From the Sector

Reset
239 results
08.03.2024

Final report of the World Pultrusion Conference 2024

The 17th World-Pultrusion-Conference (WPC) took place in Hamburg from 29 February to 1 March. Pultrusion, also known as the extrusion process, is a highly efficient method for producing fibre-reinforced plastic profiles for various applications in the construction/infrastructure and transport sectors.

A record number of almost 150 participants from all over the world attended the event. An international audience of experts from Europe and the USA, as well as China, India and Japan was represented.

The lecture programme with a total of 25 specialist lectures was strongly characterised by the topic of sustainability. The process development of thermoplastic pultrusion and applications in wind energy, solar panels, bridge construction and the automotive industry were also discussed at length. Despite the difficult market environment, many opportunities and possibilities for the pultrusion industry were presented.

The 17th World-Pultrusion-Conference (WPC) took place in Hamburg from 29 February to 1 March. Pultrusion, also known as the extrusion process, is a highly efficient method for producing fibre-reinforced plastic profiles for various applications in the construction/infrastructure and transport sectors.

A record number of almost 150 participants from all over the world attended the event. An international audience of experts from Europe and the USA, as well as China, India and Japan was represented.

The lecture programme with a total of 25 specialist lectures was strongly characterised by the topic of sustainability. The process development of thermoplastic pultrusion and applications in wind energy, solar panels, bridge construction and the automotive industry were also discussed at length. Despite the difficult market environment, many opportunities and possibilities for the pultrusion industry were presented.

The conference takes place every two years in a European country of importance to the pultrusion industry and is organised by AVK for the European Pultrusion Technology Association (EPTA), in cooperation with the American Composites Manufacturers Association (ACMA).

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V / The European Pultrusion Technology Association (EPTA)

Composites production volume in Europe since 2011 (in kt) Graphik AVK – Industrievereinigung Verstärkte Kunststoffe e. V.
Composites production volume in Europe since 2011 (in kt)
06.03.2024

European composites market on the level of 2014

After a long phase of continuous growth, the composites market has seen strong fluctuations since 2018. In 2023, the overall market for composites in Europe fell by 8%.

The current mood on the markets in Germany and Europe is rather negative within the industry. The main drivers are the persistently high energy and raw material prices. Added to this are problems in logistics chains and a cautious consumer climate. A slowdown in global trade and uncertainties in the political arena are fueling the negative sentiment. Despite rising registration figures, the automotive industry, the most important application area for composites, has not yet returned to its pre-2020 volume. The construction industry, the second key application area, is currently in crisis. These factors have already caused the Eu-ropean composites production volume to fall significantly in recent years. There has now been another decline in Europe for 2023.

After a long phase of continuous growth, the composites market has seen strong fluctuations since 2018. In 2023, the overall market for composites in Europe fell by 8%.

The current mood on the markets in Germany and Europe is rather negative within the industry. The main drivers are the persistently high energy and raw material prices. Added to this are problems in logistics chains and a cautious consumer climate. A slowdown in global trade and uncertainties in the political arena are fueling the negative sentiment. Despite rising registration figures, the automotive industry, the most important application area for composites, has not yet returned to its pre-2020 volume. The construction industry, the second key application area, is currently in crisis. These factors have already caused the Eu-ropean composites production volume to fall significantly in recent years. There has now been another decline in Europe for 2023.

Overall development of the composites market
The volume of the global composites market totalled 13 million tons in 2023. Compared to 2022, with a volume of 12.3 million tons, growth was around 5%. In comparison, the European composites production volume fell by 8% in 2023. The total European composites market thus comprises a volume of 2,559 kilotons (kt) after 2,781 kt in 2022.

The market is therefore declining and falling back to the level of 2014. Overall, market momentum in Europe was lower than in the global market. Europe's share of the global market is now around 20%.

As in previous years, development within Europe is not uniform. The differences are due to very different regional core markets, the high variability of the materi-als used, a wide range of different manufacturing processes and widely differing areas of application. Accordingly, there are different regional trends, especially with regard to the individual processes, although there were declines in all re-gions and for almost all processes in 2023. At almost 50% of the market volume, the transportation sector accounts for the largest share of total composites pro-duction in terms of volume. The next two largest areas are the electri-cal/electronics sector and applications in construction and infrastructure.

