Film Bonding series for sew-free garments

Freudenberg Performance Materials Apparel (Freudenberg Apparel) introduces the innovative Film Bonding series. This new line of solutions is expertly designed for advanced sew-free bonding applications, enhancing the manufacturing process with modern efficiency and precision. In conjunction with this launch, Freudenberg Apparel is expanding its Net Bonding and Dot Bonding series, further broadening its range of seamless adhesive solutions to cater to the specific demands of the Stretch Active, Intimate, and Athleisure wear segments.

Freudenberg Apparel's Film Bonding series features a film structure with a high-quality adhesive, delivering robust shear bond and recovery. This enables garments to conform to the body's shape while retaining their shape and integrity after stretching, significantly improving durability and wearer comfort. By eliminating bulky seams, the Film Bonding series also provides a clean, smooth finish to fabric surfaces.

Freudenberg Performance Materials Apparel (Freudenberg Apparel) introduces the innovative Film Bonding series. This new line of solutions is expertly designed for advanced sew-free bonding applications, enhancing the manufacturing process with modern efficiency and precision. In conjunction with this launch, Freudenberg Apparel is expanding its Net Bonding and Dot Bonding series, further broadening its range of seamless adhesive solutions to cater to the specific demands of the Stretch Active, Intimate, and Athleisure wear segments.

Freudenberg Apparel's Film Bonding series features a film structure with a high-quality adhesive, delivering robust shear bond and recovery. This enables garments to conform to the body's shape while retaining their shape and integrity after stretching, significantly improving durability and wearer comfort. By eliminating bulky seams, the Film Bonding series also provides a clean, smooth finish to fabric surfaces.

Available in tape form, Freudenberg Apparel's Film Bonding solutions accommodate a wide range of weight requirements from 90 to 220 g/m², including thin options under 80µm. The series offers an array of TPE and TPU variants with varying softness levels from medium to very soft, reducing reliance on traditional stitching and making them ideal for various applications, including stitch-free seam bonding on briefs, bras, vests, and leggings.

Complementing the Film Bonding series, Freudenberg has introduced an innovative oval net structure to its TPE polymer adhesive Net Bonding series. This new structure, in addition to the existing Diamond and Hexagon patterns, offers a diverse selection of net structures suitable for a wide array of applications. The expanded weight range of 50-240 g/m² for the Net Bonding solutions provides versatility for creating breathable, elastic, and well-controlled garments in leggings, sports bras, and intimate apparel.

Source:

Freudenberg Performance Materials Holding GmbH

FET at COMPAMED 2024 (c) FET
FET extrusion system
06.09.2024

FET at COMPAMED 2024

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting for the first time at COMPAMED 2024 in Düsseldorf, taking place between between 11 – 14 November 2024, to reflect the company’s increasing profile in the medical sector. COMPAMED is a international trade fair for the medical technology supplier sector, showcasing a range of high-quality medical technology components, services and production equipment for the medical industry.

FET are experts in medical fibre technology and innovations, designing and delivering high performance equipment for a range of precursor medical products. This includes turnkey solutions for nonwoven medical devices, wound care and dressings and synthetic absorbable sutures.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting for the first time at COMPAMED 2024 in Düsseldorf, taking place between between 11 – 14 November 2024, to reflect the company’s increasing profile in the medical sector. COMPAMED is a international trade fair for the medical technology supplier sector, showcasing a range of high-quality medical technology components, services and production equipment for the medical industry.

FET are experts in medical fibre technology and innovations, designing and delivering high performance equipment for a range of precursor medical products. This includes turnkey solutions for nonwoven medical devices, wound care and dressings and synthetic absorbable sutures.

FET’s expertise lies in laboratory and pilot melt spinning equipment for a vast range of applications, especially precursor materials used in high value medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has processed over 100 different polymer types and its systems can melt spin resorbable polymers in multifilament, monofilament and nonwoven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides an alternative with pilot and small scale production wet and gel spinning systems.

