From the Sector

Reset
1391 results
(c) A. Monforts Textilmaschinen GmbH & Co. KG
05.01.2024

Monforts: New Stenter line installed at Curt Bauer

Monforts' new Montex 8500 stenter line was recently installed at Curt Bauer’s plant in Aue in Germany.

Curt Bauer has been in continuous operation for 150 years, beginning as a weaving mill in Aue in the Ore Mountains region of Saxony back in 1882. Today, with 120 employees, the company has an annual production of 2.2 million metres of fabric and specialises in three key fields – home textiles, special damask fabrics for West African garments and technical textiles.

A first Montex stenter was installed by Monforts at the Aue plant in 2003 and an older machine from a third party supplier was also still in operation prior to the latest upgrade.
“The replacement of our older existing stenter, which was installed in 1985, was long overdue,” explains Gert Bauer. “It had a maximum working width of 2.2 metres and we were looking to both increase productivity and reduce energy requirements.”

Monforts' new Montex 8500 stenter line was recently installed at Curt Bauer’s plant in Aue in Germany.

Curt Bauer has been in continuous operation for 150 years, beginning as a weaving mill in Aue in the Ore Mountains region of Saxony back in 1882. Today, with 120 employees, the company has an annual production of 2.2 million metres of fabric and specialises in three key fields – home textiles, special damask fabrics for West African garments and technical textiles.

A first Montex stenter was installed by Monforts at the Aue plant in 2003 and an older machine from a third party supplier was also still in operation prior to the latest upgrade.
“The replacement of our older existing stenter, which was installed in 1985, was long overdue,” explains Gert Bauer. “It had a maximum working width of 2.2 metres and we were looking to both increase productivity and reduce energy requirements.”

As a consequence, the company opted for a new Montex 8500 line with a working width of 3.2 metres equipped with the MonforClean heat recovery and exhaust air purification system. The Montex stenter remains unmatched in terms of its robustness and long service life and with MonforClean technology, the waste heat from the drying process is used to pre-heat the drying air. This results in a radical reduction in the conventional heat supply required, compared to full gas and thermal oil heating. Overall energy savings of up to 40% can now be achieved compared to conventional stenters.

The first challenge at the Aue plant was how to fit the significantly larger machine into the available space without restricting the area required for docking operations.

The special multi-level configuration that Monforts designers and Curt Bauer’s team devised in order to meet these requirements involved raising all of the line’s drying zones – with a combined length of over 28 metres – on scaffolding platforms, to enable the ground floor space below them to continue to be fully utilised.

The next challenge involved configuring the MonforClean system without having to make any costly changes to the roofing structure. This, Gert Bauer observes, demanded “millimetre precision”.

With the new line now fully operational, the savings it is providing have yet to be fully calculated.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG

28.12.2023

ITMA ASIA + CITME: A success for VDMA member companies

This year’s edition of ITMA ASIA + CITME proved to be a success for the exhibiting VDMA member companies. Measured by booked square metres, Germany had the largest contingent, among the foreign exhibitors. More than 40 VDMA member companies were exhibiting their innovative products in Shanghai.

Dr. Janpeter Horn, chairman of the VDMA Textile Machinery Association noted: “Although facing a difficult market situation, this year’s edition of ITMA ASIA + CITME has exceeded the expectations, both in terms of the number of visitors and the quality of the talks. The significant number of foreign visitors to the fair was particularly pleasing.”

Solutions were demonstrated for more sustainable textile productions by most of the exhibitors, and here the VDMA members presented their technologies for saving water, energy and raw materials under the heading “Smart technologies for green textile production.”  

This year’s edition of ITMA ASIA + CITME proved to be a success for the exhibiting VDMA member companies. Measured by booked square metres, Germany had the largest contingent, among the foreign exhibitors. More than 40 VDMA member companies were exhibiting their innovative products in Shanghai.

Dr. Janpeter Horn, chairman of the VDMA Textile Machinery Association noted: “Although facing a difficult market situation, this year’s edition of ITMA ASIA + CITME has exceeded the expectations, both in terms of the number of visitors and the quality of the talks. The significant number of foreign visitors to the fair was particularly pleasing.”

Solutions were demonstrated for more sustainable textile productions by most of the exhibitors, and here the VDMA members presented their technologies for saving water, energy and raw materials under the heading “Smart technologies for green textile production.”  

Dr. Uwe Rondé, CEO, Saurer Intelligent Technology AG explained: “Saurer is satisfied with both the number of visitors and the quality of the discussions. Our booth was full from morning to evening with customers focused on latest technologies within the three mega trends: recycling, automation and digitalisation. Although machine utilisation in the spinning mills is still well below average, people are already gathering information and thinking about what to invest in once the market recovers.”

Benjamin Reiners, owner of Reiners + Fürst stated: „This year’s ITMA ASIA + CITME has exceeded our expectations by far. Especially the first day - a Sunday - has brought many high-quality customers and exclusively decision makers to our booth. We estimate about 20% international customers mainly from Bangladesh, Egypt, India, Iran, Pakistan, Uzbekistan and Vietnam. All customers agreed that the market situation at the moment is difficult, capacity usage is between 50-75% in the ring spinning sector and improvement is expected not before the 2nd half of 2024. Nevertheless the general spirit is very positive.“

“This ITMA ASIA was a great success for Trützschler. We welcomed a large number of Chinese visitors to our booth, as well as a significant number of interested international visitors”, said Dr. Bettina Temath, Head of Global Marketing Trützschler Group SE.