The entire market report 2023 is available for download: https://www.avk-tv.de/publications.php.

Freudenberg: Fully synthetic wetlaid nonwovens for filtration (c) Freudenberg Performance Materials Holding GmbH
Freudenberg’s fully synthetic wetlaid material for reverse osmosis membranes
01.03.2024

Freudenberg: Fully synthetic wetlaid nonwovens for filtration

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Versatile and flexible manufacturing
Freudenberg’s fully synthetic wetlaid nonwovens can be made of polyester, polyolefin, polyamide and polyvinyl alcohol (PVA), using staple fibers of up to 12mm fiber length and microfibers as fine as 0.04dtex. In terms of weight, the product range spans weights of between 8g/m² and 250g/m². Freudenberg’s flexible wetlaid manufacturing line has the capability to combine various thermal and chemical bonding technologies. The materials have high precision in weight and thickness as well as a defined pore size and high porosity.

Wetlaid capabilities for various applications
In addition to its fully synthetic range, Freudenberg can also incorporate glass fibers, viscose and cellulose. General industry applications for Freudenberg wetlaid nonwovens are surfacing veils for glass-fiber reinforced plastics, compostable desiccant bags, battery separators, acoustics, heatshields, and apparel applications such as embroidery substrates.

Source:

Freudenberg Performance Materials Holding GmbH

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

DITF: Modular cutting tool recognized with JEC Composites Innovation Award Photo: Leitz
Hermann Finckh (DITF) and Andreas Kisselbach (Leitz GmbH & Co. KG)
16.02.2024

DITF: Modular cutting tool recognized with JEC Composites Innovation Award

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

16.02.2024

Composites-Industrie: Priorität für Technologietransfer-Programm Leichtbau des BMWK

Mit großer Sorge habe die Composites-Industrie feststellen müssen, dass das Technologietransfer-Programm Leichtbau des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) den Einsparzwängen des Bundeshaushalts zum Opfer gefallen sei. Dabei sei der Leichtbau als Schlüsseltechnologie für Deutschland im Koalitionsvertrag der Bundesregierung verankert und durch deren dann folgende Leichtbau-Strategie manifestiert gewesen. Wenn der Klimaschutz ein ernst gemeintes Anliegen der Bundesregierung sei, müsse das Technologietransfer-Programm Leichtbau weiter gefördert werden, so Composites Germany in seiner jüngsten Pressemitteilung.

Mit großer Sorge habe die Composites-Industrie feststellen müssen, dass das Technologietransfer-Programm Leichtbau des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) den Einsparzwängen des Bundeshaushalts zum Opfer gefallen sei. Dabei sei der Leichtbau als Schlüsseltechnologie für Deutschland im Koalitionsvertrag der Bundesregierung verankert und durch deren dann folgende Leichtbau-Strategie manifestiert gewesen. Wenn der Klimaschutz ein ernst gemeintes Anliegen der Bundesregierung sei, müsse das Technologietransfer-Programm Leichtbau weiter gefördert werden, so Composites Germany in seiner jüngsten Pressemitteilung.

Ohne Leichtbau werde es keinen ausreichenden Klimaschutz geben. Ein konkretes Beispiel: 70 % der Treibhausgasemissionen stammen aus der Nutzung von fossilen Rohstoffen wie Erdgas, Erdöl und Kohle, um hauptsächlich Energie zu gewinnen. Daher ist die Transformation in Richtung Erneuerbare Energiegewinnung z. B. durch Windenergie und grünen Wasserstoff von entscheidender Bedeutung für den Erfolg des European Green Deal. Beide Technologien sind ohne Leichtbau nicht umsetzbar: Windenergieanlagen nutzen den multimaterialen Leichtbau mit GFK, CFK, Holz und Metallen und die Lagerung des Wasserstoffs erfolgt in CFK-Behältern.

Durch den Leichtbau als Schlüsseltechnologie lassen sich sowohl Materialien in der Produktion sparen als auch Energie bei der späteren Nutzung der Produkte. Branchen wie unter anderem das Bauwesen, der Maschinenbau und auch der Schiffbau – aber auch generell der Transportsektor - können davon stark profitieren.

