From the Sector

Reset
3 results
HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

17.11.2021

C.L.A.S.S. welcomes Sensil® BioCare by NILIT into its material hub

C.L.A.S.S. MATERIAL HUB is a careful selection of smart ingredients made by cutting-edge companies and innovators across the globe. The wide range includes transparent and traceable products, which can be natural/organic, up or re-cycled/able, or innovative and always representing a new generation of innovation that is minimizing its impact on people, environment, animals and oceans.

C.L.A.S.S. MATERIAL HUB is a careful selection of smart ingredients made by cutting-edge companies and innovators across the globe. The wide range includes transparent and traceable products, which can be natural/organic, up or re-cycled/able, or innovative and always representing a new generation of innovation that is minimizing its impact on people, environment, animals and oceans.

Sensil® BioCare sustainable premium Nylon fiber is enhanced with a technology, that helps lessen the persistence of textile waste in sea water and in landfills. With its embedded technology, if any microfibers of Sensil® BioCare garments are released during washing, they will be broken down at a quicker rate compared to conventional Nylon 6.6 fibers when they end up in the oceans. Tests were conducted in both landfill soil and sea water simulations to understand the potential impact of Sensil® BioCare on both ecosystems. Specifically, initial testing following the ASTM D6691 Standard Test Method For Determining Aerobic Biodegradation Of Plastic Materials In The Marine Environment and the ASTM D5511 Standard Test Method For Determining Anaerobic Biodegradation Of Plastic Materials Under High-Solids Anaerobic-Digestion Conditions indicates that Sensil® BioCare yarns break down more rapidly (with a biodegradation of about 40% in 500 days) than conventional nylon. These promising findings point to reduced waste accumulation in both oceans and landfills.

NILIT, owner of the sustainable brand SENSIL®, has also teamed up with The Ocean Foundation’s Blue Resilience Initiative to reestablish and safeguard essential ocean meadows and other coastal habitats. These marine grasslands, which are being damaged at a rate of two football fields every hour, are vital ecosystems for sequestering CO2 from the atmosphere, thus reducing global warming and ocean acidification. In addition, ocean grasslands sustain sea life, defend coast lines against erosion and storm surge, and support economies around the world.

NILIT’s plant in Israel, who produce Sensil ® Biocare boosts, renowned certifications such as GRS (Global Recycled Standard)*, ISO 9001**, ISO 14001*** and ISO 45001****. Moreover, the company has already announced that all other plants in  the USA, China and Brazil will be ISO 14001 certified within 2021 and ISO 45001 certified within 2025. Worth to mention, 40% of Nilit’s team is made up of women.

Source:

C.L.A.S.S.

06.09.2021

Textile and apparel industry alliance closer to an international microfibre shedding standard

A sector alliance that was formed to tackle issues relating to microplastics has completed the next phase of its project to develop a harmonised industry standard for the supply chain. The Cross Industry Agreement (CIA) has revealed the results of a fibre fragmentation trial that has been carried out in advance of establishing a CEN Standard (from the European Committee for Standardization). Once confirmed, the standard will also become an ISO standard under the Vienna Agreement, providing apparel manufacturers and policy makers with a vital tool as part of wider work to reduce microfibre shedding into the environment.

A sector alliance that was formed to tackle issues relating to microplastics has completed the next phase of its project to develop a harmonised industry standard for the supply chain. The Cross Industry Agreement (CIA) has revealed the results of a fibre fragmentation trial that has been carried out in advance of establishing a CEN Standard (from the European Committee for Standardization). Once confirmed, the standard will also become an ISO standard under the Vienna Agreement, providing apparel manufacturers and policy makers with a vital tool as part of wider work to reduce microfibre shedding into the environment.

In 2018, five industry organisations agreed to join forces to proactively tackle the issue of microplastics, and signed the Cross Industry Agreement. The initial signatories were European industry associations that represent the European and global value chains of garments and their associated maintenance – the International Association for Soaps, Detergents and Maintenance Products (A.I.S.E.), European Man-Made Fibres Association (CIRFS), European Outdoor Group (EOG), EURATEX the European apparel and textile industry confederation, and the Federation of the European Sporting goods Industry (FESI). Together, the five organisations understood that the very first step to enable global action around the topic, was to agree a harmonised test method which would allow the collection and comparison of globally generated data, to aid the identification of solutions.

The microfibre shedding test method was developed thanks to the joint efforts and cooperation of experts from 28 European, American and Asian organisations; the result was handed over to CEN in 2020. Since then, representatives from the CIA have been working with CEN to fine tune details in order to meet the requirements for a CEN Standard. To verify the reproducibility of the method, the partners have carried out a round robin trial (RRT) to determine if the method could be replicated in different laboratories and produce similar results. 10 organisations participated in the RRT, which was co-ordinated by the CIA, sending fabric samples to all of the laboratories involved and then collecting and analysing the data.

The results from the RRT show statistically significant consistency, both within and between participating laboratories, which demonstrates that the method is both repeatable in the same setting and reproducible in other laboratories.

The CIA has submitted the results of the RRT to CEN, with the intention that the CEN Standard is confirmed in the near future. Once that has happened, it will be promoted throughout the apparel industry and will become a key tool for researchers, businesses and governments as they accelerate efforts to reduce microfibre shedding associated with garment production.

Source:

Euratex