From the Sector

Reset
4 results
Emanuel Gunnarsson, University of Borås Photo University of Borås
19.04.2024

Healthcare: Solution for smart textile production

Smart textiles have the potential to revolutionise healthcare. In his doctoral thesis in textile technology at the University of Borås, Emanuel Gunnarsson presents unique solutions to the bottleneck that has long inhibited the market.

With an ageing population, increasing demands are being placed on healthcare and smart textiles can offer a solution where only imagination sets limits. “The long-term goal of most smart textiles is for them to be so easy to use that the user doesn't think of them as anything more than regular garments. No special procedure should be needed to use them. If we succeed in that, we won't burden healthcare by having healthcare personnel administer vital parameter monitoring such as blood pressure and pulse, as the user can handle it themselves,” said Emanuel Gunnarsson.

In his work, he has investigated how a t-shirt for measuring heart rhythm and movement patterns, and garments for electrostimulation, can be produced in a single step. This involves the connection between the contact surfaces (electrodes), the insulated conductive paths between the electrode and the contact point, and the electrical measuring equipment required.

Smart textiles have the potential to revolutionise healthcare. In his doctoral thesis in textile technology at the University of Borås, Emanuel Gunnarsson presents unique solutions to the bottleneck that has long inhibited the market.

With an ageing population, increasing demands are being placed on healthcare and smart textiles can offer a solution where only imagination sets limits. “The long-term goal of most smart textiles is for them to be so easy to use that the user doesn't think of them as anything more than regular garments. No special procedure should be needed to use them. If we succeed in that, we won't burden healthcare by having healthcare personnel administer vital parameter monitoring such as blood pressure and pulse, as the user can handle it themselves,” said Emanuel Gunnarsson.

In his work, he has investigated how a t-shirt for measuring heart rhythm and movement patterns, and garments for electrostimulation, can be produced in a single step. This involves the connection between the contact surfaces (electrodes), the insulated conductive paths between the electrode and the contact point, and the electrical measuring equipment required.

“This, as far as we know, has never been described before. We are completely convinced that this is the solution to a significant bottleneck when it comes to getting the smart textile market going in earnest,” said Emanuel Gunnarsson.

His work has resulted in two different simple ways to produce smart textiles. He demonstrates that sensors can be integrated using standard textile manufacturing methods. The research also includes criticism of some of the methods used to measure the functionality of smart textiles, and advice on how to do it better instead.

“The next natural step will be to see how these garments cope with one of the toughest challenges a garment faces, namely washing. Especially as these garments must be worn closest to the skin, they will need to be washed relatively often,” said Emanuel Gunnarsson.

Studies from other universities indicate that the yarns used to measure signals from the body do not withstand many washes, but after a small pilot study, Emanuel Gunnarsson is hopeful of the opposite.

Source:

University of Borås

(c) Michael Kretzschmar
Awards Honorary Doctorate to Professor Dr. Paul Kiekens by Professor Dr. Ursula M. Staudinger, Rector of the TU Dresden
12.04.2023

TU Dresden awards Honorary Doctorate to Professor Paul Kiekens

In recognition of his extraordinary engineering achievements in the fields of textile mechanical engineering, textile technology as well as textile chemistry and surface modification of textile semi-finished products, Prof. Paul Kiekens was awarded the title of Doctor honoris causa (Dr.-Ing. h.c.) on April 5, 2023.
 
Prof. Kiekens was a university professor at Ghent University, Belgium, for almost 35 years and thus responsible for textile-oriented education and research. Intensive interaction with European business and science was always particularly important to him.
 

In recognition of his extraordinary engineering achievements in the fields of textile mechanical engineering, textile technology as well as textile chemistry and surface modification of textile semi-finished products, Prof. Paul Kiekens was awarded the title of Doctor honoris causa (Dr.-Ing. h.c.) on April 5, 2023.
 