Mit dem Technologietransferprogramm Leichtbau (TTP LB) hatte das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) eine wichtige Unterstützung für eine erfolgreiche Transformation der in diesem Bereich tätigen Unternehmen geschaffen. Es war Innovations- und Transfertreiber für Energie- und Ressourceneffizienz und mitentscheidend für die Erreichung unserer ambitionierten Klimaschutzziele.
Auf europäischer Ebene hat die Composites-Industrie über das vom BMWK ins Leben gerufene European Lightweighting Network (ELN) Werbung für eine europäische Leichtbaustrategie gemacht und viele europäische Partner gefunden. Auch diese Initiative sei durch den Ausfall einer deutschen Unterstützung in Frage gestellt.

Die Unternehmen in Deutschland und insbesondere der Mittelstand stehen in einem internationalen Wettbewerb, den sie nur durch innovative und leistungsfähigere Produkte standhalten können, die im Sinne des Klimaschutzes nachhaltig zu gestalten sind. Wettbewerbsdruck entstünde insbesondere seitens der USA und China, die hohe Subventionen dafür bereitstellen.

Als Branchenvertreter appelliert der Verband an die Politik, sich wieder für das TTP LB und dessen Finanzierung im geplanten Umfang einzusetzen. Auch insbesondere für mittelständische Unternehmen und Startups müsse das Programm für deren Wettbewerbsfähigkeit und damit zur Sicherung und Schaffung zukunftssicherer Arbeitsplätze wiederbelebt werden, um auch zum Erhalt des Wohlstands in Deutschland beizutragen.

Source:

Composites Germany

EPTA: Program of the “17th World Pultrusion Conference” (c) EPTA
06.12.2023

EPTA: Program of the “17th World Pultrusion Conference”

The EPTA – European Pultrusion Technology Association in cooperation with the American Composites Manufacturers Association (ACMA) invites you to the 17th World Pultrusion Conference which takes place on 29 February – 1 March 2024 in Hamburg, Germany.

This conference takes place every two years and is the meeting point of the European and worldwide Pultrusion Industry. More than 25 international speakers from Finland, Belgium, Germany, France, Spain, The Netherlands, Turkey, UK, USA, Canada and others will present practical presentations about innovative applications, technologies and processes. Equally current market trends and developments are on the agenda.

This World Pultrusion Conference takes place again in the week before the JEC World Composites Show (5-7 March 2024, Paris).

The program is available here.

The EPTA – European Pultrusion Technology Association in cooperation with the American Composites Manufacturers Association (ACMA) invites you to the 17th World Pultrusion Conference which takes place on 29 February – 1 March 2024 in Hamburg, Germany.

This conference takes place every two years and is the meeting point of the European and worldwide Pultrusion Industry. More than 25 international speakers from Finland, Belgium, Germany, France, Spain, The Netherlands, Turkey, UK, USA, Canada and others will present practical presentations about innovative applications, technologies and processes. Equally current market trends and developments are on the agenda.

This World Pultrusion Conference takes place again in the week before the JEC World Composites Show (5-7 March 2024, Paris).

The program is available here.

Source:

The European Pultrusion Technology Association (EPTA)

Sorted and cut textile waste ready for tearing © SBO EVENT
Sorted and cut textile waste ready for tearing
01.12.2023

First automated textile waste sorting and recycling line in France

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Partnership between Nouvelles Fibres Textiles, Pellenc ST and ANDRITZ promotes circular economy for textiles.

France’s first industrial plant for automated sorting and recycling of textile waste was officially inaugurated at Nouvelles Fibres Textiles, Amplepuis, on November 30, 2023. The plant is the result of an ambitious partnership between textile recycling company Nouvelles Fibres Textiles, waste sorting specialist Pellenc ST and international technology group ANDRITZ, a specialist in textile recycling machinery and processes.

Capable of automatically sorting garments by composition and color, the new line meets the needs of both post-consumer and post-industrial waste markets. The line also removes hard parts such as buttons and zippers to prepare the material for further processing in an ANDRITZ tearing machine.

The automated textile sorting line at Nouvelles Fibres Textiles is dedicated to industrial-scale production, customer trials and projects, and the R&D activities of the partners. It will process textile waste to produce recycled fibers for the spinning, nonwovens, and composites industries.