Source:

Fibre Extrusion Technology Ltd (FET)

06.09.2024

Indorama Ventures: ISCC+ Certification for fiber manufacturing sites

Indorama Ventures Public Company Limited (IVL) has achieved ISCC+ certification for three of its fiber manufacturing sites. In addition to one already ISCC+ certified fiber plant, this marks a significant milestone in the company's ongoing commitment to sustainability and circular economy practices. Across its entire business, a total of nine Indorama Ventures sites are now ISCC+ certified, offering a diverse range of sustainable products, including PTA, PET chips, fibers, and fabrics.

The newly certified high-performance fiber portfolio will serve customers who require technical yarns such as in the Mobility, Tire cords, Airbags, Industrial or Mechanical Rubber Goods sector. The new offerings include:

Indorama Ventures Public Company Limited (IVL) has achieved ISCC+ certification for three of its fiber manufacturing sites. In addition to one already ISCC+ certified fiber plant, this marks a significant milestone in the company's ongoing commitment to sustainability and circular economy practices. Across its entire business, a total of nine Indorama Ventures sites are now ISCC+ certified, offering a diverse range of sustainable products, including PTA, PET chips, fibers, and fabrics.

The newly certified high-performance fiber portfolio will serve customers who require technical yarns such as in the Mobility, Tire cords, Airbags, Industrial or Mechanical Rubber Goods sector. The new offerings include:

  • Mass balanced (M.B.) polyamides PA6.6 and PA4.6 from the company’s sites in Obernburg (Germany) and Pizzighettone (Italy). Developed in collaboration with key partners, these products match the performance of standard polyamide yarns while reducing GHG emissions by approximately 55% at the polymer level.
  • Bio-based high-tenacity PA4.10 (M.B.) yarn made in Obernburg (Germany) for tire and specialties applications. This 100% bio-content polymer, produced from bio-based Sebacic Acid and bio-based Di-Amino Butane (DAB) component via mass balancing, supports significant GHG emissions reduction due to the innovative raw material.
  • Recycled PET yarns and tire cord fabric from Indorama Ventures’ site in Kaiping (China). These yarns and fabrics made from 100% recycled PET, represent the company’s efforts to drive the evolution towards circular practices and lower carbon products.

ISCC+ Certification
The ISCC+ (International Sustainability and Carbon Certification) is a globally recognized standard for the sustainable production of biomass, and bio-based products, including recycled content. This certification ensures that materials are sourced and processed responsibly, reducing the environmental impact and promoting a circular economy.

 

Source:

Indorama Ventures Public Company Limited

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves (c) DITF
06.09.2024

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

The biopolymer lignin is a natural component of plant cells that is produced in large quantities as a by-product of paper manufacturing. Due to its properties, it represents an environmentally friendly alternative to oil-based coating polymers.

The scientists developed biopolymer compounds containing lignin, which were used to produce thermoplastic materials that can be processed using 3D printing.

Lignin has few polar groups, which makes lignins hydrophobic and therefore insoluble in water. For this reason, they biodegrade slowly. This makes them particularly suitable for durable coating materials.

Despite this durability, lignin particles that are released into the environment through abrasion biodegrade faster than the abrasion of conventional coatings. This is due to the much higher surface/volume ratio.

The use of 3D printing makes it possible to produce the coating precisely and efficiently. The 3D printing process also makes it possible to adapt the glove to the individual needs of the wearer. This increases wearer comfort and promotes freedom of movement.

The research project shows that the use of lignin not only offers ecological benefits, but that protective gloves coated with it are also particularly durable and resistant. They meet safety standards and at the same time contribute to sustainability in the world of work.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

26.08.2024

Oerlikon at ITMA Asia + CITME 2024

This year's ITMA Asia + CITME 2024 trade fair appearance of the Oerlikon Polymer Processing Solutions Division between 14 and 18 October 2024 will once again focus on current challenges for the global textile machinery industry: the replacement of old systems with energy-efficient and sustainable technology solutions, the use of digital software and hardware solutions to increase productivity and ensure material quality, and the traceability of all products to enable the recycling of the raw materials used in a future-oriented circular economy.

