From the Sector

Reset
90 results
Composite textiles by vombaur for innovations in architecture and the construction industry (c) vombaur
Low effort, low weight: Maintenance with fibre-reinforce materials
13.10.2021

Composite textiles by vombaur for innovations in architecture and the construction industry

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

In addition, fibre composites offer numerous design options for novel and exceptional new building and maintenance projects:
•    Unique variety of shapes
•    Different structures of the textiles
•    Large spectrum of colours and colour combinations
•    Translucency of the plastic matrix
Thanks to these properties, composites can be used to produce coloured, phosphorescent, thermochromic or – through the use of LEDs or light-conducting fibres permanently integrated into the matrix – luminescent components.

In addition, there are organisational benefits for planning, construction and maintenance work with fibre-reinforced materials:
•    Easier handling and assembly of the far lighter and more flexible components – compared with steel, concrete or wood
•    Faster installation
•    Shorter construction site times in road and bridge maintenance
•    Shorter delivery times
•    Ability to integrate electronic monitoring systems

Individual composite textiles – for every lightweight engineering project
The composites experts at vombaur develop and manufacture woven tapes and seamless round or shaped woven textiles from carbon, glass, flax or other high-performance fibres on special weaving lines for individually specified round and shaped woven textiles – and can therefore offer you the best possible fibre base for every lightweight construction project.

"Regardless of whether it's a new construction or a renovation project, a façade design, a bridge or a staircase – as your development partner for composite textiles, we have plenty of experience with composites for demanding tasks," emphasises Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "We develop, create samples and manufacture woven tapes and seamless round or shaped woven textiles – in collaboration with the customer enterprise development teams and individually for the respective projects." This is how novel and unique lightweight components made of high-performance textiles are created for visionary projects.

12.10.2021

DSM to showcase armor solutions made with Dyneema® at Milipol Paris 2021

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

While decreasing the load on the wearer, Dyneema® is simultaneously able to reduce the impact of material manufacturing on our planet. In line with DSM’s commitment to protect people and the environment they live in, we have developed the first-ever bio-based ultra-high molecular weight polyethylene fiber and unidirectional (UD) material. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE.

Source:

DSM Protective Materials / EMG

16th World Pultrusion Conference - CALL FOR PAPERS
WPC2022
22.09.2021

16th World Pultrusion Conference - CALL FOR PAPERS

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 16th World Pultrusion Conference on 03 – 04 March 2022 in Paris, France (as a “hybrid event”, this conference will also have the option of online access). The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2022 in Paris (08 – 10 March 2022).

The presentations are to document innovations in the following subject areas of pultruded reinforced plastics:

● Market development in Europe, USA, Asia
● Innovative applications
● New Markets: Ideas for potential new applications with pultruded shapes or systems
● Sustainability: Technical possibilities, recycling, etc.
● Raw materials
   ○ Development of fibres
   ○ Development of resins
● Construction / Testing / Calculation
● Processes

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 16th World Pultrusion Conference on 03 – 04 March 2022 in Paris, France (as a “hybrid event”, this conference will also have the option of online access). The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2022 in Paris (08 – 10 March 2022).

The presentations are to document innovations in the following subject areas of pultruded reinforced plastics:

● Market development in Europe, USA, Asia
● Innovative applications
● New Markets: Ideas for potential new applications with pultruded shapes or systems
● Sustainability: Technical possibilities, recycling, etc.
● Raw materials
   ○ Development of fibres
   ○ Development of resins
● Construction / Testing / Calculation
● Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th October 2021 to info@pultruders.com.
 
The European Pultrusion Technology Association was created in 1989 by a group of leading European pultruders with the mission of supporting the growth of the pultrusion industry by maximising external communication efforts and encouraging knowledge sharing between members. Since 2006, the association has existed under the umbrella of the AVK – Federation of Reinforced Plastics in Frankfurt, Germany. Membership of EPTA is open to all companies and individuals worldwide wishing to further the application of pultruded profiles. For further information visit http://www.pultruders.com.

Techtextil India. Messe Frankfurt
16.09.2021

TN Government signs up for Techtextil India 2021

  • Pushing technical textile investments into the State

In a bid to strengthen indigenous production through the state and attract investors, the nodal agency for investment promotion and facilitation for the Government of Tamil Nadu – Guidance has signed up for Techtextil India 2021 – the leading International Trade Fair for Technical Textiles and Nonwovens. The TN Government will be promoting technical textile policies through both physical and virtual segments of the hybrid fair, enabling investors to set up integrated facilities. Leading technical textile players from Tamil Nadu and across the nation confirm participation for the three-day business event.
 
As one of the first major business events in India for the technical textile sector since the pandemic, Techtextil India 2021 will reunite the industry to present a strong showcase of technical textile technologies crucial for the development of India across industries such as healthcare, agriculture, construction, infrastructure, sports, apparel etc. The first hybrid edition will take place from 25 – 27 November 2021 at the Bombay Exhibition Centre in Mumbai.
 