Prof. Kiekens was a university professor at Ghent University, Belgium, for almost 35 years and thus responsible for textile-oriented education and research. Intensive interaction with European business and science was always particularly important to him.
 
Immediately after the fall of the Berlin Wall, he opened the way for international cooperation in teaching and research in the field of textile mechanical engineering, textile technologies, and textile chemistry for the only Eastern European university research institution with a textile orientation, the ITM (formerly ITB) at the Faculty of Mechanical Engineering of TU Dresden, and provided great and uncomplicated support. A close, lasting and intensive relationship developed, which had a trend-setting influence on the scientific career of Professor Paul Kiekens. This was reflected above all in the expert advice given for major projects.
 
These include, for example, the funded junior research group "Holistic approach to the development and modelling of a new generation of multiaxial fabrics for fibre composites to strengthen Saxon, French and Flemish industry in the high-performance sector" (SAXOMAX) and jointly acquiring the EU project "Large scale manufacturing technology for high performance lightweight 3D multifunctional composites" (3D-LightTrans). Especially in these large-scale projects, intensive cooperation with industrial partners was essential for success.
 
As early as the 1990s, Professor Paul Kiekens had the vision of creating a European network for universities in textile teaching and research. In 1994, the Association of Universities for Textiles (AUTEX) was founded with the aim of establishing teaching and research in the field of textile technology at an internationally respected level through joint concepts. Due to the prevailing cooperation at that time between Professor Dr. Paul Kiekens and Professor Dr. Peter Offermann, the TU Dresden, represented by the ITM (formerly ITB), has been a full member and decisively integrated in the network since its foundation on July 1, 1994. Thus Prof. Dr.-Ing. habil. Paul Kiekens has significantly promoted the international cooperation of the TU Dresden, Faculty of Mechanical Engineering with international university textile research institutions.
 
Professor Paul Kiekens was executive coordinator of AUTEX until his retirement. The internationally renowned symposium takes place annually as a part of AUTEX.

Source:

Technische Universität Dresden - Institute of Textile Machinery and High Performance Material Technology

From left: Carlo Centonze, Dr. Thierry Pelet holding the first prototype of HeiQ Viroblock NPJ03 treated face masks (c) HeiQ
From left: Carlo Centonze, Dr. Thierry Pelet holding the first prototype of HeiQ Viroblock NPJ03 treated face masks
17.03.2020

HeiQ Viroblock NPJ03 antiviral textile technology tested effective against Coronavirus

HeiQ, winner of the Swiss Technology Award and Swiss Environmental Award, launches HeiQ Viroblock NPJ03, an antiviral and antimicrobial textile treatment that is tested effective against coronavirus.

Since its inception 15 years ago, HeiQ has forged a solid innovation track record helping brands improve textile products. Catalyzed to action by the global fight against Coronavirus, HeiQ launches HeiQ Viroblock NPJ03, an antiviral and antimicrobial textile treatment which is proven effective against human coronavirus (229E) in face mask testing, significantly enhancing the antiviral log reduction from 2.90 of untreated face masks to 4.48, over 99.99% reduction of virus infectivity. (Remarks: a log reduction of 2 is equivalent to 100 times the effectiveness).

Chinese protective masks producer Suzhou Bolisi is the lead adopter of HeiQ Viroblock NPJ03. Treated masks will be available on the market as early as this April. American legwear manufacturer Kayser-Roth is planning to add the technology to their new product, Ghluv hands protector, while Lufeng from China is evaluating the technology on other types of fabric used for garments.

HeiQ, winner of the Swiss Technology Award and Swiss Environmental Award, launches HeiQ Viroblock NPJ03, an antiviral and antimicrobial textile treatment that is tested effective against coronavirus.