Oerlikon Polymer Processing Solutions offers complete solutions ranging from extrusion and polycondensation systems to texturized yarn, accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a coordinated technology that guarantees the high quality of the fibers and yarns produced. The entire product portfolio of the supplier of machines and systems primarily to produce polyester, polypropylene and nylon will therefore take centre stage at this year's trade fair.

This year's ITMA Asia + CITME 2024 trade fair appearance of the Oerlikon Polymer Processing Solutions Division between 14 and 18 October 2024 will once again focus on current challenges for the global textile machinery industry: the replacement of old systems with energy-efficient and sustainable technology solutions, the use of digital software and hardware solutions to increase productivity and ensure material quality, and the traceability of all products to enable the recycling of the raw materials used in a future-oriented circular economy.

Oerlikon Polymer Processing Solutions offers complete solutions ranging from extrusion and polycondensation systems to texturized yarn, accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a coordinated technology that guarantees the high quality of the fibers and yarns produced. The entire product portfolio of the supplier of machines and systems primarily to produce polyester, polypropylene and nylon will therefore take centre stage at this year's trade fair.

“The Chinese market continues to have enormous potential for us, even if it has not been able to match the previous times in terms of large new installations of manmade fiber plants and the associated expansion of production capacity for good two years. However, there is still a great need for renewal, especially in terms of sustainability. Shutting down old plants and replacing them with new, modern and energy-efficient technologies is the path to a better and lower-emission future for us all,” explains André Wissenberg, Head of Marketing, Corporate Communications and Public Affairs. “We have been contributing to sustainability with our technology solutions for decades. Be it by increasing energy efficiency with each new generation of machines or by processing new materials,” Wissenberg continues. Oerlikon is proud of the fact that the company has been offering solutions for the textile industry under the e-save sustainability label for 20 years and has saved over 15 million tons of CO2 thanks to the machines and systems developed and installed on the market during this time.

Source:

Oerlikon Textile GmbH & Co. KG

23.08.2024

Expansion of service and spare parts business at Oerlikon Polymer Processing Solutions

The Oerlikon Polymer Processing Solutions Division of the Swiss Oerlikon Group is expanding its customer services and spare parts business in the area of machines and systems for the production of carpet yarns (BCF) and industrial yarns (IDY). To this end, the company concluded an agreement with the Truetzschler Group, based in Moenchengladbach, Germany, in August. Technology experts and service staff from Oerlikon Neumag are now the new contacts for customer services and the spare parts business for Truetzschler's BCF and IDY technologies installed in the market. The Moenchengladbach-based textile machinery manufacturer is withdrawing from this business segment in order to concentrate on the spinning, card clothing and nonwovens businesses in future.

Oerlikon Polymer Processing Solutions offers complete solutions for the manmade fiber industry. They range from extrusion and polycondensation plants to texturized yarn, and are accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a harmonized technology that guarantees high quality of the yarns produced.

The Oerlikon Polymer Processing Solutions Division of the Swiss Oerlikon Group is expanding its customer services and spare parts business in the area of machines and systems for the production of carpet yarns (BCF) and industrial yarns (IDY). To this end, the company concluded an agreement with the Truetzschler Group, based in Moenchengladbach, Germany, in August. Technology experts and service staff from Oerlikon Neumag are now the new contacts for customer services and the spare parts business for Truetzschler's BCF and IDY technologies installed in the market. The Moenchengladbach-based textile machinery manufacturer is withdrawing from this business segment in order to concentrate on the spinning, card clothing and nonwovens businesses in future.

Oerlikon Polymer Processing Solutions offers complete solutions for the manmade fiber industry. They range from extrusion and polycondensation plants to texturized yarn, and are accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a harmonized technology that guarantees high quality of the yarns produced.

Based in Neumuenster, Germany, Oerlikon Neumag, a branch of Oerlikon Textile GmbH & Co. KG and a brand of the Oerlikon Polymer Processing Solutions Division, has been an established and broadly positioned international supplier with proven expertise in the field of BCF for decades. The division's sister company Oerlikon Barmag from Remscheid, Germany, contributes its expertise in the field of IDY systems.

