From the Sector

Reset
130 results
(c) Hexcel Corporation
02.12.2021

Hexcel Partners with METYX for High Performance Carbon Pultrusion Technology

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

More information:
Hexcel METYX pultrusion
Source:

Hexcel Corporation

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

11.11.2021

SGL Carbon: Q3 2021 confirms encouraging upward trend

  • Sales increase 8.8% to €743.5 million compared to the same period of the previous year
  • EBITDApre improves by 59.1% to €108.5 million
  • Despite burdens from higher raw material and energy prices, stable revenue and earnings expected for Q4 2021

Following consolidated sales of €241.5 million in Q1 2021 and €255.2 million in Q2 2021, Q3 2021 confirms SGL Carbon's encouraging sales performance with €246.8 million. Due to increasing demand from almost all market segments, Group sales increased to a total of €743.5 million in the first nine months of the fiscal year (9M 2020: €683.5 million). This corresponds to an increase of 8.8% compared to the same period of the previous year.

  • Sales increase 8.8% to €743.5 million compared to the same period of the previous year
  • EBITDApre improves by 59.1% to €108.5 million
  • Despite burdens from higher raw material and energy prices, stable revenue and earnings expected for Q4 2021

Following consolidated sales of €241.5 million in Q1 2021 and €255.2 million in Q2 2021, Q3 2021 confirms SGL Carbon's encouraging sales performance with €246.8 million. Due to increasing demand from almost all market segments, Group sales increased to a total of €743.5 million in the first nine months of the fiscal year (9M 2020: €683.5 million). This corresponds to an increase of 8.8% compared to the same period of the previous year.

Almost all business units contributed to the positive sales development. As largest business unit with a 44.7% share of Group sales, Graphite Solutions (GS) contributed €332.7 million to Group sales in the first nine months of 2021 (9M 2020: €308.0 million). The sales increase of 8.0% is based in particular on the positive development of the important market segments Semiconductor & LED as well as Automotive & Transportation. The business units Carbon Fibers and Composite Solutions contributed €244.7 million (9M 2020: €223.4 million) and €92.1 million (9M 2020: €60.7 million), respectively, to Group sales and benefited primarily from increased demand from the automotive industry. Compared to the previous year, sales increased by 9.5% in Carbon Fibers and by 51.7% in Composite Solutions. Only the Process Technology business unit, with sales down 4.9% to €62.1 million, was not yet able to participate in the general economic upward trend.

See the attached document for more infomation.

More information:
SGL Carbon sales
Source:

SGL CARBON SE

VDMA: Top young talent with cutting-edge topics  (c) VDMA
The 2021 winners (from top left to right): Dr Martin Hengstermann, Irina Kuznik, Kai-Chieh Kuo.
10.11.2021

VDMA: Top young talent with cutting-edge topics

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

Mr Kai-Chieh Kuo was awarded the diploma/master's thesis promotion prize of 3,500 euros. With his master's thesis, which was written at RWTH Aachen University, Mr Kuo contributes to the production of vital components used in medicine. The stents made of ultra-fine yarns are made possible by an innovative modification of the classic tube weaving process.

The Walter Reiners Foundation rewarded the doctoral thesis of Dr. Martin Hengstermann with the promotional prize in the dissertation category, endowed with 5,000 euros. The thesis deals with the production of recycled carbon fibres. These can be used to produce lightweight components for motor vehicle and aircraft construction or the wind energy sector.

New Prize Sustainability / Circular Economy
The environmental conditions of the textile industry and machine construction are changing. Topics such as climate protection and the circular economy are becoming central. From this perspective, the board of the Walter Reiners Foundation has decided to further develop the foundation's prize system.

In 2022, the foundation will for the first time offer a prize with a focus on design / sustainability. Peter D. Dornier, Chairman of the Foundation, explained: "Already in the design phase, one can set the parameters so that a textile product can be reintroduced after use into the economic cycle for a high-quality application. For example, through the appropriate use of materials and finishing. We are looking for solutions for resource-saving design, technology and manufacturing processes."   

08.11.2021

Composites Evolution showcased prepregs and new thermoplastic unidirectional tapes

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution exhibited at the Advanced Engineering 2021 show on 3rd - 4th November highlighting its range of prepreg and introducing a new thermoplastic tape manufacturing capability.