  • Pushing technical textile investments into the State

In a bid to strengthen indigenous production through the state and attract investors, the nodal agency for investment promotion and facilitation for the Government of Tamil Nadu – Guidance has signed up for Techtextil India 2021 – the leading International Trade Fair for Technical Textiles and Nonwovens. The TN Government will be promoting technical textile policies through both physical and virtual segments of the hybrid fair, enabling investors to set up integrated facilities. Leading technical textile players from Tamil Nadu and across the nation confirm participation for the three-day business event.
 
As one of the first major business events in India for the technical textile sector since the pandemic, Techtextil India 2021 will reunite the industry to present a strong showcase of technical textile technologies crucial for the development of India across industries such as healthcare, agriculture, construction, infrastructure, sports, apparel etc. The first hybrid edition will take place from 25 – 27 November 2021 at the Bombay Exhibition Centre in Mumbai.
 
Announcing a close co-operation with Messe Frankfurt India for the 2021 edition, the Government of Tamil Nadu further shared that it will be promoting textile policies and highlighting investment prospects at the trade fair in a bid to attract companies and investors to the state. Ms  Pooja Kulkarni IAS MD & CEO, Guidance Tamil Nadu said: “While there are several inherent advantages for the growth of technical textiles in Tamil Nadu specifically, many raw materials used in the production of sanitary products, artificial ligaments, seat belt webbings, airbags are still heavily imported. In this context, the Techtextil India Forum can help us reduce import dependency and bring investments in R&D, manufacturing, innovation by partnering with global technical textiles companies.

More information:
Techtextil India
Source:

Messe Frankfurt Hongkong

(c) Notus Composites. Notus NE7 low temperature curing prepreg
15.09.2021

Notus Composites Launches New Low Temperature Curing NE7 Epoxy Prepreg

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

NE7 prepregs can be cured at temperatures as low as 70˚C, with the standard cure cycle being 12 hours at 70˚C, matching the typical cycle time for an infused part with a component Tg of 85˚C. NE7 materials have a good outlife of 30 days at 20˚C and are available in all prepreg and Notus single sided N1-Preg formats with unidirectional, multiaxial, and woven reinforcements. NE7 can also be supplied as a resin film.

Notus has recently supplied NE7 low temperature prepregs to Dubai based Aeolos Composites for the production of their new Aeolos P30 racing yacht. The P30 is a futuristic new craft created by top German sailor and designer, Hans Genthe, with a super light carbon fibre construction and large sail area that promises spectacular on the water performance for a thirty foot yacht. Notus delivered a range NE7 prepregs for the build, including woven, multiaxial, and unidirectional carbon fibre reinforcements as well as adhesive films for core bonding.

More information:
Notus prepreg material
Source:

Notus Composites.

(c) INDA, the Association of the Nonwoven Fabrics Industry
07.09.2021

INDA Announces the 2021 RISE® Innovation Award Finalists

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

  • Innovations in Protection, Efficiency and Engineered Fabrics

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the prestigious RISE® Innovation Award during the 11th edition of the Research, Innovation & Science for Engineered Fabrics Conference, (RISE®) to be held virtually September 28-30, 2021.  The award recognizes novel innovations in the nonwovens industry that creatively use next-level science and engineering principles to solve material challenges and expand the usage of nonwovens and engineered fabrics. These three finalists will present their innovative material science solutions as they compete for the RISE® Innovation Award.

Canopy Respirator
Canopy is an innovative respirator that is fully mechanical, non-electrostatic, with a filter designed for superior breathability while offering the wearer facial transparency. The breakthrough respirator features 5.5mm water column resistance at 85 liters (3 cubic feet) per minute, 2-way filtration, and a pleated filter that contains over 500 square centimeters of surface area. The patented Canopy respirator resists fluids, and eliminates fogging of eyeglasses.  

Evalith® 1000 Series
Johns Manville’s innovative Alpha Binder is a formaldehyde-free, high bio-carbon content, toxic-free binder formulation ideal for carpet mat applications. Alpha Binder eliminates monomer and polymer synthesis, uses a bio-degradable catalyst, and requires 70% less water in manufacturing. The resulting glass mats made of Alpha Binder are named “Evalith 1000” and reduces energy consumption during manufacturing by over 70% compared to alternative petroleum-based binders. Evalith 1000 was commercialized in North America in 2020.

Fiber Coated, Heat Sealable, Breathable, Hybrid Membrane, Fabric Protection
TiGUARD protective fabric is a construction of monolithic or hybrid imperious/moisture eliminating membranes with a surface covered with micro-fiber. This nonwoven product is a multi-layer all polyester fabric specifically for chemical and microbial protective fabrics, products, and garments. It is constructed of compatible heat seal-able materials which lend themselves to high-speed heat seal-able production and ultimately automated manufacture of garments without sewing. It is a combination of a densely flocked polyester fiber surface on polyester membrane supported by polyester scrim.
Virtual RISE™ conference attendees include technology scouts and product developers in the nonwoven/engineered fabrics industry seeking new developments to advance their businesses. These attendees will electronically vote for the recipient of the 2021 RISE® Innovation Award, on Wed. Sept. 29th. The winner will be announced Thurs., Sept. 30th.