Source:

Oerlikon Textile GmbH & Co. KG

BioTurf Bild TFI - Institut für Bodensysteme an der RWTH Aachen e.V.
BioTurf
01.07.2024

Aachen researchers develop sustainable artificial turf

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

"Every year, around 500 kilograms of plastic granules are produced per artificial turf pitch, which have to be refilled as infill. This also corresponds to the amount that potentially enters the environment as microplastics per sports pitch," explains Dr Claudia Post from TFI. With an estimated 25,000 artificial turf pitches in the EU, artificial turf in Europe alone produces 12,750 tonnes of microplastics that end up in the environment every year! The TFI - Institut für Bodensysteme an der RWTH Aachen e.V., Institute for Research, Testing and Certification in Europe for Indoor Building Products, has developed the innovative artificial turf system together with the ITA (Institute for Textile Technology at RWTH Aachen University) and in collaboration with the company Morton Extrusionstechnik (MET), a specialist in artificial turf fibres.

"New artificial turf pitches will be phased out by 2031 at the latest due to the ban on plastic granules. Even now, artificial turf pitches with infill material are no longer being subsidised," says Dr Claudia Post. For grassroots sports, clubs, cities and local authorities, converting their existing artificial turf pitches will be a mammoth task in the coming years, as artificial turf pitches have to be replaced every 10-15 years. With BioTurf, an environmentally friendly alternative is now available! The surface can be played on like any other, whether running, passing or kicking. Short, heavily crimped blades support longer blades and this simple approach increases playing comfort. BioTurf fulfils all quality requirements and standards for the highest footballing demands.

"BioTurf is an innovative, holistic solution," emphasises Dirk Hanuschik from TFI. "We use rapeseed oil and agricultural waste that does not compete with food production. BioTurf is also almost completely recyclable".
This is in stark contrast to conventional artificial turf, which can currently only be thermally utilised, i.e. burned to generate heat.

As BioTurf does not require the traditional latex process at all, the energy-intensive drying process can be dispensed with, which has a positive effect on the price. Latex is also difficult to recycle. In contrast, BioTurf uses the new thermobonding technology. Here, the thermoplastic pile yarns are thermally fused to the backing. Further development steps still need to be taken in the endeavour to develop a 100% mono-material artificial turf, as a few percent polypropylene still needs to be processed in the backing in addition to the polyethylene fibre material in order to protect it during thermobonding. However, this does not hinder its recyclability.

Source:

TFI - Institut für Bodensysteme an der RWTH Aachen e.V.

EURATEX elects new President (c) EURATEX
From the left: Ismail Kolunsag, Barbara Cimmino, Mario Jorge Machado and Grégory Marchant.
17.06.2024

EURATEX elects new President

Portuguese textile entrepreneur, Mario Jorge Machado, has been elected President of EURATEX during its General Assembly on 14 June. The Assembly also nominated Alberto Paccanelli as Honorary President.

Mario Jorge Machado has an extensive career in textiles. Mario is currently a shareholder and director of "Adalberto Textile Solutions, S.A.", where he applies advanced management practices to boost competitiveness and innovation. He has been president of the Textile and Clothing Association of Portugal (ATP) since 2019, and he stands out for his strategic leadership in the textile and clothing sector, promoting innovation and sustainability. He represents ATP on the Board of CIP - Confederação Empresarial de Portugal and chairs CIP's strategic council for the environment and sustainability.

With a degree in Production Polymer Engineering from the University of Minho, his expertise ranges from continuous process improvement to the development of B2B commercial teams and B2C business models. His vision encompasses operational excellence and the implementation of sustainable practices, contributing to the evolution of the textile industry.

Portuguese textile entrepreneur, Mario Jorge Machado, has been elected President of EURATEX during its General Assembly on 14 June. The Assembly also nominated Alberto Paccanelli as Honorary President.

