From the Sector

Reset
38 results
INDA Lifetime Award 2024 INDA
09.04.2024

INDA Honors Three Nonwoven Industry Professionals with Lifetime Awards

INDA, the Association of the Nonwoven Fabrics Industry, announced three recipients for the INDA Lifetime Service Award and Lifetime Technical Achievement Awards. David Powling, Paul Latten, and Arnold Wilkie are being recognized for their key contributions to the advancement of the nonwovens industry and INDA.

David Powling and Paul Latten will receive their awards at the World of Wipes® (WOW) International Conference, June 18th beginning at 4:30 pm
Arnold Wilkie will receive his award at the RISE® Conference, October 1st at 4:30 pm.

The Award recipients are:

INDA, the Association of the Nonwoven Fabrics Industry, announced three recipients for the INDA Lifetime Service Award and Lifetime Technical Achievement Awards. David Powling, Paul Latten, and Arnold Wilkie are being recognized for their key contributions to the advancement of the nonwovens industry and INDA.

David Powling and Paul Latten will receive their awards at the World of Wipes® (WOW) International Conference, June 18th beginning at 4:30 pm
Arnold Wilkie will receive his award at the RISE® Conference, October 1st at 4:30 pm.

The Award recipients are:

David Powling
David Powling has worked for Kimberly-Clark Corporation for nearly 25 years and has been a contributor to the Wipes Task Force and Technical Committees at INDA and EDANA for over 15 years. Powling served as Chairman of the INDA Wipes Task Force from 2009-2013. His work on these committees include developing the first and second edition of the Flushability Guidance Document (GD) and he was later instrumental in the roll out of the third and fourth edition GDs. Throughout this time, Powling coordinated activities with Kimberly-Clark Corporation to provide critical supporting data, as these flushability test protocols were developed.

Powling has been actively involved in collection studies where he was key in framing the work packages of those studies, collating and analyzing the data, and drafting reports. These collection studies include: Moraga, CA (advisor); Maine – Part #1 and Part #2 (hands-on); Jacksonville (hands-on); and the Northern and Southern California studies in 2023, which combined, was the largest study to date. Powling led the charge in the California study and was personally involved in identifying 1,745 samples.

Powling has been a key technical contributor to the INDA Government Relation efforts that has resulted in labelling regulations in multiple U.S. states. He has also been an active participant in efforts to develop an ISO standard for flushable products.  In this effort, he was a test method sub-team leader during the preparation of the proposed ISO standard responsible for organizing appendices of existing flushability methodologies. Additionally, Powling has been awarded, or has pending, 25+ U.S. patents, including many covering the development of dispersible wet wipes.

Paul Latten
Paul Latten has been an active member of the nonwoven and fiber industries for over 35 years. Most recently he has led innovation at Southeast Nonwovens, commercializing more than 75 new nonwoven products per year. Prior to joining Southeast Nonwovens, Latten held senior leadership positions with Basofil, Consolidated Fibers, Invista, and KoSa (and Trevira and Hoechst Celanese precursors to KoSa.)

Latten has a successful career of reinvigorating company R&D efforts by instilling a focus on customer-centric innovation. He is an inventor of record for a number of patents and pending applications. Latten has given numerous presentations on innovative nonwoven materials, at events such as INDA’s World of Wipes® (WOW) International Conference, RISE® (Research, Innovation & Science for Engineered Fabrics), the VISION International Conference, and the Converting and Bonding (CAB) Conference.

His recent innovations have been diverse in scope and include nonwovens for use in hydrogen fuel cells, moisture detection media, proprietary wipe designs, and natural fiber-based packaging. Aside from new fiber and nonwoven products, Latten has championed process innovation that has resulted in tangible output gains that broadened the market opportunity for his current and prior companies.

Latten’s portfolio of innovations has spanned across the nonwoven markets, often involving wetlaid and drylaid nonwovens. These include materials for moisture detection, synthetic papers, fuel cell cathodes, protective covers for treats, melamine nonwovens for surface treatment, and the development of binder fibers. His work also touched upon disposable hygiene applications entailing dry-laid web containing hollow synthetic fibers to improve absorbent core fluid uptake.

Latten has been a board member of INDA for multiple terms and served as Chairman in 2008-2010. Additionally, he has contributed to many INDA conference planning committees, helping drive the success of these events.

Arnold Wilkie
Arnold Wilkie has a distinguished career in advancing yarn, fiber, and nonwoven technologies since 1970. Since 1988, he has been President and Owner of Hills, Inc. where he has sustained their innovative culture. Wilkie has over 40 patents and applications covering yarns, bicomponent fibers, ultra-fine fibers, nanofibers, dissolvable filaments, meltblown nonwovens, and polymer processing innovations. He established Hills as a leading innovator in bicomponent fiber nonwovens and in the equipment to produce these materials. During Wilkie’s time leading Hills, their pilot capabilities have become well-known and highly regarded for enabling material innovations.