Georg Stausberg, CEO of the polymer processing solutions division and chief sustainability officer of the Oerlikon Group stated: „We can look back on a successful show where we were able to meet many of our customers not only from China, but also from Pakistan, India and Indonesia, for example.”

“A very well-attended trade fair, with interesting discussions, great innovative topics, in line with the modern and rapidly developing China" noted Wolfgang Schöffl, head of product line weaving machines and member of the extended management, Lindauer Dornier.

The VDMA Textile Machinery Association and VDMA China were present at the fair, to support the members e.g. with regard to IPR. With the help of a VDMA expert and a contracted law firm, the member company Sahm submitted a complaint application for patent infringement disputes during the exhibition to the onsite IPR office. Both parties, Sahm, and the Chinese company, that used patented design without permission reached an agreement: The Chinese company had to stop displaying functions and designs involving patent infringement on site which meant the removal of some structural parts and the covering of key components protected by patent protection.

Dr. Harald Weber, managing director of VDMA Textile Machinery concluded: “Asia, and China in particular, represent the primary foreign markets for the VDMA member companies in the sector. The Chinese market is the main destination for their exports. Other major export destinations in Asia include India, Pakistan, Bangladesh and Uzbekistan. ITMA ASIA + CITME provides a unique platform to showcase technologies for customers directly in Asia. The VDMA member companies are looking forward to the coming edition of the fair from 14 to 18 October 2024 in Shanghai.”

The latest survey of VDMA members' subsidiaries in China gives reason to hope that the economic situation in the Chinese textile industry could also improve significantly in the second half of the year. In addition, European textile machinery manufacturers are urged to be present on the most important market and at the trade fair and to offer Asian customers most advanced technology for their demanding challenges.

Source:

VDMA e. V.
Textile Machinery

Better sleep environment Photo Heiq Materials AG
28.12.2023

Biobased HeiQ technologies for better sleep at Heimtextil 2024

HeiQ’s biobased textile technologies are set to show how they can change the sleep environment for the better while meeting an increasing demand for sustainable solutions that are in tune with nature. HeiQ Skin Care, HeiQ Allergen* Tech, HeiQ Cool, and HeiQ Mint are going to be showcased at the Heimtextil show in Frankfurt beginning of January.

HeiQ presents a complete set of tailored textile technologies that is said to improve the sleeping environment: "Unlocking Better Sleep". Therefore, HeiQ introduces a range of innovative products designed to enhance the quality of a comfortable night’s rest through sustainable and biobased solutions.

HeiQ’s biobased textile technologies are set to show how they can change the sleep environment for the better while meeting an increasing demand for sustainable solutions that are in tune with nature. HeiQ Skin Care, HeiQ Allergen* Tech, HeiQ Cool, and HeiQ Mint are going to be showcased at the Heimtextil show in Frankfurt beginning of January.

HeiQ presents a complete set of tailored textile technologies that is said to improve the sleeping environment: "Unlocking Better Sleep". Therefore, HeiQ introduces a range of innovative products designed to enhance the quality of a comfortable night’s rest through sustainable and biobased solutions.

According to a recent study by the School of Architecture, Victoria University of Wellington (New Zealand), “individuals spend more than 50% of their time at home in the bedroom”. Another research from the Fatigue Countermeasures Laboratory, NASA Ames Research Center (United States), concluded that “sleep is critical to health and daytime functioning. For individuals to achieve optimal sleep, they must have access to a sleep environment that allows them to achieve quality sleep.” These are strong indicators that we should treat sleep with the highest importance that it deserves.

The flagship products leading this positive change are the 100% biobased cosmetic technology HeiQ Skin Care, the plant-based deodorizer HeiQ Mint (botanical freshness), the dual action cooling solution HeiQ Cool, and HeiQ Allergen Tech that reduces exposure to inanimate allergens through active probiotics. These biobased innovations are set to redefine the sleep experience and contribute to overall well-being.

HeiQ Skin Care is the most recent addition to HeiQ’s portfolio - a synbiotic textile finish promoting a balanced microbiome for glowing skin. Unlike conventional products, HeiQ Skin Care utilizes pre- and probiotics integrated into a biobased matrix, offering long-lasting cosmetic benefits. It is particularly suited for products that are in direct and long contact with skin, such as pillowcases, duvet covers or bed sheets, acting as a cosmetic care session during sleep.

Source:

Heiq Materials AG

Yanfeng and TactoTek partner to enhance future vehicle interior applications (c) Yanfeng
21.12.2023

Yanfeng and TactoTek partner to enhance future vehicle interior applications

Yanfeng, an automotive supplier, and TactoTek, a pioneer in smart surface technologies, will collaborate on the development of highly integrated Human Machine Interface (HMI) solutions for future Smart Cabin applications. The goal of this partnership is to combine advanced lighting, user interfaces, as well as various decorative trim with a deeply integrated product approach.

Yanfeng has made the strategic decision to integrate TactoTek's Injection Molded Structural Electronics (IMSE) portfolio as a technological layer in its worldwide Smart Cabin business. The intention is to enhance the overall user experience by offering advanced lighting features and introducing new functional elements like HMI, haptic feedback, and display integration.

This approach enables Yanfeng to align with emerging automotive industry trends, including autonomous driving, and addresses non-driving related tasks (NDRTs), thereby shaping the future of Smart Cabins and redefining the driving experience.