The conference program will cover timely and relevant industry topics including: Material Science Developments for Sustainable Nonwovens; Increasing Circularity in Nonwovens; Market Intelligence & Economic Insights; Promising Innovations in Nonwovens; Process Innovations in Nonwovens; Material Innovations in Nonwovens;  the full program can be viewed on the link: https://www.riseconf.net/conference.php

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry

COBRA continues Its Partnership with Fliteboard (c) COBRA
11.07.2021

COBRA continues Its Partnership with Fliteboard

COBRA International is pleased to confirm its continued partnership with Fliteboard as the builders of the new Fliteboard Series 2.  

Conceived in 2016, the Fliteboard range of electric foiling surfboards has established a leading position in the eFoil market. In early 2021, Fliteboard announced a package of evolutionary improvements to the original award-winning design for which COBRA has installed significant additional manufacturing capacity.

With Fliteboard growing rapidly, and thousands of boards now delivered across more than 80 countries,  COBRA will continue to support Fliteboard with additional moulds and lean manufacturing production lines added to reduce customer lead times. In addition to this production capacity expansion, COBRA has successfully met the technical challenges set by the Fliteboard team to incorporate all the new Series 2 board features into the existing production processes.

COBRA International is pleased to confirm its continued partnership with Fliteboard as the builders of the new Fliteboard Series 2.  

Conceived in 2016, the Fliteboard range of electric foiling surfboards has established a leading position in the eFoil market. In early 2021, Fliteboard announced a package of evolutionary improvements to the original award-winning design for which COBRA has installed significant additional manufacturing capacity.

With Fliteboard growing rapidly, and thousands of boards now delivered across more than 80 countries,  COBRA will continue to support Fliteboard with additional moulds and lean manufacturing production lines added to reduce customer lead times. In addition to this production capacity expansion, COBRA has successfully met the technical challenges set by the Fliteboard team to incorporate all the new Series 2 board features into the existing production processes.

Fliteboard’s first composite models used a carbon fibre and Innegra sandwich laminate over a moulded EPS foam core, combining maximum strength, stiffness, and durability with a low overall board weight. The same construction concept is used for the Series 2 boards, with several new finishes added to the range along with lighter colour matched EVA deck pads and upgraded latches on the carbon fibre board lid. New wood grain and metallic paint finishes have been introduced with COBRA’s semi-transparent paint system used to save weight and display the stunning hexagonal weave pattern of the carbon and Innegra reinforcement fabrics.

Source:

COBRA / 100% Marketing

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications (c) Hexcel Corporation
07.07.2021

Hexcel showcases Carbon Fiber Prepreg Capability for UAV Applications

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel, a global leader in advanced composites technologies, announces the successful maiden flight of a lightweight camera drone, developed using Hexcel HexPly® carbon fiber prepregs. The composite drone was developed by a team of students from the University of Applied Sciences Upper Austria in Wels with composite materials supplied by Hexcel Neumarkt in Austria.

A team of six students in the university’s lightweight construction and composite materials course was responsible for the complete design, engineering, and manufacture of the camera drone over a period of 18 months. Hexcel materials and optimization of the composite engineering enabled the team to reduce the composite structural mass by an impressive 42% compared to similar drones.

Hexcel Neumarkt was one of eight industrial partners supporting the university team throughout the project, providing all carbon fiber prepreg materials used for the drone’s landing gear as well as the fuselage. The ultra-lightweight 32g landing gear was laid up and cured in the press, whereas the fuselage was autoclave cured by the student team using Hexcel HexPly M901 and HexPly M78.1 prepreg resin systems with a combination of woven and unidirectional carbon fiber reinforcements.

With the development of Unmanned Aerial Vehicles (UAV) as a key emerging market and innovation space in the transportation sector, Hexcel’s collaboration with the University of Applied Sciences Upper Austria team not only creates an important link with the next generation of lightweight composite engineers but also highlights the weight saving and structural benefits of Hexcel composite material solutions.

"The massive weight saving achieved with their updated version of the camera drone is a fantastic achievement by the student team," said Michael Rabl, Dean of FH Wels of the Upper Austria University of Applied Sciences. "The joint study not only illustrates the wide range of complex and innovative composite techniques present in the drone sector but also presents the opportunities that exist for further development in the wider Urban Air Mobility (UAM) and aerospace composites markets.”

Hexcel congratulates the project team which includes Lukas Weninger, Karl-Heinz Schneider, Jakob Schlosser, Matthias Thon, Marla Unter, and Simone Hartl on an exceptional piece of lightweight composite design and thanks them for showcasing the contribution of Hexcel materials with a presentation and drone flight. Johanna Arndt, research and technology group leader at Hexcel Neumarkt, said, “It was a great pleasure to work with the team who were very cooperative and self-motivated to succeed. Watching the drone just fly around the Neumarkt plant was just great.”