Many of his patents pertain to the development of equipment solutions that enable the production of complex bi- and multi-component fiber structures. These solutions include the method of forming a continuous filament spun-laid web, the method and apparatus for producing polymer fibers and fabrics including multiple polymer components, the method and apparatus for controlling airflow in a fiber extrusion system, and controlling the dissolution of dissolvable polymer components in plural component fibers.

Arnold Wilkie, President, Hills, Inc., earned his bachelor’s degree in Mechanical Engineering from the University of Tennessee and an MBA from the University of West Florida. He is a licensed Professional Engineer in Florida, and has been engaged in the synthetic fibers industry since 1970. The first 17 years were with the Monsanto Company, where he held positions in Fiber Process Engineering, Fiber Product R&D, and Product Management. Since 1988, he has been a majority Owner and President of Hills, Inc., a 52-year-old company located in West Melbourne, Florida, specializing in the development, manufacture, and supply of advanced custom fiber extrusion equipment. Wilkie has been involved with and supported The Nonwovens Institute, since its founding in 1991 as the Nonwovens Cooperative Research Center (NCRC), with Hills joining as a Member in 2001

More information:
INDA lifetime achievement
Source:

INDA

Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

25.03.2024

Texhibition Istanbul: Fifth edition successfully concluded

The fifth edition of the Texhibition Istanbul Fabric and Textile Accessories Fair from 6 to 8 March 2024, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), presented 557 exhibitors showcasing the entire range of the textile supplying section: from woven and knitted fabrics to accessories and artificial leather. A new addition was a separate hall for yarns and denim, the BlueBlackDenim hall. With this trade fair, Texhibition has more than doubled its floor space compared to the last event to 35,000 square metres.

Exhibitors
Texhibition Istanbul acts as a central point of contact for the entire international industry, with a clear focus on quality, innovation and the latest trends like the denim companies Bossa, Çalık, İsko, İskur and Kipaş at the BlueBlackDenim Hall.

Yarn companies such as Aksa, Diktaş, Ensar, Karafiber, Kaplanlar, Korteks, Migiteks, Sasa, Tepar showed the production power of the yarn sector, where the product quality, design and workmanship came together.

The fifth edition of the Texhibition Istanbul Fabric and Textile Accessories Fair from 6 to 8 March 2024, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), presented 557 exhibitors showcasing the entire range of the textile supplying section: from woven and knitted fabrics to accessories and artificial leather. A new addition was a separate hall for yarns and denim, the BlueBlackDenim hall. With this trade fair, Texhibition has more than doubled its floor space compared to the last event to 35,000 square metres.

Exhibitors
Texhibition Istanbul acts as a central point of contact for the entire international industry, with a clear focus on quality, innovation and the latest trends like the denim companies Bossa, Çalık, İsko, İskur and Kipaş at the BlueBlackDenim Hall.

Yarn companies such as Aksa, Diktaş, Ensar, Karafiber, Kaplanlar, Korteks, Migiteks, Sasa, Tepar showed the production power of the yarn sector, where the product quality, design and workmanship came together.

In addition to well-known companies such as Almodo, Bahariye, BTD, Can Textile, Iskur, Kipaş, Menderes, Söktaş, Yünsa, Zorlu, İpeker a large number of other export-oriented companies from the segments of textiles (woven fabrics, knitting) presented their latest designs and products.

Visitors
25,752 visitors came from over 112 countries, 41.8% from the European Union (including Germany, Italy, the Netherlands, Spain, Romania etc.) and Great Britain, Ukraine,26.5% from Asia (including Russia etc.), 14.8% from the Middle East (including Jordan, United Arab Emirates, Saudi Arabia) 10.7% from North Africa (including Algeria, Tunisia etc.), 3.1% from North America (United States, Canada), 3.1% from South America and other countries.

American buyers from the USA and Canada in particular, but also a large number of Mexican and Colombian buyers took advantage of the numerous match-making opportunities at Texhibition. Many B2B meetings took place and led to numerous orders being placed, including from key accounts such as Alexander Wang, Asos, Forever 21, Sainsbury's, Veronica Beard etc.

More information:
Texhibition Istanbul Yarns Denim
Source:

JANDALI

INDA: Five new Board of Directors' members (c) INDA
05.03.2024

INDA: Five new Board of Directors' members

INDA, the Association of the Nonwoven Fabrics Industry, announced the election of five new members to serve on its 2024 Board of Directors. The Board of Directors play a key role in advancing INDA’s strategic objectives, actively supporting both the industry and the membership. Their primary responsibility lies in ensuring that INDA remains responsive to the evolving needs of its members and the broader nonwovens industry, guiding the formulation of policies and programs.

The five new Board members include:

  • Jaren J. Edwards, President, Stein Fibers
  • Edward McNally, Sales Director Nonwoven, Oerlikon Nonwoven
  • Thomas Olsen, Senior Vice President, Americas Business Area, Suominen
  • Patricia A Sargeant, Vice President, Glatfelter Corporation
  • Paul Wood, President, Ontex North America

The Board is comprised of elected Board Officers. One-third of the entire Board is elected each year for a three-year term by INDA’s general membership. INDA’s Executive Committee, empowered to act on behalf of the Board between meetings, consists of the Board Officers plus appointees.
The Executive Committee includes:

INDA, the Association of the Nonwoven Fabrics Industry, announced the election of five new members to serve on its 2024 Board of Directors. The Board of Directors play a key role in advancing INDA’s strategic objectives, actively supporting both the industry and the membership. Their primary responsibility lies in ensuring that INDA remains responsive to the evolving needs of its members and the broader nonwovens industry, guiding the formulation of policies and programs.