Composites Evolution is a developer, manufacturer and supplier of prepregs for the production of lightweight structures from composite materials. A flexible approach allows Composites Evolution to offer short lead times and low minimum order quantities, while decades of combined expertise ensure that in-depth technical support is on-hand when customers need it.

Showcased was a battery box from a high-performance luxury electric vehicle manufactured from Evopreg® PFC bio-based, fire-resistant prepreg, a rear wing from a Ginetta G56 GTA GT4 race car utilising Evopreg® ampliTex™ natural fibre prepreg, and parts fabricated from the company’s newly-launched Evopreg® PA thermoplastic tape range.

Composites Evolution has a family of specialist prepregs for various applications, including Evopreg® EPC epoxy component prepregs which are a range of pre-impregnated fabrics suitable for moulding into high-performance, lightweight, structural components; Evopreg® EPT epoxy tooling prepregs which have been designed to help composite tooling manufacturers improve the flexibility and efficiency of their tooling manufacturing processes; and Evopreg® PFC fire-retardant prepregs a 100% bio-derived alternative to phenolics for applications where fire performance is a critical requirement.

Evopreg® ampliTex™ combines Composite Evolution’s high-performance Evopreg® epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

Composites Evolution launched their new range of Evopreg® PA Thermoplastic Tapes at Advanced Engineering; these are manufactured from polyamide-6 (PA6) polymer with unidirectional carbon fibre and are suitable for automated tape laying, winding and compression moulding into high-performance, lightweight components.

Source:

Composites Evolution Ltd

19.10.2021

Teijin to boost Heat-Resistant Carbon Fiber Prepreg Production

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Source:

Teijin Carbon Europe GmbH

Visionary building – with composite textiles by vombaur (c)vombaur
From the H-profile to the chamber structure – vombaur offers individually developed composite textiles with complex shapes
13.10.2021

Visionary building – with composite textiles by vombaur

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

Safe and durable solutions for challenging applications
The potential applications for lightweight components in the construction industry are as numerous as the project ideas of the planning and construction teams.
•    Ropes and tensioning elements made of carbon fibre reinforced plastic (CFRP)
•    Reinforcement of building structures made of concrete, steel, wood or other materials
•    Sustainable restructuring of constructions and urban districts for bridges and buildings
•    CFC slats as reinforcements in case of repairs
•    (Filled) GRP pipes made of seamless round woven tubes by vombaur as columns/pillars
•    CFRP sections as steel girder substitutes
•    Hollow profiles with individually designed cross-sections
•    Glass fibre reinforced connecting elements for glazing to minimise expansion differences between the connecting element and the glass
•    Individual light wells

Implementing visions – with composite textiles by vombaur
As your development partner, vombaur facilitates innovative composites projects for challenging applications. In innovative and safety-sensitive industries such as automotive and aviation, chemical and plant engineering.  The composites experts at vombaur develop, create samples of and manufacture woven tapes and seamless round or shaped woven textiles by vombaur – in collaboration with the customer's enterprise development teams and individually for the respective projects. This is how novel and unique lightweight components made of high-performance textiles are created for visionary lightweight construction projects.

"Fibre-reinforced composites are the ideal material for future-oriented construction projects," explains Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "Their outstanding technical properties and design possibilities open up new and fascinating perspectives for construction projects. From building construction to civil engineering, from bridge construction to interior design. As an experienced development partner for sophisticated lightweight components, we at vombaur contribute our seamless solutions to these kinds of future-oriented projects."

More information:
vombaur Composites carbon fibers
Source:

vombaur GmbH & Co. KG

Hexcel and HP Composites Collaborate to Develop Class A Body Panels (c) Hexcel
2020-Alfa-Giulia-GTAm
29.09.2021

Hexcel and HP Composites Collaborate to Develop Class A Body Panels

Hexcel has collaborated with HP Composites S.p.A (HP Composites), a world leader in the production of carbon fiber components for automotive and motorsports, to develop carbon fiber Class A body panels. Hexcel HexPly® XF surfacing technology is being extensively used by the Italian component producer to manufacture external body panels and other components for supercars such as Alfa Romeo’s stunning new supersport sedans, the Giulia GTA, and GTAm.