Mario Jorge Machado has an extensive career in textiles. Mario is currently a shareholder and director of "Adalberto Textile Solutions, S.A.", where he applies advanced management practices to boost competitiveness and innovation. He has been president of the Textile and Clothing Association of Portugal (ATP) since 2019, and he stands out for his strategic leadership in the textile and clothing sector, promoting innovation and sustainability. He represents ATP on the Board of CIP - Confederação Empresarial de Portugal and chairs CIP's strategic council for the environment and sustainability.

With a degree in Production Polymer Engineering from the University of Minho, his expertise ranges from continuous process improvement to the development of B2B commercial teams and B2C business models. His vision encompasses operational excellence and the implementation of sustainable practices, contributing to the evolution of the textile industry.

The Assembly also nominated Alberto Paccanelli as Honorary President, recognising over a decade of commitment to EURATEX and the European textile industry.

EURATEX General Assembly also elected 4 other members of the Presidency Team: Michael Kamm (ZWILLING Gruppe, Germany), Barbara Cimmino (Yamamay, Italy), Grégory Marchant (UTT, France) and Ismail Kolunsag (Cross Tekstil, Turkey). During the Assembly, EURATEX also welcomed new memberships from CEMATEX and Forschungskuratorium Textil e. V., and a partnership with Reju. (France).

More information:
Euratex President general assembly
Source:

EURATEX

Synthetic leather made from recyclable and bio-based PBS Photo: DITF
10.06.2024

Synthetic leather made from recyclable and bio-based PBS

A new type of pure synthetic leather meets the requirements of the European Ecodesign Regulation. Made from a bio-based plastic, it is biodegradable and meets the requirements for a closed recycling process.

A new type of pure synthetic leather meets the requirements of the European Ecodesign Regulation. Made from a bio-based plastic, it is biodegradable and meets the requirements for a closed recycling process.

Many synthetic leathers consist of a textile substrate to which a polymer layer is applied. The polymer layer usually consists of an adhesive layer and a top layer, which is usually embossed. The textile backing and the top coat are usually completely different materials. Woven, knitted, or nonwoven fabrics made of PET, PET/cotton, or polyamide are often used as textile substrates. PVC and various polyurethanes are commonly used for coatings. The use of these established composite materials does not meet today's sustainability criteria. Recycling them by type is very costly or even impossible. They are not biodegradable. The search for alternative materials for the production of artificial leather is therefore urgent. In 2022, the EU adopted the Sustainable Products Initiative (SPI) ("Green Deal"). It includes an eco-design regulation that considers a product's life cycle in the conservation of resources. For textile and product design, this means incorporating closing the loop or end-of-life into product development.

In an AiF project carried out in close cooperation between the DITF and the Freiberg Institute gGmbH (FILK), it has now been possible to develop a synthetic leather in which both the fiber material and the coating polymer are identical. The varietal purity is a prerequisite for an industrial recycling concept.

The aliphatic polyester polybutylene succinate (PBS) was recommended as the base material because of its properties. PBS can be produced from biogenic sources and is now available on the market in several grades and in large quantities. Its biodegradability has been demonstrated in tests. The material can be processed thermoplastically. This applies to both the fiber material and the coating. Subsequent product recycling is facilitated by the thermoplastic properties.

In order to realize a successful primary spinning process and to obtain PBS filaments with good textile mechanical properties, process adjustments had to be made in the cooling shaft at the DITF. In the end, it was possible to spin POY yarns at relatively high speeds of up to 3,000 m/min, which had a tenacity of just under 30 cN/tex when stretched. The yarns could be easily processed into pure PBS fabrics. These in turn were used at FILK as a textile base substrate for the subsequent extrusion coating, where PBS was also used as a thermoplastic.

With optimized production steps, PBS composite materials with the typical structure of artificial leather could be produced. Purity and biodegradability fulfill the requirements for a closed recycling process.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

07.06.2024

Stratasys: Expanded Materials and Technology Updates

Stratasys Ltd. is announcing updates to several Industrial and Healthcare Business Unit products and Stratasys Direct. These include a new open platform for the F900™ 3D printer, more on-demand 3D printing capabilities and a new high-performance material for its Fused Deposition Modeling line.