Yanfeng, an automotive supplier, and TactoTek, a pioneer in smart surface technologies, will collaborate on the development of highly integrated Human Machine Interface (HMI) solutions for future Smart Cabin applications. The goal of this partnership is to combine advanced lighting, user interfaces, as well as various decorative trim with a deeply integrated product approach.

Yanfeng has made the strategic decision to integrate TactoTek's Injection Molded Structural Electronics (IMSE) portfolio as a technological layer in its worldwide Smart Cabin business. The intention is to enhance the overall user experience by offering advanced lighting features and introducing new functional elements like HMI, haptic feedback, and display integration.

This approach enables Yanfeng to align with emerging automotive industry trends, including autonomous driving, and addresses non-driving related tasks (NDRTs), thereby shaping the future of Smart Cabins and redefining the driving experience.

This collaboration strives to create a unique in-vehicle user experience by accelerating seamless lighting integration into all surfaces of future vehicle interiors. The IMSE technology offers a fresh unique design and styling principles for slim, compact configurations and unconventional shapes.

Source:

Yanfeng International

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

VEOCEL™ showcased LENZING™ Lyocell Dry fiber (c) Lenzing Group
18.12.2023

VEOCEL™ showcased LENZING™ Lyocell Dry fiber

With the growing demand among brands and consumers for plastic-free materials and ingredient transparency, VEOCEL™, the flagship specialty nonwovens brand of Lenzing Group, showcased LENZING™ Lyocell Dry fiber at Hygienix 2023. LENZING™ Lyocell Dry fiber which is not classified as “plastic” according to EU SUPD, meets the growing interest for plastic-free nonwoven products across the industry and among consumers. Additionally, along with being an environment-friendly solution, the fiber delivers high-performance dryness and comfort which makes it the optimum fiber choice for absorbent hygiene applications.

Comprised of mostly fossil-based materials, absorbent hygiene products are an essential part of many consumers’ daily lives. With heightened concerns towards environmental impact, the product segment has been undergoing a change caused by shifting consumer preferences, increased consciousness and concerns towards plastic waste, and technology advancement. LENZING™ Lyocell Dry fiber has embraced these changes without compromising on quality or performance.

With the growing demand among brands and consumers for plastic-free materials and ingredient transparency, VEOCEL™, the flagship specialty nonwovens brand of Lenzing Group, showcased LENZING™ Lyocell Dry fiber at Hygienix 2023. LENZING™ Lyocell Dry fiber which is not classified as “plastic” according to EU SUPD, meets the growing interest for plastic-free nonwoven products across the industry and among consumers. Additionally, along with being an environment-friendly solution, the fiber delivers high-performance dryness and comfort which makes it the optimum fiber choice for absorbent hygiene applications.

Comprised of mostly fossil-based materials, absorbent hygiene products are an essential part of many consumers’ daily lives. With heightened concerns towards environmental impact, the product segment has been undergoing a change caused by shifting consumer preferences, increased consciousness and concerns towards plastic waste, and technology advancement. LENZING™ Lyocell Dry fiber has embraced these changes without compromising on quality or performance.

LENZING™ Lyocell Dry is a cellulosic environment-friendly wood-based alternative to fossil-based fibers. Besides offering great performance features such as liquid management, dryness, gentle-on-the-skin comfort, softness, and quality, LENZING™ Lyocell Dry helps to meet the needs of customers who are aiming to produce plastic-free applications or end products that do not harm the planet without compromising on performance or comfort.

Featuring Lenzing’s unique Dry technology, LENZING™ Lyocell Dry’s hydrophobic characteristics and liquid-controlling properties make it the ideal fiber for absorbent hygiene products. Its high-performing hydrophobicity makes it the optimal choice for a wide range of applications, including baby diapers, feminine care and personal hygiene products as well as adult incontinence products.

The fiber has consistently been tested by Lenzing as the softest* fiber among cellulosic fibers in both dry and wet stages. LENZING™ Lyocell Dry will enable brands and manufacturers to deliver quality hygiene products that provide a high level of comfort, softness, and dryness.

*Lenzing AG softness panel test

Source:

Lenzing Group

Hologenix: CELLIANT® as a printed coating (c) Hologenix
18.12.2023

Hologenix: CELLIANT® as a printed coating

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

Hologenix has announced that its flagship product CELLIANT® infrared (IR) technology, a natural blend of IR-generating bioceramic minerals, is now more widely available from the company as a printed coating, expanding the uses of the technology and increasing the number of prospective partners. The innovation has already been named a Selection in the Fibers & Insulations Category of the ISPO Textrends Awards just last month.

Traditionally, CELLIANT has been embedded directly into fibers and yarns. However, for its print applications, CELLIANT fine mineral powder can be easily added directly onto the surface of all different fabric types. The company is particularly energized about how this expands the array of sustainable offerings that CELLIANT can be incorporated into, and is looking forward to partnering with brands to print CELLIANT on their ecofriendly fabrics. CELLIANT Print may be a cost-effective alternative to in-yarn solutions and allows for a more efficient supply chain.

fabrics or to a new fabric to create a variety of different product applications. For brands who are seeking a smaller pattern roller for apparel, orthopedic products or other close-to-skin projects, CELLIANT Print can accommodate this. There is also a larger pattern roller for bedding and larger-scale applications. As long as the print covers 80% of the fabric’s surface, the design possibilities for the print itself are virtually endless. CELLIANT Print has undergone mechanical testing for wash tests and can be confirmed to last the useful life of the product, for 50+ washes.