The five new Board members include:

  • Jaren J. Edwards, President, Stein Fibers
  • Edward McNally, Sales Director Nonwoven, Oerlikon Nonwoven
  • Thomas Olsen, Senior Vice President, Americas Business Area, Suominen
  • Patricia A Sargeant, Vice President, Glatfelter Corporation
  • Paul Wood, President, Ontex North America

The Board is comprised of elected Board Officers. One-third of the entire Board is elected each year for a three-year term by INDA’s general membership. INDA’s Executive Committee, empowered to act on behalf of the Board between meetings, consists of the Board Officers plus appointees.
The Executive Committee includes:

  • Chair: Mark Thornton, Vice President, The Procter & Gamble Company
  • Vice Chair: Barbara Lawless, VP of Sales and Marketing – Medical Products, Precision Fabrics Group, Inc.
  • Past Chair: Bryan Haynes, Senior Technical Director for Global Nonwovens, Kimberly-Clark Corporation
  • Appointee: Mike Clark, President, Filtration Solutions, Hollingsworth & Vose Company
  • Appointee: Jodi Russell, Vice President R&D, Cleaning Innovation, Packaging & Sustainability, The Clorox Company
  • Appointee: Jeff Stafford, Vice President of Nonwovens, Milliken & Company
  • Appointee: Robert Weilminster, EVP & General Manager, US & Canada – Health, Hygiene and Specialties Division, Berry Global
  • Appointee: Tom Zaiser, CEO, Indorama Ventures
Source:

INDA, Association of the Nonwoven Fabrics Industry

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem

Celanese and Under Armour introduce elastane alternative (c) Celanese Corporation
24.01.2024

Celanese and Under Armour introduce elastane alternative

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

Celanese Corporation, a specialty materials and chemical company, and Under Armour, Inc., a company in athletic apparel and footwear, have collaborated to develop a new fiber for performance stretch fabrics called NEOLAST™. The innovative material will offer the apparel industry a high-performing alternative to elastane – an elastic fiber that gives apparel stretch, commonly called spandex. This new alternative could unlock the potential for end users to recycle performance stretch fabrics, a legacy aspect that has yet to be solved in the pursuit of circular manufacturing with respect to stretch fabrics.

NEOLAST™ fibers feature the powerful stretch, durability, comfort, and improved wicking expected from elite performance fabrics yet are also designed to begin addressing sustainability challenges associated with elastane, including recyclability. The fibers are produced using a proprietary solvent-free melt-extrusion process, eliminating potentially hazardous chemicals typically used to create stretch fabrics made with elastane.

NEOLAST™ fibers will be produced using recyclable elastoester polymers. As end users transition to a more circular economy, Celanese and Under Armour are exploring the potential of the fibers to improve the compatibility of stretch fabrics with future recycling systems and infrastructure.

In addition to the sustainability benefits, the new NEOLAST™ fibers deliver increased production precision, allowing spinners to dial power-stretch levels up or down and engineer fibers to meet a broader array of fabric specifications.

Source:

Celanese Corporation

04.01.2024

The climate-friendly carbon fiber - up to 50% less CO2 emissions

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

The climate-friendly energy supply at the site in Moses Lake (USA) combined with the new biomass plant in Lavradio (Portugal) lead to a reduction in CO2 emissions of up to 50% in the production of SGL's own carbon fibers compared to conventional fibers. With the investment in the biomass system, SGL Carbon is pursuing its climate strategy. The target is to save 50% CO2 emissions by the end of 2025 compared to the base year 2019 and to be climate-neutral by the end of 2038. In the period 2019 to 2022, SGL Carbon has reduced its CO2 emissions by 17%.

Source:

SGL Carbon SE

Marchi_Fildi_Filidea headquarter Photo Marchi & Fildi Group
Marchi Fildi Filidea headquarter
24.11.2023

The Marchi & Fildi Group: First Sustainability Report published

The data and the information reported examine the performance relative to the companies Marchi & Fildi S.p.A. and Filidea S.r.l. during the year 1st January 2022 to 31st December 2022. In addition, with the aim of putting the data into a context of developments, a comparison with data pertaining to 2021 was also made.

Amongst the numerous data and insights provided by the analyses given in the Report, some relevant performance factors relating to environmental achievements emerge.

With reference to Marchi & Fildi, and in comparison to 2021, the year 2022 demonstrated:

  • A unit reduction in water consumption of 57% and unit reduction of waste water of 19%
  • A unit reduction in electric power consumption of 13%

An overall reduction in CO2 emissions (Scope I + Scope II) of 22% In the same period, for Filidea the following results are shown:

The data and the information reported examine the performance relative to the companies Marchi & Fildi S.p.A. and Filidea S.r.l. during the year 1st January 2022 to 31st December 2022. In addition, with the aim of putting the data into a context of developments, a comparison with data pertaining to 2021 was also made.