With five production plants in Italy, HP Composites has built an impressive track record of high-performance composite successes on both road and racetrack. HP has combined this processing expertise with Hexcel HexPly® XF3 surfacing material, HexPly® M47, and HexPly® M49 prepregs, working to the highest standards set by the most prestigious supercar OEMs and leading motorsport teams.

Hexcel has collaborated with HP Composites S.p.A (HP Composites), a world leader in the production of carbon fiber components for automotive and motorsports, to develop carbon fiber Class A body panels. Hexcel HexPly® XF surfacing technology is being extensively used by the Italian component producer to manufacture external body panels and other components for supercars such as Alfa Romeo’s stunning new supersport sedans, the Giulia GTA, and GTAm.

With five production plants in Italy, HP Composites has built an impressive track record of high-performance composite successes on both road and racetrack. HP has combined this processing expertise with Hexcel HexPly® XF3 surfacing material, HexPly® M47, and HexPly® M49 prepregs, working to the highest standards set by the most prestigious supercar OEMs and leading motorsport teams.

Hexcel’s automotive composites portfolio is the result of decades of industry experience and the creation of strategic partnerships to develop and optimize leading-edge technologies. HexPly XF3 is an epoxy prepreg surface material, developed with processing input from the HP Composites team to address the challenges of producing high-quality Class A automotive body panel surfaces with excellent resistance to aging tests.

Applied as the first ply in the mold and after curing at 120-180˚C in an autoclave, HexPly XF3 produces a smooth part surface with no porosity, that requires minimal preparation for painting.

HexPly XF3 is supplied in an easy-to-handle roll format with good tack and drapability. After curing, it can be easily prepared for painting with a rapid sanding process. HP Composites has incorporated automated robotic sanding techniques for this finishing stage with the paint-ready HexPly XF3 surface providing excellent paint adhesion according to EN ISO 2409.

HP Composites typically uses autoclave processing for HexPly XF3 parts, maximizing weight savings and structural performance of the final components. In addition, HP has also developed its own proprietary press and compression molding processes, including Air Press Moulding® technology, compatible with HexPly XF3 and other HexPly prepregs for higher volume production series that require increased production rates.

“Our long-term experience has given us a detailed understanding of the critical features that influence how prepregs and surfacing technologies interact with different production processes,” said Abramo Levato, General Manager, HP Composites S.p.A. “The relationship we have with Hexcel is both highly technical and highly supportive. As a result we have a complete material package for high-quality Class A body panels that are formulated specifically with our requirements in mind.”

“Combining the expertise of HP with a strong technical interaction and collaborative dialogue, Hexcel and HP were together able to develop the optimum HexPly XF surfacing technology,” said Claude Despierres, VP Sales and Marketing, Hexcel. “With HexPly XF3 we satisfy the toughest industry standards.”

Launch of a new ISO certification standard (c) AMAC
Möcke + Mörschel + Effing
22.09.2021

Launch of a new ISO certification standard

Textechno reports launch of a new standard for the drapability and deformability of fabrics and non-wovens: ISO 21765

World market leader for precision testing equipment Textechno and their partner SAERTEX, global market leader in non-crimp fabrics (NCF) are proud to announce that the newly developed international standard ISO 21765:2020 to quantify material behaviour in terms of drapability and deformability was recently published by ISO.

The new standard ISO 21765 allows the world-wide comparable measurement of all relevant parameters regarding the deformability and drapability of all kinds of fabrics, including woven fabrics and NCFs as well as knitted fabrics and non-wovens on Textechno´s precision testing equipment DRAPETEST. This can be very useful in the carbon fibre recycling since one of the most efficient applications of recycled carbon fibres will be in non-wovens.

This is the first testing instrument world-wide to quantify not only the force which is required for deforming a fabric, but also the various defects such as gaps, undulation, or wrinkles which can arise due to the deformation.

Textechno reports launch of a new standard for the drapability and deformability of fabrics and non-wovens: ISO 21765

World market leader for precision testing equipment Textechno and their partner SAERTEX, global market leader in non-crimp fabrics (NCF) are proud to announce that the newly developed international standard ISO 21765:2020 to quantify material behaviour in terms of drapability and deformability was recently published by ISO.

