From the Sector

Reset
4 results
DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern. Foto: DITF
Aus Wasser gesponnene Lignin-Präkursorfasern, stabilisierte und carbonisierte Endlosfasern.
13.03.2023

Neues Verfahren: Carbonfasern aus Lignin

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, ebenso umweltfreundliches wie kostensparendes Verfahren zur Herstellung von Carbonfasern aus Lignin ist an den DITF entwickelt worden. Es zeichnet sich durch hohes Energiesparpotential aus. Die Vermeidung von Lösungsmitteln und die Nutzung natürlicher Rohstoffe machen das Verfahren umweltfreundlich.

Carbonfasern werden im industriellen Maßstab gewöhnlich aus Polyacrylnitril (PAN) hergestellt. Die Stabilisierung und die Carbonisierung der Fasern geschieht dabei mit langer Verweildauer in hochtemperierten Öfen. Das erfordert viel Energie und macht die Fasern teuer. Dabei entstehen giftige Nebenprodukte, die aufwendig und energieintensiv aus dem Herstellungsprozess abgetrennt werden müssen.

Ein neuartiges, an den DITF entwickeltes Verfahren ermöglicht hohe Energieeinsparungen in all diesen Prozessschritten. Lignin ersetzt dabei das Polyacrylnitril für die Herstellung der Präkursorfasern, die in einem zweiten Prozessschritt zu Carbonfasern umgewandelt werden. Lignin als Ausgangsmaterial für die Herstellung von Carbonfasern hat bisher kaum Beachtung in der industriellen Fertigung gefunden. Lignin ist ein günstiger und in großen Mengen verfügbarer Rohstoff, der als Abfallprodukt in der Papierproduktion anfällt.

Im neuen Verfahren zur Herstellung von Ligninfasern wird zuerst Holz in seine Bestandteile Lignin und Cellulose getrennt. Ein Sulfit-Aufschluss ermöglicht die Erzeugung von Lignosulfonat, das in Wasser gelöst wird. Die wässrige Lösung von Lignin ist das Ausgangsmaterial für das Spinnen der Fasern.
Der Spinnprozess selbst erfolgt im sogenannten Trockenspinnverfahren. Dabei presst ein Extruder die Spinnmasse durch eine Düse in einen beheizten Spinnschacht. Die entstehenden Endlosfasern trocknen im Spinnschacht schnell und gleichmäßig. Das Verfahren benötigt weder Lösungsmittel noch giftige Additiven.

Die anschließenden Schritte zur Herstellung von Carbonfasern - die Stabilisierung in Heißluft und die anschließende Carbonisierung im Hochtemperaturofen - ähneln denen des üblichen Prozesses bei Verwendung von PAN als Präkursorfaser. Allerdings lassen sich die Ligninfasern im Ofen besonders schnell mit Heißluft stabilisieren und benötigen nur relativ niedrige Temperaturen in der Carbonisierung. Die Energieersparnis in diesen Prozessschritten gegenüber PAN liegt bei rund 50% und bedeutet einen echten Wettbewerbsvorteil.

Aus Wasser gesponnene Ligninfasern bieten Vorteile
Neben der umweltfreundlichen, da lösemittelfreien Herstellung, und der Energieeffizienz bietet das neue Verfahren weitere Vorteile gegenüber PAN: Lignin ist ein überaus günstiger und leicht verfügbarer Rohstoff, der aus Holz gewonnen wird. Die Verwendung eines natürlichen Rohstoffes für die Erzeugung von hochfesten Carbonfasern folgt dem Nachhaltigkeitsgedanken in der Produktion.

Der Trockenspinnprozess erlaubt hohe Spinngeschwindigkeiten. Hierdurch wird in kürzerer Zeit deutlich mehr Material produziert, als es mit PAN-Fasern möglich ist. Das ist ein weiterer Wettbewerbsvorteil, der dennoch keine Kompromisse an die Qualität der Lignin-Präkursorfasern zulässt: Diese sind äußerst homogen, haben glatte Oberflächen und keine Verklebungen. Solche strukturellen Merkmale erleichtern die Weiterverarbeitung zu Carbonfasern und letztlich auch zu Faserverbundwerkstoffen.

Zusammenfassend lässt sich sagen, dass die in dem neuen Spinnverfahren gewonnenen Präkursorfasern aus Lignin gegenüber PAN deutliche Vorteile in der Kosteneffizienz und in ihrer Umweltverträglichkeit zeigen. Die mechanischen Eigenschaften der aus ihnen hergestellten Carbonfasern sind hingegen nahezu vergleichbar – sie sind ebenso zugfest, widerstandsfähig und leicht, wie es von marktgängigen Produkten bekannt ist.