Amongst the numerous data and insights provided by the analyses given in the Report, some relevant performance factors relating to environmental achievements emerge.

With reference to Marchi & Fildi, and in comparison to 2021, the year 2022 demonstrated:

  • A unit reduction in water consumption of 57% and unit reduction of waste water of 19%
  • A unit reduction in electric power consumption of 13%

An overall reduction in CO2 emissions (Scope I + Scope II) of 22% In the same period, for Filidea the following results are shown:

  • A unit reduction in water consumption of 26%, unit waste water of 22%
  • A reduction in unit natural gas consumption of 7%
  • A reduction in unit electric power consumption of 14%
  • An overall reduction in CO2 emissions (Scope I + Scope II) of 7%

These data offer quantitative feedback on the constant commitment to the optimisation of resources and use of production technologies with low energy impact, which the Group has adopted for years.

Massimo Marchi, Marchi & Fildi’s President, has this to say about the choice to invest in this form of reporting:
“The decision to write a Sustainability Report represents for us one of the elements which guide us towards the constant improvement of company performance with reference to ESG. This is one of the stages towards the formalisation of a strategic plan for the management of sustainability, a journey which the Group has been committed to for years and in which we believe 100%.”

 

Source:

Marchi & Fildi Group

Hologenix honored twice in ISPO Textrends Awards Photo: Hologenix, LLC
22.11.2023

Hologenix honored twice in ISPO Textrends Awards

Twice a year ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Two innovations from Hologenix have scored wins in the ISPO Textrends Fall/Winter 2025/2026 Awards: CELLIANT® with REPREVE® Nylon, introduced with textile solutions provider UNIFI®, makers of REPREVE®, and CELLIANT® Print. They were both Selections in the Fibers & Insulations Category.

Twice a year ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Two innovations from Hologenix have scored wins in the ISPO Textrends Fall/Winter 2025/2026 Awards: CELLIANT® with REPREVE® Nylon, introduced with textile solutions provider UNIFI®, makers of REPREVE®, and CELLIANT® Print. They were both Selections in the Fibers & Insulations Category.

CELLIANT with REPREVE Nylon
CELLIANT with REPREVE Nylon consists of CELLIANT infrared (IR) technology embedded into REPREVE. REPREVE creates high-quality fibers made from 100% recycled materials, including post-consumer plastic bottles and preconsumer waste. CELLIANT with REPREVE Nylon is strong and durable with great stretch and a silky hand. It is ideal for underwear, stockings, tights/leggings, socks, seamless knits, baselayers and many other categories. With CELLIANT’s ability to convert body heat into infrared energy, improving local circulation and cellular oxygenation, it also provides performance for outdoor/sportswear, outerwear, swimwear among other categories. This is the second carrier type for CELLIANT with REPREVE, as it was introduced in polyester last fall and won three awards.

CELLIANT Print
CELLIANT Print makes the natural blend of IR-generating bioceramic minerals more widely available from Hologenix as a printed coating, expanding the uses of the technology. Traditionally, CELLIANT has been embedded directly into fibers, yarns and fabrics. However, for its print applications, CELLIANT fine mineral powder can be adhered to many different fabric types as a topical coating, making CELLIANT Print a versatile and cost-effective solution. Key CELLIANT partners, such as Under Armour with their UA RUSH™ line, and KT Tape with its PRO Oxygen™ kinesiology tape utilize CELLIANT Print. Safe and CELLIANT® Print CELLIANT® with REPREVE® Nylon durable, CELLIANT Print has undergone mechanical testing for wash tests and can be confirmed to last the useful life of the product, for 50+ washes.

Source:

Hologenix, LLC

17.11.2023

Alliance for European Flax-Linen and Hemp: Flax fibres for Sailing boats

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

The adoption of composite parts based on flax fibres by the Marine Industry continues to grow, with major OEMs as well as smaller shipyards now aiming to take advantage of the reduced carbon impact and impressive mechanical properties they can provide.

“Over the last ten or fifteen years, several innovative flax fibre boats have been built and the fibre has started to gain significant traction,” says Julie Pariset, Innovation & CSR Director at the Alliance for European Flax-Linen and Hemp. “In addition to the environmental benefits, manufacturers are realising significant technical and processing gains with flax fibre composites.”

“Flax is a very low-density fibre, with a high specific stiffness,” she explains. “It can be used to manufacture composite laminates with mechanical properties not dissimilar to typical E-glass composites and the coefficient of thermal expansion of a flax fibre epoxy part is also quite close to that of a carbon fibre part.” This allows the materials to work well in combined assemblies with carbon fibre composites and the flax parts are also highly impact resistant.