The new standard ISO 21765 allows the world-wide comparable measurement of all relevant parameters regarding the deformability and drapability of all kinds of fabrics, including woven fabrics and NCFs as well as knitted fabrics and non-wovens on Textechno´s precision testing equipment DRAPETEST. This can be very useful in the carbon fibre recycling since one of the most efficient applications of recycled carbon fibres will be in non-wovens.

This is the first testing instrument world-wide to quantify not only the force which is required for deforming a fabric, but also the various defects such as gaps, undulation, or wrinkles which can arise due to the deformation.

In the frame of a publicly funded project which started in 2011, Textechno developed the award-winning automatic drapability tester DRAPETEST along with other partners, amongst them SAERTEX.  

Dietmar Möcke, CTO at SAERTEX says: „With ISO 21765, we finally have a standardized testing method with world-wide validity. It allows us to provide our customers with comparable and reproducible measurement values regarding the draping characteristics of our products.”

Ulrich Mörschel, Managing Director of Textechno adds: “We are grateful for the support from all around the world allowing us to establish the new ISO standard. The standard finally fills a gap in the testing methods for fabrics both in the fields of textiles and composites.”

Dr. Michael Effing, Managing Director of AMAC GmbH and Senior Advisor to Textechno: “A lot of research is dedicated to new production technologies of composites, non-crimp fabrics and classical fabrics for thermosets have with 33 % a significant market share in the production of all composite materials. The application of the new standard for non-wovens from recycled carbon fibres comes perfectly on time for this market sector which will gain more and more importance within the next years.

Source:

AMAC GmbH

(c) Notus Composites. Notus NE7 low temperature curing prepreg
15.09.2021

Notus Composites Launches New Low Temperature Curing NE7 Epoxy Prepreg

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

NE7 prepregs can be cured at temperatures as low as 70˚C, with the standard cure cycle being 12 hours at 70˚C, matching the typical cycle time for an infused part with a component Tg of 85˚C. NE7 materials have a good outlife of 30 days at 20˚C and are available in all prepreg and Notus single sided N1-Preg formats with unidirectional, multiaxial, and woven reinforcements. NE7 can also be supplied as a resin film.

Notus has recently supplied NE7 low temperature prepregs to Dubai based Aeolos Composites for the production of their new Aeolos P30 racing yacht. The P30 is a futuristic new craft created by top German sailor and designer, Hans Genthe, with a super light carbon fibre construction and large sail area that promises spectacular on the water performance for a thirty foot yacht. Notus delivered a range NE7 prepregs for the build, including woven, multiaxial, and unidirectional carbon fibre reinforcements as well as adhesive films for core bonding.

More information:
Notus prepreg material
Source:

Notus Composites.

(c) Autefa
25.08.2021

Swiss Textile Machinery: Top Technology for Nonwovens

Originally conceived as a low-cost, high-volume alternative to knitting and weaving, nonwovens was already expanding its market boundaries by the 1970s with new applications in ‘disposables’ such as diapers, hygiene and teabags.

In the past five decades, the nonwovens business has exploded in all directions, reaching a global market worth USD 40.5 billion in 2020, projected to grow to USD 53.5 billion by 2025. This annual growth rate of 5.7% (MarketsandMarkets, Nonwoven Fabric Market Report) is based on countless new applications and expansion into durable, as well as additional disposable, products.

Major growth drivers include the hygiene sector, and filtration media for power plants and air conditioning systems. Especially during the peak of the COVID pandemic in 2020 and 2021, demand in the hygiene sector multiplied. Worldwide capacities for both meltblown and spunlace production rocketed compared to a normal business year. Swiss Autefa Solutions, for example, significantly benefited from this trend, notably with the launch of a fully-automatic machine for producing face masks.

Originally conceived as a low-cost, high-volume alternative to knitting and weaving, nonwovens was already expanding its market boundaries by the 1970s with new applications in ‘disposables’ such as diapers, hygiene and teabags.

In the past five decades, the nonwovens business has exploded in all directions, reaching a global market worth USD 40.5 billion in 2020, projected to grow to USD 53.5 billion by 2025. This annual growth rate of 5.7% (MarketsandMarkets, Nonwoven Fabric Market Report) is based on countless new applications and expansion into durable, as well as additional disposable, products.