Automated sorting was the last missing link needed to develop a complete ecosystem in France, where the fashion industry, social and solidarity economy actors, waste management companies, and textile producers from different sectors are working together towards a textile circular economy.

The EU's strategy for sustainable and circular textiles aims to ensure that by 2030 textile products are made to a great extent of recycled fibers and incineration and landfilling of textiles are minimized.

17.11.2023

Alliance for European Flax-Linen and Hemp: Flax fibres for Sailing boats

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

Flax fibres also provide acoustic and vibration damping in composite applications, as well as providing a warm and aesthetically pleasing appearance below decks.

ecoRacer30
As a member of the Alliance for European Flax-Linen and Hemp, Bcomp, headquartered in Fribourg, Switzerland, has this year been working with Northern Light Composites (nlcomp), based in Monfalcone, northern Italy, on the creation of what is billed as the first fully recyclable nine-metre-long sailing boat – the ecoRacer30.

The boat is based on nlcomp’s proprietary rComposite technology – a combination of thermoplastic resins and BComp’s ampliTex high-performance natural fibre reinforcement fabrics and patented powerRibs technology.

It was built in a collaborative effort with the help of Barcelona-based Magnani Yachts, which took care of the composite manufacturing, and Sangiorgio Marine, which provided technical assistance as the boat was being assembled at its shipyard in Genova, Italy.

Magnani Yachts has subsequently become the first shipyard to hold an rComposite license and others are now being encouraged to adopt the technology.

The second ecoracer30 is currently under construction and has already been sold and nlcomp is planning to build a fleet of eight of these boats in time to enter a series of regattas in the summer of 2025.

Flax 27 Daysailer
Greenboats, based in Bremen, Germany, is another specialist in building boats from natural fibre composites and has this year launched the Flax 27 daysailer.

The lower hull of this vessel is also made from Bcomp’s ampliTex technical fabrics in combination with a sandwich core of recycled PET bottles. Using a vacuum infusion process, the fibres were integrated with a plant-based epoxy resin in order to further reduce the CO2 footprint of the vessel.

The light structure and modern shapes of the lower hull of the boat result in very fast, sharp and agile handling on the water.

Greenboats has also recently announced significant new backing from alliance member Groupe Depestele, which manages 13,000 hectares of flax land in Normandy, France.

Blue Nomad
A project in Switzerland has meanwhile proposed the use of flax fibre composites in solar-powered habitats designed for comfortable living on the oceans – as the world grapples with the frightening implications of climate change and rising sea levels.

As envisaged by students from Institut auf dem Rosenberg in St Gallen, Switzerland working with Denmark-based SAGA Space Architects, Blue Nomad structures would form modular blocks to establish large communities and oceanic farms.
 

Source:

Alliance for European Flax-Linen and Hemp

Winners of AVK Innovation Award 2023 (c) AVK
Winners of AVK Innovation Award 2023
25.10.2023

Winners of AVK Innovation Award 2023

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

Third place: “High Performance Recycled Carbon Fibre Materials (HiPeR)” – Composites Technology Center GmbH (CTC GmbH), partners: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; partners Japan: Faserinstitut Bremen e.V., Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Innovative Processes & Methods category
First place: “Chopped Fibre Direct Processing (CFP)” – KraussMaffei Technologies GmbH, partner: Wirthwein SE

Second place: “CIRC - Complete Inhouse Recycling of Thermoplastic Compounds” – Fraunhofer Institute for Production Engineering and Automation (IPA), partners: Schindler Handhabetechnik GmbH, Vision & Control GmbH

Third place: “CarboScreen – Sensor-Based Monitoring of Carbon-Fibre Production” – CarboScreen GmbH, partner: Institute of Textile Technology at RWTH Aachen University

Research & Science category
First place: “Development of a Stereocomplex PLA Blend on a Pilot Plant Scale” – Faserinstitut Bremen e. V.

Second place: “Fibre-Reinforced Salt as a Robust Lost Core Material” – Technical University of Munich, Chair of Carbon Composites, partners: Apppex GmbH, Haas Metallguss GmbH

Third place: “VliesSMC – Recycled Carbon Fibres with a Second Life in the SMC Process” – Sächsisches Textilforschungsinstitut e.V. (STFI), partner: Fraunhofer Institute for Chemical Technology (ICT)

 

Entries for the next Innovation Award 2024 can be submitted from January 2024 onwards.