Flax fibres also provide acoustic and vibration damping in composite applications, as well as providing a warm and aesthetically pleasing appearance below decks.

ecoRacer30
As a member of the Alliance for European Flax-Linen and Hemp, Bcomp, headquartered in Fribourg, Switzerland, has this year been working with Northern Light Composites (nlcomp), based in Monfalcone, northern Italy, on the creation of what is billed as the first fully recyclable nine-metre-long sailing boat – the ecoRacer30.

The boat is based on nlcomp’s proprietary rComposite technology – a combination of thermoplastic resins and BComp’s ampliTex high-performance natural fibre reinforcement fabrics and patented powerRibs technology.

It was built in a collaborative effort with the help of Barcelona-based Magnani Yachts, which took care of the composite manufacturing, and Sangiorgio Marine, which provided technical assistance as the boat was being assembled at its shipyard in Genova, Italy.

Magnani Yachts has subsequently become the first shipyard to hold an rComposite license and others are now being encouraged to adopt the technology.

The second ecoracer30 is currently under construction and has already been sold and nlcomp is planning to build a fleet of eight of these boats in time to enter a series of regattas in the summer of 2025.

Flax 27 Daysailer
Greenboats, based in Bremen, Germany, is another specialist in building boats from natural fibre composites and has this year launched the Flax 27 daysailer.

The lower hull of this vessel is also made from Bcomp’s ampliTex technical fabrics in combination with a sandwich core of recycled PET bottles. Using a vacuum infusion process, the fibres were integrated with a plant-based epoxy resin in order to further reduce the CO2 footprint of the vessel.

The light structure and modern shapes of the lower hull of the boat result in very fast, sharp and agile handling on the water.

Greenboats has also recently announced significant new backing from alliance member Groupe Depestele, which manages 13,000 hectares of flax land in Normandy, France.

Blue Nomad
A project in Switzerland has meanwhile proposed the use of flax fibre composites in solar-powered habitats designed for comfortable living on the oceans – as the world grapples with the frightening implications of climate change and rising sea levels.

As envisaged by students from Institut auf dem Rosenberg in St Gallen, Switzerland working with Denmark-based SAGA Space Architects, Blue Nomad structures would form modular blocks to establish large communities and oceanic farms.
 

Source:

Alliance for European Flax-Linen and Hemp

Lenzing relies on wind power in the fiber and pulp production (c) Lenzing AG
At the ground-breaking ceremony, from left to right: Josef Reiter (Mayor of Engelhartstetten) Thomas Östros (Vice-President of the European Investment Bank) Helga Krismer-Huber (Green Party Lower Austria LAbg) Stephan Pernkopf (Deputy Governor of Lower Austria) Leonore Gewessler (Minister for Climate Protection) Gregor Erasim (owner of WLK energy) Gerda Holzinger-Burgstaller (Chairwoman of the Management Board of Erste Bank Österreich) Bianca Flesch (Environmental Management Messer Austria GmbH) Mario Wohanka (WLK Chief Financial Officer) Christian Skilich (CTO Lenzing AG)
10.11.2023

Lenzing relies on wind power in the fiber and pulp production

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

The Lenzing Group has concluded a supply contract with the Austrian electricity producer WLK energy for the purchase of around 13 megawatts of wind power. Lenzing is thus not only underlining its commitment to climate protection and the energy transition, but is also making a long-term investment in a price-stable and diversified electricity supply. The contract has a term of 15 years and provides for supply from the new wind farm in Engelhartstetten from the first quarter of 2025.

The construction of the wind farm is a joint project involving several partners, including the operator and electricity supplier WLK energy, based in Untersiebenbrunn (Lower Austria). The total output of the wind farm with a total of eleven wind turbines will be around 45 megawatts. The share of around 13 megawatts, which will be produced exclusively for the needs of the Lenzing site (Upper Austria), corresponds to the average electricity requirements of around 10,000 households per year in Austria. The ground-breaking ceremony to mark the start of construction took place on November 09, 2023 with representatives from politics and business.

In 2019, Lenzing was the first fiber manufacturer to set itself the goal of reducing its CO2 emissions by 50 percent by 2030 and becoming carbon-neutral by 2050. This CO2 reduction target was recognized by the Science Based Targets Initiative. In 2022, Lenzing opened Upper Austria's largest open-space photovoltaic plant together with Verbund and also signed an electricity supply contract for photovoltaic energy with the green electricity producer Enery and Energie Steiermark.

Source:

Lenzing AG

08.11.2023

Hexcel showcases new fiber HexPly® M79 Prepregs at METSTRADE 2023

Hexcel will continue to celebrate its 75th anniversary and highlight its latest developments for the Marine market at METSTRADE 2023 on November 15-17. Hexcel will showcase innovative advanced lightweight material technologies including new intermediate and high modulus fiber HexPly® M79 prepregs and present example high-performance superyacht and windship components developed by customers using Hexcel materials.

The new intermediate modulus prepreg combines the low temperature curing and simple processing of the DNV GL accredited HexPly M79 resin system with the market-leading stiffness of HexTow® IM2C fiber, creating a uniquely optimized composite material for highly loaded components. Originally developed to provide best-in-class performance for America’s Cup and IMOCA hull and deck structures, the new combination minimizes structural deformation under load in parts such as rigs, foils, and other appendages.