Major growth drivers include the hygiene sector, and filtration media for power plants and air conditioning systems. Especially during the peak of the COVID pandemic in 2020 and 2021, demand in the hygiene sector multiplied. Worldwide capacities for both meltblown and spunlace production rocketed compared to a normal business year. Swiss Autefa Solutions, for example, significantly benefited from this trend, notably with the launch of a fully-automatic machine for producing face masks.

The automotive industry is the second big growth area, with many new applications being pioneered. The trend to electric and hybrid vehicles has helped this, as nonwovens reinforced with carbon fibres are widely used as battery housings.

Swiss nonwovens competence
Innovative applications across all sectors have driven the rapid evolution of sophisticated nonwovens machinery. Today’s trends demand higher productivity, sustainability and Industry 4.0 compatibility – demonstrated by the full equipment portfolio of Swiss Textile Machinery member Autefa Solutions. With V-Jet Futura, the company recently sealed the link in its product range between web forming and drying technology. This latest Hydroentanglement Machine, together with the SQ-V Square Drum Dryer, embodies advanced technology combined with significant reductions in energy consumption compared to other process solutions.

A vital contribution to nonwovens production is offered by Rieter subsidiary Graf, a leading supplier of clothing and combs for carding and combing processes in spinning and nonwovens. Graf's Hipro card clothings – suitable for any man-made fibres in the nonwovens sector – are focussing on higher productivity. Their superior performance delivers up to 10% higher throughput and greater carding efficiency compared to conventional clothings. These reliable card clothing elements also ensure a consistently reproducible high web quality, as well as 20% fewer failures in the web, thanks to the precise fibre transfer to and from the cylinder.

Another constant trend in nonwovens today is the drive for better quality. Manufacturers want to take charge of contamination levels in their processes, as well as eradicating defects which may arise during production. Uster Technologies, a leading provider of quality management solutions from fibre to fabric, offers a combined solution to achieve both these required quality standards. At the fibre preparation stage, Uster Jossi Vision Shield N ensures the best possible initial inspection and removal of contamination. Then, at the end of the production sequence, Uster EVS Fabriq Vision N handles automated detection and marking of all the main defects caused during production. This combined solution avoids material waste and takes full advantage of the potential for process optimization.

Source:

Swiss Textile Machinery Association

12.08.2021

SGL Carbon: strong first half of 2021

  • Transformation program and improving order situation show first successes
  • Sales up 8.8% to €496.7 million compared with first half of previous year
  • Adjusted EBITDA improves by 70.7% to €71.7 million
  • Positive business development led to forecast increase on July 13, 2021

While the past fiscal year 2020 was still characterized by a Corona-related slump in orders in many business areas of SGL Carbon, demand picked up again in the first six months of 2021. Accordingly, Group sales increased by 8.8% to €496.7 million in H1 2021 (H1 2020: €456.5 million).

The Carbon Fibers and Composite Solutions Business Units particularly contributed to the €40.2 million increase in sales. Carbon Fibers contributed €166.4 million to Group sales, especially benefiting from increased demand from the automotive market segment. In the Composite Solutions Business Unit, the increase in sales of 52.4% to €60.2 million was also primarily based on the recovering demand from the automotive industry.

  • Transformation program and improving order situation show first successes
  • Sales up 8.8% to €496.7 million compared with first half of previous year
  • Adjusted EBITDA improves by 70.7% to €71.7 million
  • Positive business development led to forecast increase on July 13, 2021

While the past fiscal year 2020 was still characterized by a Corona-related slump in orders in many business areas of SGL Carbon, demand picked up again in the first six months of 2021. Accordingly, Group sales increased by 8.8% to €496.7 million in H1 2021 (H1 2020: €456.5 million).

The Carbon Fibers and Composite Solutions Business Units particularly contributed to the €40.2 million increase in sales. Carbon Fibers contributed €166.4 million to Group sales, especially benefiting from increased demand from the automotive market segment. In the Composite Solutions Business Unit, the increase in sales of 52.4% to €60.2 million was also primarily based on the recovering demand from the automotive industry.

With sales of €221.2 million, the Graphite Solutions business area contributed around 44.5% of SGL Group sales. The 3.8% increase in the division's sales was particularly due to the positive development in the important markets of the LED, semiconductor and automotive industries.