Hexcel manufactures a complete range of carbon fibers, dry carbon UD tapes, specialty reinforcements, prepregs, and honeycomb core materials, providing customized manufacturing options for new UAM applications that combine aerospace reliability with the high-rate production required. Hexcel composite materials are the ideal solution for the lightest and most efficient cost-competitive transportation vehicles of the future.

Source:

Hexcel Corporation / 100% Marketing

Beaulieu Fibres International: Fibresand and Fibre Reinforced Rootzones (c) Nottingham Forest Football Club
Beaulieu Straight Fibres - Nottingham Forest natural grass reinforced rootzones
04.06.2021

Beaulieu Fibres International: Fibresand and Fibre Reinforced Rootzones

Mansfield Sand Limited’s sports sand and rootzones are reinforced with polypropylene straight fibres from Beaulieu Fibres International.

  • PP straight fibres manufactured in Belgium by Beaulieu Fibres International
  • Fibres distributed in the UK by James Robinson Fibres
  • Product developed and manufactured by Mansfield Sand.
  • The technology increases pitch stability and resilience even with frequent and intensive use.

Fibresand and Reinforced Rootzones are manufactured in the UK by Mansfield Sand, one of the the leading suppliers of the product. Fibresand and Reinforced Rootzones are a natural sports product reinforced with Beaulieu’s PP Straight Fibre, distributed in the UK by James Robinson Fibres. Used in the top 100mm within the pitch construction profile, it enhances the natural grass root structure while giving the pitches increased stability and resilience.

Many Premiership, EFL and Scottish clubs are choosing Fibresand and Fibre Reinforced Rootzone.

Mansfield Sand Limited’s sports sand and rootzones are reinforced with polypropylene straight fibres from Beaulieu Fibres International.

  • PP straight fibres manufactured in Belgium by Beaulieu Fibres International
  • Fibres distributed in the UK by James Robinson Fibres
  • Product developed and manufactured by Mansfield Sand.
  • The technology increases pitch stability and resilience even with frequent and intensive use.

Fibresand and Reinforced Rootzones are manufactured in the UK by Mansfield Sand, one of the the leading suppliers of the product. Fibresand and Reinforced Rootzones are a natural sports product reinforced with Beaulieu’s PP Straight Fibre, distributed in the UK by James Robinson Fibres. Used in the top 100mm within the pitch construction profile, it enhances the natural grass root structure while giving the pitches increased stability and resilience.

Many Premiership, EFL and Scottish clubs are choosing Fibresand and Fibre Reinforced Rootzone.

Beyond football, Mansfield Sand Fibresand products are being used in a variety of winter sports pitches, the equine market and are increasingly being specified for urban public green space and landscape projects to reinforce natural grass areas and maintain aesthetics even when suffering from heavy traffic burden.

(c) vombaur
Dipl.-Ing Dirk Wachsmuth, the new Managing Director with responsibility for sales, marketing and development
21.05.2021

Dirk Wachsmuth to become CEO of vombaur GmbH & Co. KG

The management of vombaur was restructured as of 1 May 2021: Dipl.-Ing. Dirk Wachsmuth will be responsible for sales, marketing and development as the new Managing Director. The previous Managing Director Peter vom Baur will retain responsibility for vombaur after almost 30 years as a shareholder of the parent company Textation Group.

After studying machinery construction, Dirk Wachsmuth worked for many years first for a filter manufacturer, then in the plastics industry. Together with Andreas Kielholz and Christoph Schliefer, he will be heading vombaur GmbH & Co. KG from now on.

vombaur is a specialist for seamless narrow textile woven tubulars. The company has come through the crisis year 2020 on a solid footing and is positioned for the future. vombaur is currently investing an amount in the double-digit millions in a state-of-the-art headquarters that will be inaugurated in 2023.

The management of vombaur was restructured as of 1 May 2021: Dipl.-Ing. Dirk Wachsmuth will be responsible for sales, marketing and development as the new Managing Director. The previous Managing Director Peter vom Baur will retain responsibility for vombaur after almost 30 years as a shareholder of the parent company Textation Group.

After studying machinery construction, Dirk Wachsmuth worked for many years first for a filter manufacturer, then in the plastics industry. Together with Andreas Kielholz and Christoph Schliefer, he will be heading vombaur GmbH & Co. KG from now on.

vombaur is a specialist for seamless narrow textile woven tubulars. The company has come through the crisis year 2020 on a solid footing and is positioned for the future. vombaur is currently investing an amount in the double-digit millions in a state-of-the-art headquarters that will be inaugurated in 2023.

More information:
Dirk Wachsmuth vombaur
Source:

stotz-design.com

23.04.2021

Oerlikon: Creating a new growth platform

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

The strategic acquisition is a significant step in expanding Oerlikon’s current manmade fibers business into the larger polymer processing market. The acquisition accelerates and enhances existing organic initiatives to diversify and strengthen the company’s core high-precision polymer flow control capabilities, products and services. The completion of the transaction is subject to customary regulatory approvals and is expected by the second quarter of 2021.