Hexcel will continue to celebrate its 75th anniversary and highlight its latest developments for the Marine market at METSTRADE 2023 on November 15-17. Hexcel will showcase innovative advanced lightweight material technologies including new intermediate and high modulus fiber HexPly® M79 prepregs and present example high-performance superyacht and windship components developed by customers using Hexcel materials.

The new intermediate modulus prepreg combines the low temperature curing and simple processing of the DNV GL accredited HexPly M79 resin system with the market-leading stiffness of HexTow® IM2C fiber, creating a uniquely optimized composite material for highly loaded components. Originally developed to provide best-in-class performance for America’s Cup and IMOCA hull and deck structures, the new combination minimizes structural deformation under load in parts such as rigs, foils, and other appendages.

For a high modulus solution, HexTow® HM54 fiber is also now available with the HexPly M79 resin system. The unique mechanical properties of HexTow HM54 fiber allow structural designers to achieve higher safety margins for both stiffness and strength critical applications. Both products can be manufactured with Hexcel G-Vent technology for out-of-autoclave processing, delivering a reduction in process time and cost without compromising mechanical performance.

Hexcel will also display customer products that have benefited from the performance and processing gains provided by HexPly materials. A section of a Solid Sail mast made using Bureau Veritas (BV)-approved HexPly® M9.6 prepregs will be exhibited at METS. Such masts are used for wind propulsion and, by harnessing the power of ocean winds, they reduce reliance on engines, reducing fuel usage and emissions.

Visitors to the Hexcel booth will also see a section of a radar arch part from luxury motor yacht builder Sunseeker made using HexPly® XF surfacing technology and HexPly® SuperFIT semi-pregs. The part is lighter in weight and stiffer than versions made using resin-infusion processes and de-molds with a pinhole-free surface that needs minimal preparation to be ready for painting. Sunseeker has recorded an overall reduction in process time and material costs of around 30% against traditional prepreg parts, using Hexcel composite materials.

Source:

Hexcel

Dyneema® SB301 to Enable Weight Savings of up to 20% in Protective Body Armor Image Avient
10.10.2023

Dyneema®: Weight Savings of up to 20% in Protective Body Armor

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

“In every situation, weight is now considered to be the top priority after ballistic stopping power,” said Marcelo van de Kamp, global business director for personal protection at Avient. “That’s because survivability is directly tied to weight savings when speed and agility determine outcomes. We’ve long been known as the ‘world’s strongest fiber™,’ but that won’t stop us from finding new opportunities to get stronger. This new product is the latest demonstration of our commitment to both innovation and protection.”

Source:

Avient Corporation

Polartec PS Photo Polartec
09.10.2023

Polartec: Plant-based nylon resulting in a 50% lower carbon footprint vs. virgin nylon

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Ramesh Kesh, Senior Vice President – Government & Defense and Polartec at Milliken & Company said, “For a long time, many thought that sustainable options meant a loss in performance, like durability, Polartec has proved that this is not the case. Challenging a technology already considered to be at the pinnacle of performance was a big ask yet the team at Polartec rose to that challenge and we believe we have created a new standard in sustainability for performance fabrics.” 

More information:
Polartec Biolon nylon
Source:

Abi Youcha (Akimbo Communication)

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz
11.07.2023

Future cost reduction through ultra-thin PE carbon fibres

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

The use of carbon fibres in highly stressed lightweight construction solutions, such as today's growth applications of wind turbines or pressure tanks, has become indispensable due to their excellent mechanical properties and low density. High manufacturing costs of conventional PAN precursor-based carbon fibres make the material very cost-intensive. In addition, it is not sufficiently available. New manufacturing approaches that develop alternative raw materials and manufacturing processes can be a key and growth engine for further industrial composites applications.

The aim of the work was to develop a new and cost-effective manufacturing process for high-quality ultra-thin carbon fibres using a polyethylene precursor. For this purpose, the sulphonisation process, which is time-consuming today, was to be significantly shortened. As a result, Mr. Marter Diniz produced novel ultra-thin polyethylenebased carbon fibres with a filament diameter < 3 μm with an excellent surface quality of the fibres without detectable structural defects. The fibre diameter is 2-3 times smaller than that of conventional PANbased CF. This provides the basis for mechanically high-quality material properties. At the same time, Mr. Marter Diniz was able to reduce the sulphonisation time by 25 percent. The developed material and technology set important milestones on the way to cheaper carbon fibres. With PE-based precursors, the price of CF can be reduced by 50 percent compared to conventional PAN-based CF.  

A total of five other young scientists were awarded in six categories (Drive Technology, Innovation & Technology/Artificial Intelligence, New Materials, Paper, Hydropower and Economic Sciences. This year, for the 10th time, the Hanns Voith Foundation awarded the Hanns Voith Prize to outstanding young scientists.