OpenAM comes to the F900
Stratasys OpenAM™ is a software application that enables the user to modify machine controls to achieve results beyond standard print settings. Already available for the Fortus 450®mc printer, Stratasys is now making its OpenAM software available for the F900 printer. This will allow for expanded functionality and capabilities and will unlock new materials for F900 users.

Stratasys Ltd. is announcing updates to several Industrial and Healthcare Business Unit products and Stratasys Direct. These include a new open platform for the F900™ 3D printer, more on-demand 3D printing capabilities and a new high-performance material for its Fused Deposition Modeling line.

OpenAM comes to the F900
Stratasys OpenAM™ is a software application that enables the user to modify machine controls to achieve results beyond standard print settings. Already available for the Fortus 450®mc printer, Stratasys is now making its OpenAM software available for the F900 printer. This will allow for expanded functionality and capabilities and will unlock new materials for F900 users.

New VICTREX AM 200 material for FDM
A new material offering that opens the application potential for demanding industries like aerospace and medical, where material properties are critical components of a 3D-printed solutions. This new high-performance, high-strength, validated material, VICTREX AM™ 200, will be available for the Fortus 450mc and the F900. VICTREX AM 200 is a PEEK-based polymer that is temperature, corrosion, and chemical resistant, with excellent mechanical properties which can be utilized with soluble and breakaway support material.

Carbon Fiber Visual Print Option for the F-Series
Carbon Fiber Visual Print Option is a new 5-slice (0.005”) layer height across the F-123 Series™ line of printers that is coming later this month for FDM®ABS-CF10. It produces a smoother surface finish, to provide the perfect finish when a part’s visual appearance is important to the application. It is built for applications that demand the durability of a carbon-filled polymer, but also requires a visually appealing result without additional post-processing.

F770 adds New Colors
The F770® printer can now print in multiple colors, in addition to its original single ivory color. Six new ASA colors, including red, white, light gray, black, blue, and yellow, will allow for more application versatility with FDM® ASA and ABS-M30 tried-and-true engineering plastics. The new colors enable printing without painting or other post-production marking, allowing parts to be available much faster, increasing productivity.

Somos NeXt Validated for SLA
Somos® NeXt™ is now a validated material for Stratasys NEO® stereolithography 3D printers. Somos NeXt is a resin with superior strength and can be used in automotive and consumer products, along with other applications, including prototyping, to produce durable, accurate and detailed parts.

New GrabCAD Software Print Integration Enhances On-Demand 3D Printing Capabilities
Stratasys has introduced Parts on Demand by GrabCAD, a new integration that synchronizes the company's software platform with Stratasys Direct. This addition allows GrabCAD Print™ customers to access Stratasys Direct’s fleet of 3D printers, allowing for larger and more intricate designs, a selection of more than 50 engineered materials, and the assurance of stringent quality inspections.

Source:

Stratasys Ltd.

31.05.2024

Stratasys: First Quarter 2024 Financial Results

Stratasys Ltd., a company in polymer 3D printing solutions, announced their financial results for the first quarter 2024.

First Quarter 2024 Financial Results Compared to First Quarter 2023:

Stratasys Ltd., a company in polymer 3D printing solutions, announced their financial results for the first quarter 2024.

First Quarter 2024 Financial Results Compared to First Quarter 2023:

  • Revenue of $144.1 million compared to $149.4 million.
  • GAAP gross margin of 44.4%, compared to 43.8%.
  • Non-GAAP gross margin of 48.6%, compared to 47.3%.
  • GAAP operating loss of $24.5 million, compared to an operating loss of $16.8 million.
  • Non-GAAP operating loss of $1.2 million, compared to non-GAAP operating income of $1.5 million.
  • GAAP net loss of $26.0 million, or $0.37 per diluted share, compared to a net loss of $22.2 million, or $0.33 per diluted share.
  • Non-GAAP net loss of $1.7 million, or $0.02 per diluted share, compared to non-GAAP net income of $1.1 million, or $0.02 per diluted share.
  • Adjusted EBITDA of $4.1 million, compared to $7.0 million.
  • Cash generated by operating activities of $7.3 million, compared to cash used by operating activities of $17.9 million in the year-ago quarter.