By applying CELLIANT Print directly onto the fabric, brand partners are able to use CELLIANT with a higher loading of bioceramic minerals than what would otherwise be possible with an in-yarn solution. This makes it ideal for recovery and performance purposes. In fact, an example of a CELLIANT Print application on kinesiology tape, KT Tape® PRO Oxygen™ was launched in April to great success.

Source:

Hologenix, LLC

Bangladesh Apparel Exchange (BAE) and Fashion for Good promote Textile Circularity in Bangladesh Photo: Bangladesh Apparel Exchange
18.12.2023

Bangladesh Apparel Exchange and Fashion for Good promote Textile Circularity in Bangladesh

On December 7th and 8th, Bangladesh Apparel Exchange (BAE) in partnership with Fashion for Good, facilitated the “Chemical Recycling Technologies: Manufacturing Markets Gateway”, in Bangladesh. Fashion for Good, the Amsterdam based global platform for innovation, along with two disruptive technology start-ups focused on textile-to-textile chemical recycling, Circ and Infinited Fiber Company, were the key stakeholders in this initiative.

The two-day visit leveraged Bangladesh's status as a major garment production hub, exploring the potential of chemical recycling technologies to enhance environmental sustainability. Emphasizing the importance of circularity, the event aimed to spread awareness about current disruptive innovations that could transform the industry's approach to waste and resource management, setting an example for future sustainable practices. It focuses on integrating these technologies within the local manufacturing landscape, securing feedstock partnerships, and developing a value chain for recycled apparel materials.

On December 7th and 8th, Bangladesh Apparel Exchange (BAE) in partnership with Fashion for Good, facilitated the “Chemical Recycling Technologies: Manufacturing Markets Gateway”, in Bangladesh. Fashion for Good, the Amsterdam based global platform for innovation, along with two disruptive technology start-ups focused on textile-to-textile chemical recycling, Circ and Infinited Fiber Company, were the key stakeholders in this initiative.

The two-day visit leveraged Bangladesh's status as a major garment production hub, exploring the potential of chemical recycling technologies to enhance environmental sustainability. Emphasizing the importance of circularity, the event aimed to spread awareness about current disruptive innovations that could transform the industry's approach to waste and resource management, setting an example for future sustainable practices. It focuses on integrating these technologies within the local manufacturing landscape, securing feedstock partnerships, and developing a value chain for recycled apparel materials.

Denim Asia Limited, Knit Asia Limited, Progress Apparels Limited, Ananta BD, Reverse Resources, and the Bangladesh Garment Manufacturers and Exporters Association (BGMEA) played pivotal roles in this initiative. Knit Asia Ltd, notably acclaimed for their commitment to sustainable practices, along with Denim Asia, associated with the sustainable brand Noize Jeans, showcased their commitment to sustainable manufacturing processes.
Progress Apparels Limited, a ready-made garment producer and part of PDS Limited demonstrated its advanced sustainable production facilities. Reverse Resources and the BGMEA hosted an intimate “Meet and Greet Networking Session”, to boost awareness about the technologies in the industry.

Mr. Mostafiz Uddin, Founder and CEO of Bangladesh Apparel Exchange, emphasized the significance of this event for the wider Bangladeshi textile industry, " Bangladesh has the biggest manufacturing sector in South Asia and this tour marks a critical step towards a circular fashion ecosystem, also how can the fashion industry become more sustainable in Bangladesh. It's not just an event; it's part of a larger movement to incorporate innovative recycling, Sustainable Fashion technologies and establish global partnerships for a sustainable fashion industry."

Featuring interactive sessions, factory visits, and knowledge sharing, this initiative offered a platform for fostering collaborations between manufacturers and technology innovators.

Bangladesh Apparel Exchange and Fashion for Good are optimistic about a future where Bangladesh leads in sustainable and circular apparel manufacturing.

Source:

Bangladesh Apparel Exchange

15.12.2023

VIATT 2024 as the response to Vietnam's developing textile sector

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

In line with the industry’s anticipation, the country was identified as the ideal location for ASEAN’s new comprehensive textile platform for several key reasons. Vietnam’s pro-business policies, strategic geographical location, abundant labour force, and favourable trade agreements have contributed to its rise as a global textile manufacturing hub. Agreements such as the Regional Comprehensive Economic Partnership (RCEP); the Indo-Pacific Economic Framework for Prosperity (IPEF); and 15 free trade agreements (FTAs) covering over 60 countries and regions, will further enable participants from across the value chain to conduct cross-border business after connecting at next year’s show. In addition, several key travel initiatives that serve international players have been implemented, including the country’s APEC Business Travel Card programme[1], availability of e-visas to all nationalities, and visa-free travel for select countries[2].  

Exhibitors from multiple textile sub-sectors converge in February
In Vietnam’s home textile segment, rising urbanisation, emerging young consumers, and higher disposable incomes are interrelated factors driving growth[3]. Globally, three of the top trends include recycling; utilising green fibres; and the increasing use of technical fabrics for enhanced comfort and health. At the fair, confirmed home textiles exhibitors include Hanyang Eco Tex, Hohmann GmbH, Phuong Nam Feather, and SIGMA, set to showcase their most up-to-date products, covering bedding, upholstery fabrics, curtain, and sun protection.
 