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

Photo: Optima 3D
09.08.2023

Optima 3D delivers weaving technology to ASCC

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

UK’s Optima 3D is delivering its weaving technology to the USA, for installation at the University of Maine’s Advanced Structures and Composites Center (ASCC).

The 3D weaving system consists of an Optima 3D Series 600 shuttle weaving machine with an integrated 2,688-hook Stäubli SX jacquard and harness. It is also complemented by Optima’s compact warp delivery creel and an associated pirn winder for shuttle bobbins and a spool winder for creel spools.

Optima’s looms offer many advanced features over conventional weaving machines, particularly in terms of versatility, as a result of the comprehensive use of digital control systems allowing rapid parameter and sequence changes, coupled with an innovative shuttle system.

The ASCC is certainly no stranger to advanced technology, or indeed ambitious composite projects – in 2019 it received no less than three Guinness World Records, for the world’s largest prototype polymer 3D printer, the largest solid 3D-printed object, and the largest 3D-printed boat. In its latest project it has further introduced BioHome3D – the first 3D-printed house made entirely with bio-based materials developed in a partnership with Oak Ridge National Laboratory. The 182-square-metre prototype features 3D-printed floors, walls and roof which are fully recyclable and highly insulated with 100% wood insulation and customisable R-values. Construction waste was nearly eliminated due to the precision of the printing process.

Source:

British Textile Machinery Association (BTMA)

Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz
11.07.2023

Future cost reduction through ultra-thin PE carbon fibres

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

The use of carbon fibres in highly stressed lightweight construction solutions, such as today's growth applications of wind turbines or pressure tanks, has become indispensable due to their excellent mechanical properties and low density. High manufacturing costs of conventional PAN precursor-based carbon fibres make the material very cost-intensive. In addition, it is not sufficiently available. New manufacturing approaches that develop alternative raw materials and manufacturing processes can be a key and growth engine for further industrial composites applications.

The aim of the work was to develop a new and cost-effective manufacturing process for high-quality ultra-thin carbon fibres using a polyethylene precursor. For this purpose, the sulphonisation process, which is time-consuming today, was to be significantly shortened. As a result, Mr. Marter Diniz produced novel ultra-thin polyethylenebased carbon fibres with a filament diameter < 3 μm with an excellent surface quality of the fibres without detectable structural defects. The fibre diameter is 2-3 times smaller than that of conventional PANbased CF. This provides the basis for mechanically high-quality material properties. At the same time, Mr. Marter Diniz was able to reduce the sulphonisation time by 25 percent. The developed material and technology set important milestones on the way to cheaper carbon fibres. With PE-based precursors, the price of CF can be reduced by 50 percent compared to conventional PAN-based CF.  

A total of five other young scientists were awarded in six categories (Drive Technology, Innovation & Technology/Artificial Intelligence, New Materials, Paper, Hydropower and Economic Sciences. This year, for the 10th time, the Hanns Voith Foundation awarded the Hanns Voith Prize to outstanding young scientists.

Source:

ITA Institut für Textiltechnik of RWTH Aachen University

30.06.2023

17th World Pultrusion Conference - CALL FOR PAPERS

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

28.06.2023

EPTA highlights contribution of pultruded composites to sustainable construction

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

Increasing energy and resource efficiency in the construction sector will be key to the EU’s ambition of achieving climate neutrality by 2050. By enabling the manufacture of strong, durable and lightweight products, composite materials can help the construction sector improve its environmental sustainability, as well as reduce total lifecycle costs. The latest EPTA industry briefing, Pultruded composites contribute to a more sustainable future for construction, discusses how pultruded composites answer the need for materials offering high performance, faster installation, corrosion resistance and low maintenance.

The report is available to download from the EPTA website.

The future of construction
As one of the largest global users of energy and raw materials, the construction industry is under immense pressure to improve its sustainability. At the same time, it must respond to demands for improved performance and reduced total cost of ownership. New materials will be needed to minimise the use of natural resources, enable a reduction of carbon footprint and facilitate circular economy practices. Choosing the optimum materials required for durability throughout the lifecycle will be increasingly important. A shift to off-site production is also forecast, where factory-controlled environments and automated processes can improve quality control, lower waste, and reduce work on site.