2024 Financial Outlook:
Based on current market conditions and assuming that the impacts of global inflationary pressures, relatively high interest rates and supply chain costs do not impede economic activity further, the Company is reiterating its outlook for 2024 as follows:

  • Full-year revenue of $630 million to $645 million.
  • Compare to 2023 revenue of approximately $616 million excluding divestments and annualizing Covestro.
  • Full-year non-GAAP gross margins of 49.0% to 49.5%, improving sequentially throughout the year.
  • Full-year operating expenses in the range of $292 million to $297 million.
  • Full-year non-GAAP operating margins in a range of 2.5% to 3.5%.
  • GAAP net loss of $88 million to $72 million, or ($1.24) to ($1.01) per diluted share.
  • Includes one-time extraordinary costs associated with Stratasys’ strategic alternatives process.
  • Non-GAAP net income of $9 million to $14 million, or $0.12 to $0.19 per diluted share.
  • Adjusted EBITDA of $40 million to $45 million.
  • Capital expenditures of $20 million to $25 million.
  • Positive cash flow from operating activities.

Non-GAAP earnings guidance excludes $29 million to $31 million of share-based compensation expense, $26 million to $28 million of projected amortization of intangible assets, and reorganization and other expenses of $29 million to $35 million. Non-GAAP guidance includes tax adjustments of $2 million to $3 million on the above non-GAAP items.

Source:

Stratasys Ltd.

03.05.2024

Stahl joins GO!PHA alliance

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

More information:
Stahl PHA polymers GO!PHA
Source:

Stahl

fisherman Alastair Newton, Pixabay
23.04.2024

Stahl: New waterproof performance coating

Stahl, a provider of speciality coatings and treatments for flexible substrates, has launched the protective coating Stahl Integra® Dry 725, meeting the increasing demand for water-repellant technical fabrics.  
 
Part of the Stahl Integra® toolbox, Stahl Integra® Dry 725 is a fluorine-free coating for water-repellent technical textiles that harnesses Stahl’s proven polymer technology. Stahl has introduced Stahl Integra® Dry 725 in response to the growing market demand for fluorine-free, water-repellent technical textiles, which is projected to reach USD 605.1 million by 2029.  

Stahl Integra® Dry 725 offers a balanced performance between repellency, durability and adhesion. Stahl's durable water-repellent (DWR) technology, StayDry, repels water from fabric by modifying the surface tension of fibres. The solution can be combined with other top or back coatings and is specifically designed for technical textile applications such as camping equipment or luggage. As a fluorine-free, waterborne coating that is cured at low temperatures, Stahl Integra® Dry 725 can help reduce environmental impact without compromising on quality.

Stahl, a provider of speciality coatings and treatments for flexible substrates, has launched the protective coating Stahl Integra® Dry 725, meeting the increasing demand for water-repellant technical fabrics.  
 
Part of the Stahl Integra® toolbox, Stahl Integra® Dry 725 is a fluorine-free coating for water-repellent technical textiles that harnesses Stahl’s proven polymer technology. Stahl has introduced Stahl Integra® Dry 725 in response to the growing market demand for fluorine-free, water-repellent technical textiles, which is projected to reach USD 605.1 million by 2029.  

Stahl Integra® Dry 725 offers a balanced performance between repellency, durability and adhesion. Stahl's durable water-repellent (DWR) technology, StayDry, repels water from fabric by modifying the surface tension of fibres. The solution can be combined with other top or back coatings and is specifically designed for technical textile applications such as camping equipment or luggage. As a fluorine-free, waterborne coating that is cured at low temperatures, Stahl Integra® Dry 725 can help reduce environmental impact without compromising on quality.

Stahl Integra® is a modular 'toolbox' of tailor-made, customer-orientated protective coating solutions that simultaneously ensure product quality and superior fabric integrity. This means that specific mechanical functionalities – from flame-retardant and breathable coatings to stay-clean technologies – can be introduced at different stages of the production process to meet specific end-market requirements as needed.