Utilised for automobiles, civil aviation, construction, health care, and more, Vietnam's exports of technical textiles reached USD 676.6 million for the first nine months of 2022, up 17.1% compared to the same period in 2021[4]. This in turn bodes well for the country’s import prospects of quality machinery and equipment. Hoping to cater to domestic demand at VIATT 2024, international suppliers in this category include Julai, SIGMA, and Skwentex.

Meanwhile, apparel-related products make up the lion’s share of the country’s textile exports – according to Vietnam Textile & Apparel Association (VITAS), in 2022 these numbered USD 29.1 billion. From Ho Chi Minh to Hanoi, numerous international fashion brands have a manufacturing presence, including Adidas, H&M, Lacoste, Lululemon, Nike, The North Face, Uniqlo, and many more. At next year’s fair, exhibitors such as Avery Dennison, Lenzing, Stylem Takisada-Osaka, and Texwinca, will aim to draw the attention of apparel brands and a wide range of other domestic and international buyers.

The Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) is organised by Messe Frankfurt (HK) Ltd and the Vietnam Trade Promotion Agency (VIETRADE), covering the entire textile industry value chain.

[1] ‘Everything You Need to Know About Traveling to Vietnam with an APEC Business Travel Card’, April 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/apec-business-travel-card-vietnam.html/ (Retrieved: November 2023)
[2] ‘Vietnam Introduces E-Visa for All Nationalities from August 15, 2023’, August 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/vietnam-introduces-e-visa-for-all-nationalities-from-august-15-2023.html/ (Retrieved: November 2023)
[3] ‘Vietnam Home Textile Market Size & Share Analysis’, 2023, Mordor Intelligence, https://shorturl.at/wQVWZ (Retrieved: November 2023)
[4] ‘Vietnam's technical fabric exports continue to be positive’, October 2022, Web Portal of Supporting Industry of Vietnam, https://shorturl.at/lmnvX (Retrieved: November 2023)

Source:

Messe Frankfurt (HK) Ltd

Naia™ Renew Eastman
14.12.2023

Naia™ Renew receives Global Recycled Standard certification

Eastman Naia™ Renew cellulosic fiber received Global Recycled Standard (GRS) certification on December 13. This certifies Naia™ Renew recycled content, chain of custody, social and environmental practices, and chemical restrictions.

Textile Exchange, a global non-profit for sustainable change in the fashion and textile industry, manages the GRS certification process. Certification is achieved through an audit from independent third-party certifying body SCS Global Services and applies to the full supply chain and addresses traceability, environmental principles, social requirements, chemical content and labeling.

"We’re honored to add GRS certification to our list of Naia™ certifications that support our sustainability goals,” said Claudia de Witte, sustainability leader for Eastman textiles. “Third-party certifications help us build our brand trustworthiness. It’s our goal to make sustainable textiles available to all, and we do that by building trust with our customers and collaborators. This certification adds even more credibility to our fibers and our sustainability story, which we’re proud to share.”

Eastman Naia™ Renew cellulosic fiber received Global Recycled Standard (GRS) certification on December 13. This certifies Naia™ Renew recycled content, chain of custody, social and environmental practices, and chemical restrictions.

Textile Exchange, a global non-profit for sustainable change in the fashion and textile industry, manages the GRS certification process. Certification is achieved through an audit from independent third-party certifying body SCS Global Services and applies to the full supply chain and addresses traceability, environmental principles, social requirements, chemical content and labeling.

"We’re honored to add GRS certification to our list of Naia™ certifications that support our sustainability goals,” said Claudia de Witte, sustainability leader for Eastman textiles. “Third-party certifications help us build our brand trustworthiness. It’s our goal to make sustainable textiles available to all, and we do that by building trust with our customers and collaborators. This certification adds even more credibility to our fibers and our sustainability story, which we’re proud to share.”

In June 2023, Textile Exchange made an important announcement regarding its Alternative Volume Reconciliation (VR2) policy, which broadened the range of chemical recycling technologies eligible for mass balance. Notably, this expansion now encompasses gasification, the technical description of Eastman’s molecular recycling technology known as carbon renewal technology. Eastman collaborated with Textile Exchange and other stakeholders to educate the industry about the value and contribution of its molecular recycling technology. This policy update is critical for Eastman because it allows the company’s innovative material-to-material recycling technology to be audited for GRS certification.

Molecular recycling technologies at Eastman break waste down into its molecular building blocks allowing the materials to be used in new materials that are indistinguishable from non-recycled materials. By expanding the GRS to include gasification, the global standard now allows for a broader approach to making sustainable textiles accessible to everyone.

In recent years, the textiles industry has shifted toward circular materials to help tackle one of the largest challenges facing the planet: waste pollution, especially textile waste. Eastman molecular recycling is complementary to mechanical recycling and is a solution for hard-to-recycle waste material, including textiles, which are impacted by factors like fiber blends, chemicals and additives.

Naia™ Renew is produced from 60% sustainably sourced wood pulp and 40% GRS-certified* waste materials that would otherwise be destined for landfills through Eastman's patented molecular recycling technology. The certification verifies the processes of chemical recycling, concentrating, extrusion, and spinning of the undyed yarns and fibers.