Lightweight pultruded parts can be pre-assembled into modules or complete structures in the factory for faster installation on site. Lightweight profiles lower energy use during transportation and installation, and a longer service life combined with minimal maintenance can deliver a reduced through-life carbon footprint. Pultruded parts such as profiles, gratings, beams, tubes and planks are increasingly found in a range of building, construction and infrastructure applications. Examples include bridge decks, fencing, stairs and handrails, train platforms, cladding, utility poles, modular building concepts, and window frames.

One application offering large growth potential for composites is bridges. Composite bridges are being designed to provide a service life of 100 years and unlike steel bridges do not require regular repainting to protect them from corrosion. Over recent years, pultruded glass fibre composite has become a highly popular choice for pedestrian and cycle bridges. Pre-fabricated ‘easy fit’ bridge decking planks, pre-assembled bridge modules and complete bridge ‘kits’ are now available. Corrosion-resistant composite bridges are ideal for use near water or on the coast, and in remote locations where regular maintenance operations would be difficult. A composite bridge can deliver the same performance as a steel structure with a weight saving of up to 50% or more. This enables more streamlined bridge designs which require less substantial supporting structures and foundations, greatly reducing consumption of materials and energy. Lightweight also results in easier logistics and simplified installation. Pultruded are more easily transported to the construction site, with lower fuel consumption, and easier to move on site, often reducing labour requirements and the capacity of lifting equipment.

A lifecycle approach
As the construction industry looks to the future, the environmental and economic benefits of composite materials linked to easier logistics and installation, durability and low maintenance are becoming increasingly valued. More projects are demonstrating the benefits of composite materials and standards covering the design, fabrication and installation of pultruded profiles are making it easier for the construction industry to use them. With ongoing development and collaboration, pultrusion has the potential to contribute to a more sustainable future for construction and many other industries. EPTA will continue to promote the advancement of pultrusion technology and its applications and foster sustainable practices within the industry.

Source:

The European Pultrusion Technology Association (EPTA)

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

Photo: AVK
26.05.2023

AVK: Successful Flame Retardancy Conference in Berlin

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

  • Flame Retardancy for Composites Applications in the Transport Sector

On 10-11 May 2023, the AVK - Industrievereinigung Verstärkte Kunststoffe e. V. in cooperation with the FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin organised for the first time an international, English-language conference on flame retardancy.

In 18 compact lectures, more than 20 experts informed nearly 80 participants about new developments, requirements and innovations regarding specific flame retardant properties of components made of fibre-reinforced plastics/composites for the transport sector.

Among others, there were presentations by industry representatives from Saertex, BÜFA, Clariant, Diehl Aviation and Airbus, but also from institutes such as the Fraunhofer Institutes or the Federal Institute for Materials Research and Testing. Presentations on the topics of standardisation, raw materials, automotive or recycling were on the agenda, but also flame retardants for connectors and battery housings for electric vehicles or fire-retardant systems for rail vehicles or fire-retardant CFRP made from recycled CF nonwoven were presented.

More information:
AVK Composites flame retardant
Source:

AVK

AVK Flammschutztagung Foto: AVK
25.05.2023

AVK: Erfolgreiche Flammschutztagung in Berlin

  • Flame Retardancy for Composite Applications in the Transport Sector

Am 10.-11. Mai 2023 veranstaltete die AVK – Industrievereinigung Verstärkte Kunststoffe e. V. in Kooperation mit der FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin erstmals eine internationale, englischsprachige Fachtagung zum Thema Flammschutz.

In 18 kompakten Vorträgen informierten über 20 Experten knapp 80 Teilnehmer über Neuerungen, Anforderungen und Innovationen zu spezifischen Flammschutzeigenschaften bei Bauteilen aus faserverstärkten Kunststoffen/Composites für den Transportbereich.

So gab es Vorträge von Industrievertretern von Saertex, BÜFA, Clariant, Diehl Aviation und Airbus, ebenso von Instituten wie den Fraunhofer-Instituten oder der Bundesanstalt für Materialforschung und -prüfung. Es standen Vorträge zu den Themen Standardisierung, Rohmaterialien, Automotive oder Recycling auf dem Programm, aber auch Flammschutzmittel für Anschlüsse und Batteriegehäuse für Elektrofahrzeuge oder feuerhemmende Systeme für Schienenfahrzeuge oder feuerhemmendes CFK aus recyceltem CF-Vliesstoff wurden vorgestellt.