More information:
waterproof high-tech coatings
Source:

Stahl

Wacker Chemical Corporation under New Management Foto: WACKER
Christoph Kowitz
16.04.2024

Wacker Chemical Corporation under New Management

Christoph Kowitz, currently head of WACKER’s Corporate Research Department, takes charge of the Group’s U.S. subsidiary Wacker Chemical Corporation (WCC) at the beginning of May. He succeeds David Wilhoit who has been responsible for WACKER’s North and Central American business since 2015 and is now retiring.

Christoph Kowitz has already held various management positions. After obtaining his doctorate in organic chemistry and polymer chemistry, he began his professional career as a product developer at BASF AG in Ludwigshafen in 1996. From 1997 onwards, he worked for several years as a management consultant for McKinsey in Asia and Europe. After several management positions in the chemical industry, including Germany-based specialty chemicals manufacturer Cognis, Kowitz moved to WACKER in 2013, where he headed the Performance Silicones unit within the WACKER SILICONES division. Since 2018, he has been Head of Corporate R&D and thus also responsible for innovation management within the Group.

Christoph Kowitz, currently head of WACKER’s Corporate Research Department, takes charge of the Group’s U.S. subsidiary Wacker Chemical Corporation (WCC) at the beginning of May. He succeeds David Wilhoit who has been responsible for WACKER’s North and Central American business since 2015 and is now retiring.

Christoph Kowitz has already held various management positions. After obtaining his doctorate in organic chemistry and polymer chemistry, he began his professional career as a product developer at BASF AG in Ludwigshafen in 1996. From 1997 onwards, he worked for several years as a management consultant for McKinsey in Asia and Europe. After several management positions in the chemical industry, including Germany-based specialty chemicals manufacturer Cognis, Kowitz moved to WACKER in 2013, where he headed the Performance Silicones unit within the WACKER SILICONES division. Since 2018, he has been Head of Corporate R&D and thus also responsible for innovation management within the Group.

More information:
Wacker chemicals polymers
Source:

Wacker Chemie AG

AkzoNobel: New research labs in the Netherlands (c) AkzoNobel
12.04.2024

AkzoNobel: New research labs in the Netherlands

Two new research labs are being built by AkzoNobel at its Sassenheim site in the Netherlands to further propel the company’s product development.

Work is about to start on building a technology center for Powder Coatings, while a new polymer lab has just opened which will develop innovative resin technologies for all the company’s businesses.

The total investment in the Sassenheim site – AkzoNobel’s largest global R&D center – amounts to around €8 million. The facility already houses the biggest R&D teams in Europe for the company’s Decorative Paint and Automotive and Specialty Coatings businesses. The addition of the two new labs will help the company further build on its global reputation for product development focused on providing creative solutions for customers.

The recently opened polymer lab – part of the company’s Research organization – will accommodate 15 scientists. It will mainly focus on the development of more sustainable polymer technologies and new coatings to support AkzoNobel’s ambition to halve carbon emissions across the value chain by 2030.

Two new research labs are being built by AkzoNobel at its Sassenheim site in the Netherlands to further propel the company’s product development.

Work is about to start on building a technology center for Powder Coatings, while a new polymer lab has just opened which will develop innovative resin technologies for all the company’s businesses.

The total investment in the Sassenheim site – AkzoNobel’s largest global R&D center – amounts to around €8 million. The facility already houses the biggest R&D teams in Europe for the company’s Decorative Paint and Automotive and Specialty Coatings businesses. The addition of the two new labs will help the company further build on its global reputation for product development focused on providing creative solutions for customers.

The recently opened polymer lab – part of the company’s Research organization – will accommodate 15 scientists. It will mainly focus on the development of more sustainable polymer technologies and new coatings to support AkzoNobel’s ambition to halve carbon emissions across the value chain by 2030.

AkzoNobel employs around 3,000 R&D professionals worldwide in 70 laboratories, with more than €1.25 billion having been spent on research and development over the last five years.

More information:
AkzoNobel Coatings research
Source:

AkzoNobel