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Photo Formidable Media / Green Theme Technologies
14.12.2023

YKK and GTT Win ISPO Award

The ISPO Textrends judges have selected YKK's DynaPel™ water-repellent zipper as the Best Product in the accessories category. The competition, held twice a year in conjunction with the ISPO trade show, recognizes the most innovative performance textiles, components, and apparel.

Designed to be compatible with garment recycling systems, the DynaPel™ zipper uses GTT’s EMPEL® technology instead of the standard PU film to achieve its water repellency. The lack of a PU film helps remove one of the barriers of textile-to-textile recycling of performance apparel by eliminating the urethane material, which presents challenges to garment recycling processes.

Conventional chemical and mechanical garment recycling systems cannot process the polyurethane film commonly used on water-repellent zippers, necessitating the removal of zippers from garments before recycling.  This additional processing step often deters recyclers from accepting garments with PU zippers, resulting in unnecessary waste.

The ISPO Textrends judges have selected YKK's DynaPel™ water-repellent zipper as the Best Product in the accessories category. The competition, held twice a year in conjunction with the ISPO trade show, recognizes the most innovative performance textiles, components, and apparel.

Designed to be compatible with garment recycling systems, the DynaPel™ zipper uses GTT’s EMPEL® technology instead of the standard PU film to achieve its water repellency. The lack of a PU film helps remove one of the barriers of textile-to-textile recycling of performance apparel by eliminating the urethane material, which presents challenges to garment recycling processes.

Conventional chemical and mechanical garment recycling systems cannot process the polyurethane film commonly used on water-repellent zippers, necessitating the removal of zippers from garments before recycling.  This additional processing step often deters recyclers from accepting garments with PU zippers, resulting in unnecessary waste.

EMPEL® technology uses advanced green chemistry devoid of PFAS and a specialized manufacturing process that allows the chemistry to penetrate the yarn and encapsulate it with a water-repellent layer through molecular cross-linking. The molecular cross-linking creates an extremely durable layer that is highly resistant to abrasion and invisible to the eye.

More information:
ISPO Textrends Award zipper PFAS
Source:

Formidable Media / Green Theme Technologies

Carbios at two-year anniversary of France 2030 (c) Carbios
Emmanuel Ladent, Carbios CEO, on stage to present Carbios' industrial project advancements at the two-year anniversary of France 2030
13.12.2023

Carbios at two-year anniversary of France 2030

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios' technology enables PET circularity and provides an alternative raw material to virgin fossil-based monomers, allowing PET producers, waste management companies, public entities, and brands to have an efficient solution to meet regulatory requirements and fulfill their own sustainability commitments. The plant will have a processing capacity of 50,000 tons of post-consumer PET waste per year (equivalent to 2 billion colored PET bottles, 2.5 billion PET trays, or 300 million T-shirts) and will address waste with little or no value such as colored PET bottles, food trays, and textiles. The plant will create 150 direct and indirect jobs in the region. In October 2023, Carbios obtained the building permit in 10 months (the average duration in France is 17 months) and the site operating permit, allowing construction to begin. The plant is currently under construction in Longlaville in the Grand-Est Region.

Source:

Carbios

13.12.2023

Artistic Milliners and Archroma: Eco-advanced sulfur black dyeing for denim

International denim manufacturer Artistic Milliners and Archroma are collaborating to rewrite the future of denim. Leveraging Archroma’s DIRESUL® EVOLUTION BLACK dyestuff, the partners are promoting more eco-advanced sulfur black dyeing for denim with a variety of washdown effects and reduced environmental impact.

DIRESUL® EVOLUTION BLACK delivers outstanding resource savings, using less water and energy and producing less CO2 during dye synthesis. Furthermore, it offers unique shade and washdown behavior compared to standard black dyes to consistently create eye-catching aesthetics, especially on dark black shades with no bronzing effect. It is also laser-friendly.

Artistic Milliners launched a capsule collection based on the new DIRESUL® EVOLUTION BLACK technology at Kingpins Amsterdam in October, named EVO BLACK, winning a positive response from global brands. It is now working closely with a research and innovation team from Archroma, its technology partner of many decades, to expand its use of the new black coloration system in combination with other colors and performance effects.

International denim manufacturer Artistic Milliners and Archroma are collaborating to rewrite the future of denim. Leveraging Archroma’s DIRESUL® EVOLUTION BLACK dyestuff, the partners are promoting more eco-advanced sulfur black dyeing for denim with a variety of washdown effects and reduced environmental impact.

DIRESUL® EVOLUTION BLACK delivers outstanding resource savings, using less water and energy and producing less CO2 during dye synthesis. Furthermore, it offers unique shade and washdown behavior compared to standard black dyes to consistently create eye-catching aesthetics, especially on dark black shades with no bronzing effect. It is also laser-friendly.

Artistic Milliners launched a capsule collection based on the new DIRESUL® EVOLUTION BLACK technology at Kingpins Amsterdam in October, named EVO BLACK, winning a positive response from global brands. It is now working closely with a research and innovation team from Archroma, its technology partner of many decades, to expand its use of the new black coloration system in combination with other colors and performance effects.

Priyam Patel at Pixabay
12.12.2023

Select Committee: Reset Economic Relationship with The People's Republic of China

The House Select Committee on the Strategic Competition Between the United States and the Chinese Communist Party, led by Chairman Mike Gallagher (R-WI) and Ranking Member Raja Krishnamoorthi (D-IL), adopted nearly 150 policy recommendations in a bipartisan report that outlines a strategy to fundamentally reset the United States' economic and technological competition with the People's Republic of China.