  • Flame Retardancy for Composite Applications in the Transport Sector

Am 10.-11. Mai 2023 veranstaltete die AVK – Industrievereinigung Verstärkte Kunststoffe e. V. in Kooperation mit der FGK - Forschungsgesellschaft Kunststoffe e.V. in Berlin erstmals eine internationale, englischsprachige Fachtagung zum Thema Flammschutz.

In 18 kompakten Vorträgen informierten über 20 Experten knapp 80 Teilnehmer über Neuerungen, Anforderungen und Innovationen zu spezifischen Flammschutzeigenschaften bei Bauteilen aus faserverstärkten Kunststoffen/Composites für den Transportbereich.

So gab es Vorträge von Industrievertretern von Saertex, BÜFA, Clariant, Diehl Aviation und Airbus, ebenso von Instituten wie den Fraunhofer-Instituten oder der Bundesanstalt für Materialforschung und -prüfung. Es standen Vorträge zu den Themen Standardisierung, Rohmaterialien, Automotive oder Recycling auf dem Programm, aber auch Flammschutzmittel für Anschlüsse und Batteriegehäuse für Elektrofahrzeuge oder feuerhemmende Systeme für Schienenfahrzeuge oder feuerhemmendes CFK aus recyceltem CF-Vliesstoff wurden vorgestellt.

26.04.2023

STFI: Bionanopolis Open Call to support companies

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The international association that will manage the Single-Entry-Point (SEP) of the BIONANOPOLYS project has been formally constituted and will be able to support companies across the European Union in the market introduction of bionanomaterials through technical, legal, regulatory, safety, economic and financial support services.

The SEP was established as an AISBL (non-profit entity) on 17 February 2023 in the framework of the European project BIONANOPOLYS, funded by the Horizon 2020 programme. The technical director of ITENE and coordinator of this project, Carmen Sánchez, is the president of this association in which representatives of other project partners also act as directors. Specifically, the CTP (Centre Technique du Papier) from France; CIDAUT (Fundación para la Investigación y Desarrollo en Transporte y Energía), from Spain; CENTI (Centre for Nanotechnology and Smart Materials), from Portugal, and the law firm Gil & Robles - San Bartolome & Associés, from Luxembourg.

The BIONANOPOLYS SEP will reduce the risks and barriers to the commercial exploitation of bio-based materials and polymeric bionanocomposites with nanotechnology and accelerate market penetration and innovation processes. SMEs, large companies, and potential customers who are users of the BIONANOPOLYS OITB (Open Innovation Test Bed) will be able to access the services offered by the project partners through this entity, which will act as a one-stop shop, at affordable costs and conditions.

The test bed consists of 14 enhanced pilot plants and complementary services to support technological and commercial breakthroughs. Collaboration between all the partners that make up BIONANOPOLYS and access through the SEP allows joint access to all the services offered by the partners and helps to drive collaborative open innovation.

Call for access to the BIONANOPOLYS OITB
The SEP and the project partners will be in charge of evaluating the projects submitted to the BIONANOPOLYS platform once the open call launched last February to select five projects from different European countries that will be able to access its services free of charge to develop, test or scale-up bionanomaterials in the BIONANOPOLYS OITB closes.

Companies wishing to access the services to develop or test nanomaterials can submit their applications until 30 April.

The BIONANOPOLYS test bed could benefit companies involved in the production of biopolymers, cellulose paper, nonwovens, foams, or coatings, as well as the packaging, agriculture, food, cosmetics, pharmaceuticals, hygiene, textiles and 3D printing sectors.

Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

(c) M. Vorhof, ITM/TU Dresden
12.04.2023

ITM at JEC 2023

From April 25th to 27th, 2023, the Institute of Textile Machinery and High Performance Material Technology (ITM) of TU Dresden will be exhibiting at the pavilion SAXONY! at JEC World 2023.

The ITM will provide a comprehensive overview of its current research in the field of machine and product development along the entire textile process chain.