To reflect Oerlikon’s expansion into a larger high-growth market, the Manmade Fibers Division will be renamed as Polymer Processing Solutions Division. This division will have two business units: Flow Control Solutions and Manmade Fibers Solutions. The busines unit Flow Control Solutions will combine the expertise of Oerlikon Barmag’s existing gear metering pumps business line and INglass’ HRSflow operations. The business unit Manmade Fibers Solutions will continue to focus on growing the existing chemical fiber machinery and plant engineering business, offering plant solutions for the production of polyester, polypropylene and polyamide.

“Our new Polymer Processing Solutions Division and the acquisition of INglass S.p.A. and its HRSflow business are critical components of Oerlikon Group’s growth strategy. We are accelerating our efforts to drive sustainable organic and inorganic growth in all of our businesses. The acquisition enables new synergy opportunities between both Oerlikon divisions in specific end markets such as automotive. With INglass and its HRSflow operations, we acquire leading suppliers in their markets with proven success of their technologies and services,” said Dr. Roland Fischer, CEO Oerlikon Group.

“We firmly believe that within the Oerlikon Group we can further exploit the potential of our hot runner systems technology and, when combined with the capabilities of Oerlikon Barmag gear metering pumps and their melt distribution engineering competence, will position our business as one of the leading precision flow control specialists for multiple applications in a global growth market”, said Antonio Bortuzzo, CEO of INglass S.p.A.

New business unit offers great growth potential

The Oerlikon Barmag competence brand already offers high precision flow control related components, including a large selection of gear metering pumps for textile and non-textile markets. These highly efficient pumps are used in silicone casting, dynamic mixing and oil spraying for the chemical, paint, polymer processing and automotive industries. This double-digit million CHF business, which has grown in recent years, will be merged with INglass’ HRSflow hot runner technologies under the new business unit Flow Control Solutions. HRSflow’s excellent market access to many OEMs in and outside the automotive industry brings significant growth opportunities.

INglass is a leader in automotive and expanding in other sectors

INglass S.p.A. is an internationally operating successful company established in 1987. Its product portfolio includes hot runners as well as engineering and consultancy services for the advanced development of polymer processing products. INglass’ HRSflow hot runner systems are applied in multiple industries from automotive, consumer goods and household appliances to packaging, waste management, construction and transportation.

INglass is headquartered in San Polo di Piave, Italy, near Venice. 2020 revenues of INglass were approximately CHF 135 million and the acquisition is expected to be immediately accretive to Oerlikon’s margins and cash flows. INglass has more than 1 000 employees and 55 sites worldwide, including production plants in Italy, China and the US. Among these sites are INglass’ newly renovated headquarters and production at its primary location in San Polo di Piave near Venice, Italy. The investment modernized the facilities with automated production, underlining the company’s commitment to sustainability and the environment. The other two modern production sites are in Zhejiang (Hangzhou Province) in China and Michigan (Grand Rapids) in the USA.

Following the integration with Oerlikon Barmag’s gear metering pumps business of about 200 employees in Remscheid, Germany, the new Flow Control Solutions business unit will have round about 1 200 employees.

"We see great potential for growth in our new Flow Control Solutions business unit,” said Georg Stausberg, Polymer Processing Solutions Division CEO and Member of the Executive Committee of the Oerlikon Group. “The businesses form the two core growth pillars and benefit from each other in global market development, in modern and digitized production, and in customer services. We also see potential synergies in R&D by combining existing know-how in the field of polymer processing. New technological solutions between hot runner systems and gear metering pumps are conceivable. We also anticipate collaborating more closely with the Oerlikon Surface Solutions Division, particularly in future mobility applications and functional polymer component solutions for the automotive industry. All in all, we will offer our customers innovative and attractive solutions in the field of polymer processing and high precision flow control components.”

Next steps for further diversification of the division product portfolio are already ongoing

Combining the divisions plant engineering and process know how with expertise on high precision flow control components technologies has a significant impact on product quality in nearly all applications, which opens up a platform for further organic and inorganic growth. "We are closely observing the megatrends in the markets and developing new business models to match. In the area of sustainability, covering topics such as circular economy, the recycling of materials using mechanical and chemical recycling solutions, as well as the handling of new, more environmentally friendly and biodegradable materials, we are on the verge of a breakthrough. We are ready to actively participate in these growth areas,” added Georg Stausberg.

“In realigning the Polymer Processing Solutions Division, Oerlikon will continue to apply our successful recipe of a lean organizational structure to efficiently manage the business. This means clear processes, short decision-making paths and competent teams in a diverse and multicultural organization in which everyone can contribute innovatively to create customer value,” said Georg Stausberg.

AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  © AMAC
fltr: Markus Beckmann, Prof. Thomas Gries, Dr. Michael Effing, Dr. Christoph Greb
19.04.2021

AMAC cooperates with ITA

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

ITA, as one of the largest institutes on the campus of the excellence University RWTH Aachen, Germany, develops complete solutions from the manufacturing of the fiber itself over the processing of textile intermediates with thermoplastic and thermoset resins, textile-based part manufacturing, capabilities such as braiding, pultrusion and in-situ impregnation of textile preforms. Top 3 focused industries are transportation and particularly the e-mobility sector, building and construction as well as the wind energy sector. Additionally, ITA GmbH is the partner of the industry in R&D, focusing on 8 business segments, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the background of the strategic cooperation with focus on composites: „Our long-term experience and unmatched know-how with all aspects of continuous fibers, non-wovens and web-based reinforcements allows us to deliver to the composite manufacturers a complete technology and service offer around the development of technical textiles, from the development of glass and carbon fibers to the textile-based processing of composite parts. In all process steps of our research and developments, we focus on sustainable and recyclable solutions, an efficient cost-performance ratio, the possible use of bio-based materials and the reduction of the CO2 footprint. We are glad to cooperate with Dr. Michael Effing and AMAC in order to benefit from his door-opening network in the composites industry. “

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support the ITA to generate innovation thanks to further industrial networking and pre-competitive joint projects. ITA is indeed a one-stop source for composite solutions from the fiber to the cost-efficient manufacturing of final parts. In the context of the Covid-19 impact to the entire industry, it makes sense to bundle forces. Furthermore, ITA, with its long tradition and satisfied customers offers further valuable networking opportunities to the composites industry as well as access to relevant complementary fiber-based excellence and 250 different technologies in their machine-park with an outstanding infrastructure in Aachen.”

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace (c) Decision SA.
new direct mould tooling technology
08.03.2021

Decision SA and Carboman Group Announce New Direct Mould Tooling Technology for Aerospace

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

Decision SA, part of the leading European composites consortium, Carboman Group, and a specialist in the development, prototyping and production of large composite structures, is proud to announce a new direct mould tooling technology for aerospace.  Decision’s latest tooling solution provides OEMs and manufacturers with short lead times for highly stable direct moulds for series production both in and outside of the autoclave at temperatures of up to 180˚C.

Decision and Carboman recently delivered the first customer moulds using the new technology, providing a tooling glass prepreg, stainless-steel backed direct female mould tool created for the series production of a Class 3 fairing to a leading European aerospace OEM. Decision has immediate availability and capacity for similar tooling projects with lead times currently as short as six to eight weeks.

With no traditional plug or mould pattern required, Decision’s direct mould process starts with the group’s engineers selecting a material combination for the tool surface and support structure that will provide the optimum match between the coefficient of thermal expansion (CTE) of the mould and the composite part to be processed.  The CNC machined composite face sheet is supported by a stress-relieved metallic or composite backing structure before final post curing and machining is completed. The principal benefit of this novel approach, aside from removing the need for costly and time-consuming plug production, is the production accuracy delivered by the closely matched CTE of the mould tool and the finished composite part.

The autoclaved composite tool surface is not only extremely dimensionally stable up to processing temperatures of 180˚C, but it can also be configured with additional metallic inserts or fixtures if required.  

Produced in an EN 9100:2018 controlled production environment, and with CMM checks before and after machining, the new direct composite tools have dimensional tolerances of +/-0.2mm.  The available tooling dimensional envelope is currently defined by Decision’s 2200mm x 6000mm autoclave.

“With our new direct tooling technology, we are able to combine the highest technical standards in dimensional accuracy and thermal stability with extremely short lead times.  Decision and Carboman Groups’ combined mission has always been to develop the construction methods for tomorrow’s composite structures, and we believe that this tooling solution will allow our customers to accelerate the implementation of the next generation of high-performance carbon fibre aerostructures and components” Grégoire Metz, Managing Director, Decision SA.

Source:

Decision SA.

22.02.2021

Tonello/RUDOLF HUB1922: Collaboration with new laser effects

Tonello and RUDOLF HUB1922 join forces and unveil laser effects. The results: A much simplified, flexible and efficient process - based on latest technological advancements and highly conscious chemistry - that is finally able to replace questionable practices such as potassium permanganate spray.

THE Laser, the absolute Laser
The range that is the new benchmark for the entire sector. New software and a totally reinvented process that return higher precision, speed, flexibility and repeatability. Four models for a specific crafting and avant-garde functions like 360° marking technology, BOP for automatic drawing positioning and the new software CREA make THE Laser suitable and unique for advanced applications.

Tonello and RUDOLF HUB1922 join forces and unveil laser effects. The results: A much simplified, flexible and efficient process - based on latest technological advancements and highly conscious chemistry - that is finally able to replace questionable practices such as potassium permanganate spray.

THE Laser, the absolute Laser
The range that is the new benchmark for the entire sector. New software and a totally reinvented process that return higher precision, speed, flexibility and repeatability. Four models for a specific crafting and avant-garde functions like 360° marking technology, BOP for automatic drawing positioning and the new software CREA make THE Laser suitable and unique for advanced applications.

Laser Smoother (RUCO-SPECIAL LSM)
All-in-one formulation - very easy to pre-apply to garments before laser burning - that translates into a very natural image that is similar to what is created by hand. RUCO SPECIAL LSM amplifies the laser action, completely removes the grey/brow patina produced by the burning of cotton and last but not least, creates a micro-unevenness that simulates manual scraping and celebrates the fabric construction.