Transformation program:
The restructuring and transformation process initiated at SGL Carbon made a significant contribution to the Company's positive sales and earnings performance. In addition to leaner and more efficient structures as well as a reorganization of the business units with responsibility for results, a large number of improvements and cost initiatives in all business units and sites have contributed to the success of the ongoing transformation program.

Forecast increase:
Due to pleasing business development in the first half of the year as well as transformation successes, SGL Carbon raised its forecast for fiscal year 2021 on July 13, 2021. For the financial year 2021, the company now expects consolidated sales of around €1.0 billion (previously: €920 - 970 million). In line with developments in the first half of 2021 and the results from the transformation, adjusted EBITDA for 2021 is expected to be between €130 - 140 million (previously: €100 - 120 million). Accordingly, a slightly positive net profit is now forecasted for fiscal year 2021 (previously: €-20 million to €0).

More information:
SGL Carbon SGL Carbon SE
Source:

SGL CARBON SE

 

powerribs with inset bonnet (c) Composites Evolution
04.08.2021

Composites Evolution: New range of flax-epoxy prepreg materials

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution Ltd has teamed up with leading natural fibre reinforcement specialists Bcomp to launch a new range of flax-epoxy prepreg materials, designed to offer enhanced sustainability without compromising on performance.

Evopreg ampliTex™ prepregs combine Composites Evolution’s high-performance Evopreg epoxy resin systems with Bcomp’s award-winning ampliTex™ flax reinforcements, to deliver a family of materials which offer outstanding performance for component applications.

To reach the full performance of natural fibres, Evopreg ampliTex™ prepregs have been tailored to be compatible with Bcomp’s powerRibs™ reinforcement grid, enabling the same stiffness and weight as thin-walled monolithic carbon fibre parts while decreasing the CO2 footprint by 85% and improving safety thanks to a blunt braking behaviour without dangerous debris or sharp edges.

Composites Evolution’s Sales & Marketing Director, Ben Hargreaves, explains further.
“Sustainability is an increasingly important factor for many of our customers - particularly those involved in motorsports and high-performance automotive applications. As you’d expect in these sectors though, sustainability can’t come at the expense of performance the two must go hand-in-hand. This is something that other prepreggers can struggle with, as natural fibres behave very differently to carbon or glass, for example.”

Customers would be able to understand the strengths and weaknesses of natural fibre composites, and to show where and how they can be adopted without the need for significant changes to existing composite component production processes.

One such customer is Retrac Group, whose composites division is one of the UK’s most experienced composites engineering companies across motorsports, automotive and aerospace. It recently used Evopreg ampliTex™ + powerRibs™ to produce a demonstrator bonnet panel for a race-bred supercar. Project Manager Alan Purves explains.


“We’re seeing a growing interest in flax fibre composites, particularly in the motorsports and niche vehicle sectors. It is therefore essential that we have developed an in-depth understanding of the processing requirements and performance capabilities of these materials, and are ready to respond to our customers' requirements. Being able to tap into the combined expertise and experience of both Composites Evolution and Bcomp is proving invaluable.”

Source:

Composites Evolution

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
20.07.2021

Baldwin to unveil FlexoCleanerBrush™ at SuperCorrExpo

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Also on view in Baldwin’s SuperCorrExpo booth, the FlexoDry™ is a fully integrated IR drying system, specifically developed for corrugated flexo printing presses. It reduces energy consumption by up to 30 percent over standard IR dryers through patented Diamond IR™ lamps. The system delivers improved drying results because of a unique optical design that produces higher intensity for enhanced color definition, and reduces or eliminates marking altogether, allowing for high-speed and full-confidence printing.

Additionally, Baldwin will showcase LED-UV technology, designed by its AMS Spectral UV division for wide-format flexo corrugated box printing.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

(c) Teijin Limited
13.07.2021

Teijin: Carbon Fiber Products Operations in Vietnam

TCV, Teijin’s carbon fiber business base in Vietnam, was established in May 2019. Teijin Limited announced that Teijin Carbon Vietnam Co., Ltd. (TCV) in Ha Nam, Vietnam, has started operating commercially to manufacture carbon fiber products including prepreg, a fiber sheet pre-impregnated with matrix resin as an intermediate material for composites. TCV initially will produce carbon fiber materials for sports and outdoor activities, including fishing, golf, bicycle and ice hockey goods, for markets in Southeast and South Asia and Asia-Pacific. Sales will be handled by TCV as well as carbon fiber sales affiliates of Teijin operating in these markets.