Source:

ITA Institut für Textiltechnik of RWTH Aachen University

06.06.2023

GOTS, European Space Agency and Marple: Remote monitoring in organic cotton certification

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

  • Project from the Global Organic Textile Standard, European Space Agency and Marple will use AI and satellite imagery to detect organic versus non-organic cotton fields
  • Innovative demonstrator project explores the potential of remote monitoring to strengthen integrity and development of organic cotton cultivation
  • Project will run across India with first results expected by the end of 2023

In a world first, the Global Organic Textile Standard (GOTS), European Space Agency (ESA) and AI company Marple have today launched a new demonstrator project that aims to show the potential for remote satellite monitoring of organic cotton cultivation systems.

The project, to be carried out under ESA’s Business Applications and Space Solutions (BASS) programme, will train artificial intelligence (AI) to use ESA satellite data to detect cotton fields across India and automatically classify them according to their cultivation standard. By integrating standardised yield metrics, this innovative approach will also enable GOTS to generate realistic estimates of organic cotton yields in specific areas.

Integrated with existing GOTS measures, this project will enable GOTS to further enhance the integrity of organic cotton by developing advanced risk assessment technology for organic certification and preventing fraud from the beginning of the supply chain. “It is an honour and very exciting to be a partner in this ESA Demonstration Project, and it is living up to our claim to be pioneers serving the sustainable textile sector to enable continuous improvement. Technologies like this will be a game changer regarding the integrity and promotion opportunities of organic cotton.” says Claudia Kersten, Managing Director of GOTS.

The project's anticipated impact extends beyond identifying certified organic cotton fields. It is expected to also empower GOTS to recognise cotton fields that have not yet obtained organic certification but possess the potential for a seamless transition to organic cultivation, thanks to their utilisation of traditional and ecologically friendly farming practices. This would enable GOTS to bring a greater number of farmers – particularly those of a smaller size – into the certified organic sector and supply chains, creating new economic opportunities for small-scale farmers and their communities while also helping the textile sector to meet growing consumer demand for organic cotton. Guillaume Prigent, Business Development and Partnerships Officer at the European Space Agency, adds: “This project highlights how space solutions can have a positive impact on the world and is the kind of innovation that ESA supports through its Business Applications and Space Solutions programme.”

The project will run across the distinct cotton growing regions in India, with first results expected by the end of 2023.

India project builds on successful Uzbekistan feasibility pilot
The project is co-financed by GOTS and ESA, in collaboration with Marple GmbH, a German software development firm that developed the CoCuRA (Cotton Cultivation Remote Assessment) software with ESA BASS and successfully piloted it in a feasibility project in 2021 in Uzbekistan.

That venture showed how the trained AI was able to accurately differentiate cotton fields from other crops using only satellite images and sensor data, as well as whether the cotton fields were cultivated organically.

This spurred considerable interest from GOTS, which has committed to the development of cutting-edge technologies that can improve the integrity of the organic textile sector, especially cotton. Dr David Scherf, co-founder of Marple, said: “All our projects strive to leverage advanced technology for a positive impact on the environment and society. We are therefore delighted that our CoCuRA technology, which emerged from a moonshot research project, is being applied in a practical and impactful way. We are excited about the opportunity to work with the exceptional team at GOTS and further strengthen our successful partnership with ESA.”

More information:
GOTS AI cotton India
Source:

GOTS Global Organic Textile Standard

16.05.2023

Change of management at ERWO Holding AG and Hoftex Group AG

Klaus Steger (64), CEO of ERWO Holding AG (“ERWO Holding”) and Hoftex Group AG (“Hoftex Group”), will step down from the Management Board of both companies at the beginning of 2024 in accordance with internal policies of the family and the company regarding the retirement age. Already on June 30, 2023, ERWO Holding Management Board member Hans-Georg von Schuh will retire as planned. ERWO Holding Management Board member Manfred Heinrich will also leave the Board as planned at this time and will continue to hold his mandate as one of the managing directors in the Südwolle Group together with Stéphane Thouvay and Johannes Rauch.

Steger’s designated successor as CEO of both companies is Manuela Spörl (50), currently CFO of ERWO Holding and also CFO of Hoftex Group. Hoftex Group is a group of medium-sized companies in the textile industry, in which ERWO Holding holds a significant stake. In addition, ERWO Holding acts as the parent company of the Südwolle Group, in which the Group’s worsted yarn activities are bundled.

Klaus Steger (64), CEO of ERWO Holding AG (“ERWO Holding”) and Hoftex Group AG (“Hoftex Group”), will step down from the Management Board of both companies at the beginning of 2024 in accordance with internal policies of the family and the company regarding the retirement age. Already on June 30, 2023, ERWO Holding Management Board member Hans-Georg von Schuh will retire as planned. ERWO Holding Management Board member Manfred Heinrich will also leave the Board as planned at this time and will continue to hold his mandate as one of the managing directors in the Südwolle Group together with Stéphane Thouvay and Johannes Rauch.