The combination of THE Laser and RUCO-SPECIAL LSM (ideally applied through CORE system) is a process that nothing adds to the usual way of working. It is a radical paradigm shift that takes the product directly to a dimension of real, highly sustainable craftsmanship:

  • Remarkable enhancement of the fabric’s characteristics;
  • Overall effect much more natural and similar to manual scraping;
  • A better and more efficient way of working.
Source:

EFFE-BI SRL PR & COMMUNICATION

15.02.2021

Hexcel’s HexPly® XF Surface Technology for Blade Surface Finishing Process

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Hexcel announces its latest HexPly® XF surface technology that reduces shell manufacturing time within the wind blade surface finishing process. HexPly XF increases overall blade manufacturing efficiency by reducing time in the mold by up to two hours and by banishing surface defects that require rework before painting.

Hexcel’s HexPly XF surface technology has been formulated to address the limitations of current blade shell surfacing techniques whereby pinholes and other surface defects have to be repaired by hand to achieve the perfectly smooth surface required for painting.

HexPly XF surface technology introduces a new material format as the surface finishing layer, eliminating the need for a traditional in-mold gel coating process. HexPly® XF for infused rotor blades, is a lightweight non-woven semi-preg construction, comprising an epoxy resin matrix, that co-cures with standard epoxy infusion systems. The product has a successful track record in prepreg blades and has now been adapted for infusion processes.

Easy to handle and supplied in a ready to use roll form, HexPly XF can be quickly applied by hand or with semi-automated layup equipment. It features one self-adhesive, surface finishing side - indicated by a removable protective foil. This side of the prepreg is placed against a release agent treated mold surface. Once the material has been positioned, the lay-up of the blade shell structure can start immediately, and the laminate can be infused. After curing, the blade is de-molded with the manufacturer benefitting from a pinhole-free surface that needs minimal preparation before painting.

HexPly XF material is less than half the weight of a typical gel coat per square meter, reducing the overall weight of the blade. Additionally, the consistent areal weight and thickness of the prepreg film provide a completely uniform surface coating, ensuring blade weight distribution and balance are maintained, which is critical as rotor diameters continue to increase. With no need to handle or mix liquid chemicals as in the gel coat process, HexPly® XF also improves the health and safety working conditions on the shop floor.

The material has a shelf life of six weeks at ambient temperature, which also minimizes cold storage requirements and helps to reduce scrap.

Source:

100% Marketing

Flax for Composites: Woven tapes made of natural fibres by vombaur (c) Elke Wetzig, Wikimedia
Lightweight, firm, sustainable: Flax tape by vombaur
02.12.2020

Flax for Composites: Woven tapes made of natural fibres by vombaur

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Circular Economy
Circular Economy – this also works in lightweight design. The number of recycling cycles without loss of quality is higher for natural fibre reinforced plastics than for glass or carbon fibre reinforced plastics: the thermoplastic matrix of the composite can be melted and recycled after a product life cycle. The natural fibres can "live on" in other products – injection moulded products for example.

Versatile applications
"Composites from our flax tapes are used to reinforce high-tech skis as well as for extruding state-of-the-art window sections – the applications are countless," explains Tomislav Josipovic, Sales Manager with vombaur. "As a development partner, we support applications for the automotive, wind energy, construction, sports and many other industries with our composite textiles."

More information:
vombaur Naturfasern Composites
Source:

stotz-design.com

COBRA provides high-quality mass production for ARE Tahiti’s new composite canoes (c) COBRA
23.11.2020

COBRA provides high-quality mass production for ARE Tahiti’s new composite canoes

Cobra International, Chonburi, Thailand: COBRA International, one of the world’s largest OEM manufacturers of composite goods for Water Sports, Automotive, Marine and Civil Engineering, is pleased to confirm the shipment of its first 36 composite canoes to ARE Tahiti.

COBRA has collaborated with leading outrigger canoe brand ARE Tahiti to mass produce its new OC-1 canoe, ‘Mana’. Designed by former professional windsurfer Baptiste Gossein  (JP Australia and Neil Pryde), ‘Mana’ features a closed deck on which the paddler sits on top of the hull. Available in two models; a hybrid version weighing 12kg, using an 80:20 mix of E-glass and carbon fibre reinforcement fabrics, and the PRO model – a weight optimized, ultra-light, full carbon version that weighs as little as 9kg.   

“We required the best in composite construction for both models, a stunning final finish and a build rate that could keep up with our growing order book”, comments Baptiste Gossein.

Cobra International, Chonburi, Thailand: COBRA International, one of the world’s largest OEM manufacturers of composite goods for Water Sports, Automotive, Marine and Civil Engineering, is pleased to confirm the shipment of its first 36 composite canoes to ARE Tahiti.