Teijin’s sales affiliates in Singapore, Shanghai and Taipei work to identify demand opportunities as well as provide customer services in Asia. Internal collaborations between these companies and TCV shall strengthen Teijin’s presence in the upstream and downstream sectors of Asia’s fast-growing markets.

TCV, Teijin’s carbon fiber business base in Vietnam, was established in May 2019. Teijin Limited announced that Teijin Carbon Vietnam Co., Ltd. (TCV) in Ha Nam, Vietnam, has started operating commercially to manufacture carbon fiber products including prepreg, a fiber sheet pre-impregnated with matrix resin as an intermediate material for composites. TCV initially will produce carbon fiber materials for sports and outdoor activities, including fishing, golf, bicycle and ice hockey goods, for markets in Southeast and South Asia and Asia-Pacific. Sales will be handled by TCV as well as carbon fiber sales affiliates of Teijin operating in these markets.

Teijin’s sales affiliates in Singapore, Shanghai and Taipei work to identify demand opportunities as well as provide customer services in Asia. Internal collaborations between these companies and TCV shall strengthen Teijin’s presence in the upstream and downstream sectors of Asia’s fast-growing markets.

Increasingly strict environmental measures and the upgrading of environmental frameworks, such as sustainable development goals (SDGs) and the Paris Agreement, are expected to stimulate greater use of lightweight and highly rigid carbon fiber. Demands are growing in Asia, especially in the fields of sports and outdoor activities, industry and aerospace. COVID-19, for example, has led to new trends in sports and outdoor activities, such as renewed interest in fishing due its compatibility with social-distancing protocols.

Source:

Teijin Limited

COBRA continues Its Partnership with Fliteboard (c) COBRA
11.07.2021

COBRA continues Its Partnership with Fliteboard

COBRA International is pleased to confirm its continued partnership with Fliteboard as the builders of the new Fliteboard Series 2.  

Conceived in 2016, the Fliteboard range of electric foiling surfboards has established a leading position in the eFoil market. In early 2021, Fliteboard announced a package of evolutionary improvements to the original award-winning design for which COBRA has installed significant additional manufacturing capacity.

With Fliteboard growing rapidly, and thousands of boards now delivered across more than 80 countries,  COBRA will continue to support Fliteboard with additional moulds and lean manufacturing production lines added to reduce customer lead times. In addition to this production capacity expansion, COBRA has successfully met the technical challenges set by the Fliteboard team to incorporate all the new Series 2 board features into the existing production processes.

COBRA International is pleased to confirm its continued partnership with Fliteboard as the builders of the new Fliteboard Series 2.  

Conceived in 2016, the Fliteboard range of electric foiling surfboards has established a leading position in the eFoil market. In early 2021, Fliteboard announced a package of evolutionary improvements to the original award-winning design for which COBRA has installed significant additional manufacturing capacity.

With Fliteboard growing rapidly, and thousands of boards now delivered across more than 80 countries,  COBRA will continue to support Fliteboard with additional moulds and lean manufacturing production lines added to reduce customer lead times. In addition to this production capacity expansion, COBRA has successfully met the technical challenges set by the Fliteboard team to incorporate all the new Series 2 board features into the existing production processes.

Fliteboard’s first composite models used a carbon fibre and Innegra sandwich laminate over a moulded EPS foam core, combining maximum strength, stiffness, and durability with a low overall board weight. The same construction concept is used for the Series 2 boards, with several new finishes added to the range along with lighter colour matched EVA deck pads and upgraded latches on the carbon fibre board lid. New wood grain and metallic paint finishes have been introduced with COBRA’s semi-transparent paint system used to save weight and display the stunning hexagonal weave pattern of the carbon and Innegra reinforcement fabrics.

Source:

COBRA / 100% Marketing

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

02.06.2021

Teijin: Tenax™ Carbon Fiber Prepreg Adopted for Next-Generation Aircraft Engine Nacelle

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin is intensively accelerating its development of mid- to downstream applications for aircraft, one of the strategic focuses of its medium-term management plan for 2020-2022. Going forward, Teijin intends to further strengthen its carbon fiber and intermediate material businesses to contribute to increasing global sustainability, aiming to become a company that supports the society of the future.