The upcoming JEC 2023 exhibition will highlight innovative Customised Connective Cores (CCC), which are custom-made core-insert structures additively manufactured using cellular metal and a form-fit integrated insert. These CCCs can be seamless integrated either as patches or as full-surface core material into lightweight panels, offering significantly improved load-bearing behavior (especially 4 times the load-bearing capacity and fail-safe behavior) compared to existing technologies. This breakthrough opens up new possibilities for fastening lightweight panels.

From April 25th to 27th, 2023, the Institute of Textile Machinery and High Performance Material Technology (ITM) of TU Dresden will be exhibiting at the pavilion SAXONY! at JEC World 2023.

The ITM will provide a comprehensive overview of its current research in the field of machine and product development along the entire textile process chain.

The upcoming JEC 2023 exhibition will highlight innovative Customised Connective Cores (CCC), which are custom-made core-insert structures additively manufactured using cellular metal and a form-fit integrated insert. These CCCs can be seamless integrated either as patches or as full-surface core material into lightweight panels, offering significantly improved load-bearing behavior (especially 4 times the load-bearing capacity and fail-safe behavior) compared to existing technologies. This breakthrough opens up new possibilities for fastening lightweight panels.

Another highlight at the exhibition is the repair process for fibre-reinforced composites (FRP) developed at the ITM. Instead of mechanically grinding the damaged area, the matrix in the repair area is locally dissolved using a UV-rays-induced depolymerisation process. Damaged fibres can thus be replaced by a customized repair patch. Free yarn ends on the textile repair patches are spliced with the UV-exposed yarn ends in the repair area using an adapted splicing process. In this way, a very clean, simplified and mechanically improved repair area can be achieved compared to the state of the art.

The diverse possibilities offered by the structure and process simulation of textile high-performance materials and textile manufacturing processes will also be presented. By means of multi-scale modelling and simulation, a profound understanding of materials and processes is achieved at the ITM. Finite element models on the micro, meso and macro scale have been developed and validated for this purpose. Examples from current ITM research projects demonstrate the various possibilities and areas of application of modern simulation methods in the field of textile technology.

Moreover, an innovative process for the integral manufacturing of 3D rib-stiffened preforms with complexly arranged stiffeners in 0°, 90° and ± 45° orientation was developed and successfully implemented at the ITM. Due to the process-integrated structure fixation and the continuous fibre reinforcement between shell and rib structure, the 3D preforms are perfectly suited for the production of highly load-bearing FRP components with increased bending stiffness, which will be exhibited at JEC. Hence, the lightweight construction potential of high-performance fibres can be fully exploited.

A successfully established development are partially flowable 2D textile reinforcement fabrics that are continuously manufactured in one single process step. For this purpose, the entire process chain was developed at the ITM, which allows a cost-effective and high-volume production of load-bearing thermoplastic 3D FRP components with continuous fibre reinforcement between shell and stiffeners.

At JEC 2023, the ITM will also present a partially embedded textile latice girder as reinforcement for carbon concrete applications, which was produced by means of an innovative textile manufacturing process based on the multiaxial warp knitting technology. Through the development of a customized warp insertion, manipulation and take-off system as well as appropriate shaping methods, it is now possible to produce tailored textile semi-finished products, e.g. for use in wall and ceiling panels. These textile latice girders represent a resource-saving alternative to conventional steel girders due to the reduced among of concrete required and the additional cavity for media and cable guidance.

The integration of textile actuators and sensors in FRP provides structures with additional functionalities. The research and application of such interactive FRP with different matrix materials (e.g. with thermoset, elastomer or concrete matrix systems) for structural health monitoring or adaptive systems is one of the key research areas of the ITM.

Moreover, the development and implementation of innovative yarn constructions based on recycled high-performance fibres (e.g. rCF, rGF, rAR) for sustainable FRPs is successfully promoted at ITM. By use of a special carding machine, recycled fibres are opened up, separated and joined to form a wide, uniform ribbon. Subsequently, innovative hybrid yarn constructions made of evenly mixed recycled high-performance and thermoplastic fibres with variable fibre volume fractions can be manufactured by means of various spinning technologies. Selected yarn constructions and components will be showcased at JEC.

More information:
ITM TU Dresden JEC World