COBRA has collaborated with leading outrigger canoe brand ARE Tahiti to mass produce its new OC-1 canoe, ‘Mana’. Designed by former professional windsurfer Baptiste Gossein  (JP Australia and Neil Pryde), ‘Mana’ features a closed deck on which the paddler sits on top of the hull. Available in two models; a hybrid version weighing 12kg, using an 80:20 mix of E-glass and carbon fibre reinforcement fabrics, and the PRO model – a weight optimized, ultra-light, full carbon version that weighs as little as 9kg.   

“We required the best in composite construction for both models, a stunning final finish and a build rate that could keep up with our growing order book”, comments Baptiste Gossein.

As with all of COBRA’s watersports’ projects, a perfect master model formed the basis of the mass production tooling and two sets of composite hull tooling were taken from the master plug allowing a build rate of up to 50 OC-1 canoes per month.

For the lay-up and construction process, COBRA’s high-performance PVC foam sandwich windsurf board construction provided a solid starting point.  Having selected vacuum consolidated epoxy wet layup for the mix of woven and stitched biaxial reinforcements, COBRA was able to build down to the customer’s weight target with the absolute minimum of waste and additional consumables.  Top and bottom sections of the hull were moulded separately then bonded together, with the smaller outrigger hull – known as the ‘ama’ – produced in the same way.  Prepreg carbon fibre and in-house split mould tooling was also used for the two ‘Iakos’ - the two cross beams that join the ama to the main hull. 

An in-mould applied finish coat was then used for the hybrid OC-1 while the PRO carbon fibre model benefits from COBRA’s ultra-light paint system.

“COBRA is able to provide mass production capability and rapid new model turnaround, as well as delivering consistently high quality. We are delighted with the first COBRA built OC-1s and have received exceptionally positive feedback from both customers and racers” comments Baptiste Gossein.

The next ARE project to enter mass production at COBRA will be the V-1 canoe. Similar to the OC-1 but an open boat that the paddler sits inside, the V-1 will have no rudder or steering system, requiring more finesse to manage underway.

“The OC-1 outrigger canoe is a superb example of our customer focused approach to production process development.  By working closely with Baptiste and the ARE team, COBRA is able to provide mass production capability and a rapid new model turnaround, as well as delivering consistently high quality.  This is a sector in which we expect to see significant expansion over the next few years”, comments Danu Chotikapanich, CEO, COBRA International.

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

Pump components made from zirconium oxide ceramic (c) Oerlikon
Pump components made from zirconium oxide ceramic
12.11.2020

Oerlikon: Robust pumps for sophisticated special fibers

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

Special materials for special tasks
The process, the expected pump lifespan and the maintenance frequency are the decisive factors for choosing the materials from which the pumps and their components are manufactured. For optimum results, Oerlikon Barmag offers solutions that intelligently combine the various materials and the latest technologies. Whether in the case of surfaces with ceramic coatings, gears and shafts featuring DLC coatings, pumps made from cobalt alloys (StelliteTM) or robust and durable Oerlikon Barmag hybrid constructions comprising zirconium oxide ceramic and duplex stainless steel – the high-precision ZP- and GM-series pumps are design-optimized depending on the intended use. Various seal systems and customized drive concepts round off the pump program.

Source:

Oerlikon

Bandagenband (c) JUMBO Textil
20.10.2020

JUMBO-Textil: Narrow textiles with a function

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Technical textiles fulfil many functions: they hold, they lift, they fixate, they stretch – and they tension. In this function narrow textiles fulfil an important task in product development. And they offer significant advantages over metal or plastic tensioning devices such as springs, clamps or cable ties.

Properties
Textiles are light: a property that plays a central role in modern mobility. Textiles are flexible: from extremely high to extremely low elasticity: the force-elongation behaviour of elasticated narrow textiles can be precisely defined. Depending on the tensioning task to be performed. Textiles tension in tight packaging spaces: elastics can also be used where space is too tight for springs and clasps. Textiles are energy efficient: lightweight, with high tensioning force. Textiles are easy to handle: replace a connector spontaneously and without tools, quickly change the length or roll up and store a supply. And textiles are sustainable: natural fibres and rubber are natural and ecologically degradable raw materials; synthetic fibres can be completely produced from recycled materials.

Applications
Development teams in numerous industries leverage these properties for their products. For example, for flexible machine parts in mechanical engineering, for switch contacts in electrical engineering, for oscillation-capable locking systems in the construction industry, for noise- and vibration-free seating systems in the automotive sector or for grip rings in the toys industry.

Tasks
Particularly en vogue today, when we are spending more time than usual in our own homes: applications for narrow textiles in the furniture industry. They go far beyond the area of legacy home textiles: as tensioning elements in armchairs, sofas and chairs, as hinge solutions in cupboards, as fixation elements in extendable or folding tables. Narrow textiles are used for gripping tasks almost everywhere in the living room.

"JUMBO-Textil specialises in precisely implementing the individual requirements for defined force-elongation values of elasticated narrow textiles: we adapt the technical properties of our products precisely to the specific task and the respective raw materials," explains Werner Thiex, Sales Director Automotive. "Precise technical specification plus sustainable raw materials – this is a crucial combination in the 21st century".

Source:

stotz-design.com