The House Select Committee on the Strategic Competition Between the United States and the Chinese Communist Party, led by Chairman Mike Gallagher (R-WI) and Ranking Member Raja Krishnamoorthi (D-IL), adopted nearly 150 policy recommendations in a bipartisan report that outlines a strategy to fundamentally reset the United States' economic and technological competition with the People's Republic of China.

After the adoption of the policy recommendations on an bipartisan basis, Chairman Gallagher and Ranking Member Krishnamoorthi said, “With this report, the Select Committee has shown that the bipartisan will exists to meet the call of history. It embraces the clear reality that our current economic relationship with the People's Republic of China needs to be reset in order to serve the economic and national security interests of the United States, while offering nearly 150 bipartisan recommendations for Congress to legislate. Collectively, these recommendations will reset the terms of our relationship with the PRC, prevent the flow of American capital and technology from supporting its military advances and human rights abuses, and build collective economic resilience in concert with our allies and partners while ensuring American leadership for decades to come."

Members of the Select Committee spent the past year investigating the CCP's decades-long campaign of economic and technological warfare. The members define three key pillars that inform each recommendation and the United States' path to correct 30 years of misguided policy:

  • RESET: Reset the Terms of Our Economic Relationship with the People's Republic of China.
  • PREVENT: Stem the Flow of U.S. Capital and Technology Fueling the People's Republic of China's Military Modernization and Human Rights Abuses
  • BUILD: Invest in Technological Leadership and Build Collective Economic Resilience in Concert with Allies
More information:
China USA
Source:

NCTO / The Select Committee on the CCP

workshop schedule 2024 Association of the Nonwoven Fabrics Industry
12.12.2023

INDA, NWI announce 2024 Nonwovens Training Courses Schedule

INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute (NWI), have announced their 2024 workforce development program. The INDA/NWI portfolio of training content covers the full spectrum of the nonwovens value chain, ranging from raw materials to processes to products.

Jointly organized courses include a combination of classroom learning supported by hands-on activities in NWI’s world-class nonwoven production and testing labs on the Centennial Campus of North Carolina State University. Each course is designed to be accessible and valuable to those who are new to the nonwovens industry and/or come from a non-technical background, as well as seasoned nonwovens professionals.

2024 INDA/NWI Workshops Schedule:

INDA, the Association of the Nonwoven Fabrics Industry, and The Nonwovens Institute (NWI), have announced their 2024 workforce development program. The INDA/NWI portfolio of training content covers the full spectrum of the nonwovens value chain, ranging from raw materials to processes to products.

Jointly organized courses include a combination of classroom learning supported by hands-on activities in NWI’s world-class nonwoven production and testing labs on the Centennial Campus of North Carolina State University. Each course is designed to be accessible and valuable to those who are new to the nonwovens industry and/or come from a non-technical background, as well as seasoned nonwovens professionals.

2024 INDA/NWI Workshops Schedule:

  • Elementary Nonwovens
    January 23-24, 2024
  • Intermediate Nonwovens
    February 6-9, 2024
  • Meltblown Technology
    February 27-29, 2024
  • Spunbond Technology
    March 19-21, 2024
  • Intermediate Nonwovens
    April 30-May 3, 2024
  • Elementary Nonwovens
    May 7-8, 2024
  • Nonwoven Fabric Property Development and Characterization
    June 4-7, 2024
  • WIPES Academy
    June 17-18, 2024
  • Fiber and Filament Extrusion Fundamentals
    July 24-27, 2024
  • Nonwoven Product Development and Innovation
    August 13-16, 2024
  • Absorbent Hygiene Course
    August 27-29, 2024
  • Elementary Nonwovens
    September 10-11, 2024
  • Carded Nonwovens Technology
    October 3, 2024
  • Intermediate Nonwovens
    October 15-19, 2024

Short Course Value Packs

New this year, INDA and NWI are offering a Short Course Value Pack program, enabling companies to purchase a block of registrations, which can be used by any combination of employees to register for any combination of training courses, at a discounted rate. Value Packs are available in bundles of 5, 10, 15, and 20 registrations, with discounts ranging from 10 percent to 25 percent, depending on the size of the Value Pack.

More information:
INDA nonwovens workshop schedule
Source:

Association of the Nonwoven Fabrics Industry

Propylat-Technologie Photo Autoneum Management AG
08.12.2023

Optimized acoustic performance thanks to sustainable technology with high recycled content

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

Autoneum’s sustainable, textile and lightweight Propylat technology reduces both interior and exterior noise of vehicles. Propylat was originally developed by Borgers Automotive, which was acquired by Autoneum in April 2023. The versatile technology is characterized by a flexible material composition of natural and synthetic fibers with a high recycled content and contributes to significant waste reduction thanks to its complete vertical integration. In addition, the fully recyclable technology variant Propylat PET is now part of the sustainability label Autoneum Pure.

The ongoing electrification of mobility as well as increasingly strict regulatory requirements for vehicle performance in terms of sustainability and acoustics are presenting new challenges to car manufacturers worldwide. With Propylat, Autoneum now offers another lightweight, fiber-based and versatile technology whose sound-insulating and -absorbing properties as well as high content of recycled materials help customers address these challenges. Propylat-based products not only contribute to reducing pass-by noise and improving driver comfort, but they are also up to 50 percent lighter than equivalent plastic alternatives; this results in a lower vehicle weight and, consequently, less fuel and energy consumption as well as lower CO2 emissions.