Since its inception 15 years ago, HeiQ has forged a solid innovation track record helping brands improve textile products. Catalyzed to action by the global fight against Coronavirus, HeiQ launches HeiQ Viroblock NPJ03, an antiviral and antimicrobial textile treatment which is proven effective against human coronavirus (229E) in face mask testing, significantly enhancing the antiviral log reduction from 2.90 of untreated face masks to 4.48, over 99.99% reduction of virus infectivity. (Remarks: a log reduction of 2 is equivalent to 100 times the effectiveness).

Chinese protective masks producer Suzhou Bolisi is the lead adopter of HeiQ Viroblock NPJ03. Treated masks will be available on the market as early as this April. American legwear manufacturer Kayser-Roth is planning to add the technology to their new product, Ghluv hands protector, while Lufeng from China is evaluating the technology on other types of fabric used for garments.

HeiQ Viroblock NPJ03 is a unique combination of vesicle and silver technologies designed to inhibit the growth and persistence of bacteria and viruses. The HeiQ vesicle technology targets lipid- enveloped viruses, such as coronavirus, providing rapid virus deactivation, while the HeiQ silver technology inhibits the replication of both bacteria and viruses. HeiQ Viroblock NPJ03 can be applied to a wide spectrum of textile surfaces including face masks, air filters, medical gowns, curtains, drapes and more. HeiQ also has a range of highly wash-durable antimicrobial and odor control textile technologies, called HeiQ Pure, combining silver-based and bio-based materials for all fabric types.

More information:
HeiQ Coronavirus
Source:

HeiQ

(c) VDMA. Caption from left to right: Eric Otto, Prof. Thomas Gries, M.Sc. Susanne Fischer, Prof. Klaus Meier, Dr. Benjamin Weise, Prof. Gunnar Seide, Alon Tal, Jan Merlin Abram, Peter D. Dornier
25.09.2018

VDMA Textile Machinery c/o Walter Reiners Foundation awards five young engineers with a total of 17,500 EURO

Peter D. Dornier, member of the Executive Board of the VDMA Textile Machinery Federation and Chairman of the Walter Reiners Foundation for the Promotion of Young Engineers, honours five young talents. Numerous entrepreneurs and managers from the German textile machinery industry took part in the award ceremony at the Digital Capability Center (DCC) in Aachen, Germany.

The prizewinner in the dissertation category, Dr.- Ing. Benjamin Weise, comes from the Institute of Textile Technology at RWTH Aachen University (ITA). He has dealt with a complex production process for the manufacture of modified multifilament yarns, which offers new perspectives for the development and manufacture of textile charge carriers.

Peter D. Dornier, member of the Executive Board of the VDMA Textile Machinery Federation and Chairman of the Walter Reiners Foundation for the Promotion of Young Engineers, honours five young talents. Numerous entrepreneurs and managers from the German textile machinery industry took part in the award ceremony at the Digital Capability Center (DCC) in Aachen, Germany.

The prizewinner in the dissertation category, Dr.- Ing. Benjamin Weise, comes from the Institute of Textile Technology at RWTH Aachen University (ITA). He has dealt with a complex production process for the manufacture of modified multifilament yarns, which offers new perspectives for the development and manufacture of textile charge carriers.

M.Sc. Susanne Fischer, winner of the Master's thesis category, has systematically and comprehensively solved the challenging task of integrating motion sensors into a finger glove at Reutlingen University.
The 2018 creativity award winners are team Mr. Jan Merlin Abram and Mr. Alon Tal from ITA Aachen as well as Mr. Eric Otto from the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) in Dresden. The students Abram and Tal have developed a guideline for the design of hybrid morphing textiles. In addition to the classic functions in conventional and, in particular, composite applications, locally defined, functionally effective joint, torsion, expansion and compression mechanisms can be integrated into the textile.

The prizewinner Otto is awarded for a concept study for the development of a circular knitting machine with a variable diameter needle cylinder, which can lead to further flexibility in the circular knitting process.

More information:
VDMA Walter-Reiners-Stiftung
Source:

VDMA
Textilmaschinen