Source:

Teijin

(c) Teijin Carbon Europe GmbH
19.05.2021

Teijin Carbon produces new thermoplastic PPS-Tape

Teijin Carbon Europe introduces a new thermoplastic carbon fiber tape (TPUD) based on PPS. The new Tenax™ TPUD with PPS matrix allows entry in new cost-sensitive markets while offering the typical TPUD advantages like high resistance to chemicals and solvents, low flammability, storage or shipping at room temperature and recyclability.  

Due to its flame retardant properties and low smoke emission, it can be used in interior applications of aircraft or rail vehicles, among others. The maximum continuous operating temperature is up to 220 °C. Very low water absorption, excellent creep resistance even at elevated temperatures and high dimensional stability round off the property portfolio of this new TPUD. It is therefore also suitable for demanding applications in the aerospace, oil & gas, sporting goods or industrial sectors, while remaining cost-effective. These properties make the product perfect for highly automated processing routes such as ATL or AFP in combination with overmolding for complex geometries. Production start for the Tenax™ TPUD with PPS matrix is the first quarter in 2021.

Teijin Carbon Europe introduces a new thermoplastic carbon fiber tape (TPUD) based on PPS. The new Tenax™ TPUD with PPS matrix allows entry in new cost-sensitive markets while offering the typical TPUD advantages like high resistance to chemicals and solvents, low flammability, storage or shipping at room temperature and recyclability.  

Due to its flame retardant properties and low smoke emission, it can be used in interior applications of aircraft or rail vehicles, among others. The maximum continuous operating temperature is up to 220 °C. Very low water absorption, excellent creep resistance even at elevated temperatures and high dimensional stability round off the property portfolio of this new TPUD. It is therefore also suitable for demanding applications in the aerospace, oil & gas, sporting goods or industrial sectors, while remaining cost-effective. These properties make the product perfect for highly automated processing routes such as ATL or AFP in combination with overmolding for complex geometries. Production start for the Tenax™ TPUD with PPS matrix is the first quarter in 2021.

For almost 10 years, unidirectional tapes (TPUD) have been manufactured from carbon fibers and thermoplastics in Heinsberg, Germany. The semi-finished products have so far been offered with PEEK or PAEK – and PPS is now added to the list of available matrixes. PPS allows a lower process temperature compared to PEEK or PAEK. For the industrial market in particular, increasing the production rate to make processes more cost-efficient is an opportunity.

Source:

Teijin Carbon Europe GmbH

AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  © AMAC
fltr: Markus Beckmann, Prof. Thomas Gries, Dr. Michael Effing, Dr. Christoph Greb
19.04.2021

AMAC cooperates with ITA

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

ITA, as one of the largest institutes on the campus of the excellence University RWTH Aachen, Germany, develops complete solutions from the manufacturing of the fiber itself over the processing of textile intermediates with thermoplastic and thermoset resins, textile-based part manufacturing, capabilities such as braiding, pultrusion and in-situ impregnation of textile preforms. Top 3 focused industries are transportation and particularly the e-mobility sector, building and construction as well as the wind energy sector. Additionally, ITA GmbH is the partner of the industry in R&D, focusing on 8 business segments, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the background of the strategic cooperation with focus on composites: „Our long-term experience and unmatched know-how with all aspects of continuous fibers, non-wovens and web-based reinforcements allows us to deliver to the composite manufacturers a complete technology and service offer around the development of technical textiles, from the development of glass and carbon fibers to the textile-based processing of composite parts. In all process steps of our research and developments, we focus on sustainable and recyclable solutions, an efficient cost-performance ratio, the possible use of bio-based materials and the reduction of the CO2 footprint. We are glad to cooperate with Dr. Michael Effing and AMAC in order to benefit from his door-opening network in the composites industry. “

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support the ITA to generate innovation thanks to further industrial networking and pre-competitive joint projects. ITA is indeed a one-stop source for composite solutions from the fiber to the cost-efficient manufacturing of final parts. In the context of the Covid-19 impact to the entire industry, it makes sense to bundle forces. Furthermore, ITA, with its long tradition and satisfied customers offers further valuable networking opportunities to the composites industry as well as access to relevant complementary fiber-based excellence and 250 different technologies in their machine-park with an outstanding infrastructure in Aachen.”