Autoneum's innovative Propylat technology consists of a mixture of recycled synthetic and natural fibers – the latter include cotton, jute, flax or hemp, for example – that are consolidated using thermoplastic binding fibers without adding any further chemical binders. Thanks to the flexible fiber composition and the variable density and thickness of the porous material, the properties of the respective Propylat variant, for example with regards to acoustic performance, can be tailored to individual customer requirements. This allows for a versatile application of the technology in a variety of interior and exterior components such as wheelhouse outer liners, trunk trim, underbody systems and carpets. For instance, Propylat-based wheelhouse outer liners significantly reduce rolling noise both inside and outside the vehicle while at the same time offering optimum protection against stone chipping and spray water.

In terms of sustainability, Propylat always contains a high proportion of recycled fibers – up to 100% in some variants – and can be manufactured with zero waste. Thanks to the full vertical integration of Propylat and Autoneum’s extensive expertise in recycling processes, the technology also contributes to a further significant reduction in production waste. Moreover, the Propylat PET technology variant, which consists of 100% PET, of which up to 70% are recycled fibers, is fully recyclable at the end of product life. For this reason, Propylat PET has been selected for Autoneum Pure – the Company’s sustainability label for technologies with excellent environmental performance throughout the product life cycle – where it will replace the current Mono-Liner technology going forward.

Propylat-based components are currently available in Europe, North America and China.

Source:

Autoneum Management AG

EPTA: Program of the “17th World Pultrusion Conference” (c) EPTA
06.12.2023

EPTA: Program of the “17th World Pultrusion Conference”

The EPTA – European Pultrusion Technology Association in cooperation with the American Composites Manufacturers Association (ACMA) invites you to the 17th World Pultrusion Conference which takes place on 29 February – 1 March 2024 in Hamburg, Germany.

This conference takes place every two years and is the meeting point of the European and worldwide Pultrusion Industry. More than 25 international speakers from Finland, Belgium, Germany, France, Spain, The Netherlands, Turkey, UK, USA, Canada and others will present practical presentations about innovative applications, technologies and processes. Equally current market trends and developments are on the agenda.

This World Pultrusion Conference takes place again in the week before the JEC World Composites Show (5-7 March 2024, Paris).

The program is available here.

The EPTA – European Pultrusion Technology Association in cooperation with the American Composites Manufacturers Association (ACMA) invites you to the 17th World Pultrusion Conference which takes place on 29 February – 1 March 2024 in Hamburg, Germany.

This conference takes place every two years and is the meeting point of the European and worldwide Pultrusion Industry. More than 25 international speakers from Finland, Belgium, Germany, France, Spain, The Netherlands, Turkey, UK, USA, Canada and others will present practical presentations about innovative applications, technologies and processes. Equally current market trends and developments are on the agenda.

This World Pultrusion Conference takes place again in the week before the JEC World Composites Show (5-7 March 2024, Paris).

The program is available here.

Source:

The European Pultrusion Technology Association (EPTA)

ACTIVEYARN book (c) Suedwolle Group
05.12.2023

Suedwolle Group: New ACTIVEYARN® collection

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

The yarns in the ACTIVEYARN® collection embody the company’s six strategic pillars of innovation – sustainability, circularity, traceability, design, performance and technology – drivers of the entire process of design and production.

Jasmin GOTS Nm 2/48 (100% wool 19,5 μ X-CARE) is a natural, renewable and biodegradable yarn with GOTS certification that meets the company’s demand for sustainability. X-CARE, the innovative treatment by Suedwolle Group, uses eco-friendly and chlorine-free substances that make wool environmentally friendly and suitable for easy-care quality.

Tirano Betaspun® RWS FSC (41,5% wool 17,2 μ TEC RWS certified, 41,5% LENZING™Lyocell 1,4 dtex 17% polyamide filament 22 dtex GRS certified) is a fully traceable high performance yarn, suitable for sportswear and activewear.

OTW® Midway GRS Nm 2/60 (60% wool 23,5 μ X-CARE, 40% polyamide 3,3 dtex GRS certified) comes from the recycling of pre-consumer polyamide and thus is a perfect example of circular production. Suitable for weaving, it combines the added performance that comes from our OTW® patented technology applied to a high durability blend, ideal for active garments.

Wallaby Betaspun® Nm 1/60 (87,5% wool 18,4 μ TEC, 12,5% polyamide filament 22 dtex) is the result of application of latest-generation Betaspun® technology to a natural fibre like wool, allowing production of fine yarns with extra strength and abrasion resistance, ideal for seamless and wrap knitting.

Banda TEC X-Compact Nm 2/47 (100% wool 17,2 μ TEC) is a 100% natural, renewable and biodegradable yarn benefitting from the innovative X-Compact, permitting production of particularly linear yarns ideal for clean design and fabrics appropriate for today’s fashions.

Caprera GRS Nm 1/60 (45% wool 19,3 μ Non mulesed X-CARE 55% COOLMAX® EcoMade polyester 2,2 dtex GRS certified) increases the performance of the wool-based non mulesed fibre through combination with COOLMAX® EcoMade polyester. This is a material coming from recycling of post-consumer PET bottles, dyeable at low temperatures, that aids evaporation of moisture from the skin to maintain stable body temperature, enhancing the comfort of activewear and urban garments.

Source:

Suedwolle Group