Steger’s designated successor as CEO of both companies is Manuela Spörl (50), currently CFO of ERWO Holding and also CFO of Hoftex Group. Hoftex Group is a group of medium-sized companies in the textile industry, in which ERWO Holding holds a significant stake. In addition, ERWO Holding acts as the parent company of the Südwolle Group, in which the Group’s worsted yarn activities are bundled.

Spörl has a degree in business administration and has been working for Hoftex Group since 2000. Her professional career began in the Corporate Controlling department, and in 2012 she was appointed as an advisor to the Board of Management. She was granted power of attorney in 2015, followed by appointments as CFO of the Hoftex Group in 2020 and CFO of the ERWO Group in 2022. A search for a successor for Spörl in the position of CFO of the Hoftex Group and, subsequently, of ERWO Holding is currently underway. Until the new CFO takes office, the two members of the Management Board, together with the Supervisory Board, will ensure an orderly transition.

The announced change in the Management Board of ERWO Holding, which acts as the parent company of the Südwolle Group, also ensures continuity at the leading manufacturer of worsted yarns for weaving, circular and flat knitting products in pure wool and wool blends. In the future, the management of Südwolle Group will continue to consist of the longstanding members Manfred Heinrich (Technology, Production & Planning), Johannes Rauch (Finance & Controlling) and Stéphane Thouvay (Sales & Marketing and Product Management & Innovation). Together with the designated board member of the parent company ERWO Holding, they will continue the successful development of the Südwolle Group from a mere supplier to a strategic partner of its customers as well as the growth trend of recent years.

The founding family Steger remains involved in the various supervisory bodies of the group of companies and will continue to work closely with them as the sole shareholder of ERWO Holding.

Source:

ERWO Holding AG

Schoeller Textil AG
22.11.2022

Transparency for the wool supply chain - partnership between Schoeller and NATIVA

  • Fully traceable and sustainable wool via blockchain
  • Transparent supply chains

Schoeller strives to offer more high-quality fabrics made from sustainable NATIVA™ wool in the future.

The NATIVA™ wool comes from certified farms in Australia, New Zealand, South Africa, North America, Uruguay and Argentina. The farms comply with strict levels of animal welfare, and management and ethical work policies. To ensure animal welfare each farmer has a management plan, assessing feeding, breeding, behaviour, animal handling and health and infrastructure. This includes the prohibition of mulesing and stress free shearing.

All following steps such as wool sourcing, combing, spinning and weaving are also monitored and certified to the highest ethical and quality standards. NATIVA™ is the first global wool brand to provide Blockchain traceability from farm to consumer. This transparency in the supply chain, enabled by the NATIVA™ certification and powered by Blockchain, means brands can truly show the journey of their wool.

  • Fully traceable and sustainable wool via blockchain
  • Transparent supply chains

Schoeller strives to offer more high-quality fabrics made from sustainable NATIVA™ wool in the future.

The NATIVA™ wool comes from certified farms in Australia, New Zealand, South Africa, North America, Uruguay and Argentina. The farms comply with strict levels of animal welfare, and management and ethical work policies. To ensure animal welfare each farmer has a management plan, assessing feeding, breeding, behaviour, animal handling and health and infrastructure. This includes the prohibition of mulesing and stress free shearing.

All following steps such as wool sourcing, combing, spinning and weaving are also monitored and certified to the highest ethical and quality standards. NATIVA™ is the first global wool brand to provide Blockchain traceability from farm to consumer. This transparency in the supply chain, enabled by the NATIVA™ certification and powered by Blockchain, means brands can truly show the journey of their wool.

A unique QR code is generated for each product of each brand. This code is a connection between the NATIVA™ Blockchain Platform and the NATIVA™ Blockchain Website. Customers can scan the QR code to view the NATIVA™ Blockchain Website, where they can trace in real time the journey of their wool, from farm to brand.

Benefits:

  • Complete transparency over the supply chain and product transformation.
  • End to end traceability.
  • A fantastic marketing tool for any brand.
Photo: LYCRA® naturalFX™ technology powered by HeiQ
LYCRA® naturalFX™ technology powered by HeiQ
15.11.2022

HeiQ and The LYCRA Company: Added-value technology for cotton knitwear

  • LYCRA® naturalFX™ technology offers durable comfort stretch and fit for 100% cotton knitwear.

HeiQ and The LYCRA Company created a new and durable solution for 100% cotton fabric, adding stretch and recovery properties while keeping it fully recyclable.

HeiQ, a leader in performance finish technologies, and The LYCRA Company, a leader in developing innovative and sustainable fiber and technology solutions for the apparel and personal care industries, announced the launch of LYCRA® naturalFX™ technology, a proprietary textile finishing process for 100% cotton knit garments designed for mass market applications.

LYCRA® naturalFX™ technology, powered by HeiQ, enhances cotton knitwear, addressing critical consumer pain points, and improving the consumer’s overall wearing experience. This technology provides durable comfort stretch, fit, and soft hand-feel to 100% cotton knitwear compared to conventional finishes. Even after repeated washing and wearing, LYCRA® naturalFX™ technology helps knitwear retain its shape, which helps extend the garment’s lifespan and potentially reduce its environmental impact.

Source:

HeiQ