Besonders interessant dürften Carbonfasern aus Wasser gesponnenen Ligninfasern für Anwendungen in der Bau- und Automobilbranche sein, die von Kostensenkungen im Produktionsprozess in hohem Maße profitieren.

Source:

DITF

23.04.2021

Oerlikon: Creating a new growth platform

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

The strategic acquisition is a significant step in expanding Oerlikon’s current manmade fibers business into the larger polymer processing market. The acquisition accelerates and enhances existing organic initiatives to diversify and strengthen the company’s core high-precision polymer flow control capabilities, products and services. The completion of the transaction is subject to customary regulatory approvals and is expected by the second quarter of 2021.

To reflect Oerlikon’s expansion into a larger high-growth market, the Manmade Fibers Division will be renamed as Polymer Processing Solutions Division. This division will have two business units: Flow Control Solutions and Manmade Fibers Solutions. The busines unit Flow Control Solutions will combine the expertise of Oerlikon Barmag’s existing gear metering pumps business line and INglass’ HRSflow operations. The business unit Manmade Fibers Solutions will continue to focus on growing the existing chemical fiber machinery and plant engineering business, offering plant solutions for the production of polyester, polypropylene and polyamide.

“Our new Polymer Processing Solutions Division and the acquisition of INglass S.p.A. and its HRSflow business are critical components of Oerlikon Group’s growth strategy. We are accelerating our efforts to drive sustainable organic and inorganic growth in all of our businesses. The acquisition enables new synergy opportunities between both Oerlikon divisions in specific end markets such as automotive. With INglass and its HRSflow operations, we acquire leading suppliers in their markets with proven success of their technologies and services,” said Dr. Roland Fischer, CEO Oerlikon Group.

“We firmly believe that within the Oerlikon Group we can further exploit the potential of our hot runner systems technology and, when combined with the capabilities of Oerlikon Barmag gear metering pumps and their melt distribution engineering competence, will position our business as one of the leading precision flow control specialists for multiple applications in a global growth market”, said Antonio Bortuzzo, CEO of INglass S.p.A.

New business unit offers great growth potential

The Oerlikon Barmag competence brand already offers high precision flow control related components, including a large selection of gear metering pumps for textile and non-textile markets. These highly efficient pumps are used in silicone casting, dynamic mixing and oil spraying for the chemical, paint, polymer processing and automotive industries. This double-digit million CHF business, which has grown in recent years, will be merged with INglass’ HRSflow hot runner technologies under the new business unit Flow Control Solutions. HRSflow’s excellent market access to many OEMs in and outside the automotive industry brings significant growth opportunities.

INglass is a leader in automotive and expanding in other sectors

INglass S.p.A. is an internationally operating successful company established in 1987. Its product portfolio includes hot runners as well as engineering and consultancy services for the advanced development of polymer processing products. INglass’ HRSflow hot runner systems are applied in multiple industries from automotive, consumer goods and household appliances to packaging, waste management, construction and transportation.

INglass is headquartered in San Polo di Piave, Italy, near Venice. 2020 revenues of INglass were approximately CHF 135 million and the acquisition is expected to be immediately accretive to Oerlikon’s margins and cash flows. INglass has more than 1 000 employees and 55 sites worldwide, including production plants in Italy, China and the US. Among these sites are INglass’ newly renovated headquarters and production at its primary location in San Polo di Piave near Venice, Italy. The investment modernized the facilities with automated production, underlining the company’s commitment to sustainability and the environment. The other two modern production sites are in Zhejiang (Hangzhou Province) in China and Michigan (Grand Rapids) in the USA.

Following the integration with Oerlikon Barmag’s gear metering pumps business of about 200 employees in Remscheid, Germany, the new Flow Control Solutions business unit will have round about 1 200 employees.

"We see great potential for growth in our new Flow Control Solutions business unit,” said Georg Stausberg, Polymer Processing Solutions Division CEO and Member of the Executive Committee of the Oerlikon Group. “The businesses form the two core growth pillars and benefit from each other in global market development, in modern and digitized production, and in customer services. We also see potential synergies in R&D by combining existing know-how in the field of polymer processing. New technological solutions between hot runner systems and gear metering pumps are conceivable. We also anticipate collaborating more closely with the Oerlikon Surface Solutions Division, particularly in future mobility applications and functional polymer component solutions for the automotive industry. All in all, we will offer our customers innovative and attractive solutions in the field of polymer processing and high precision flow control components.”

Next steps for further diversification of the division product portfolio are already ongoing

Combining the divisions plant engineering and process know how with expertise on high precision flow control components technologies has a significant impact on product quality in nearly all applications, which opens up a platform for further organic and inorganic growth. "We are closely observing the megatrends in the markets and developing new business models to match. In the area of sustainability, covering topics such as circular economy, the recycling of materials using mechanical and chemical recycling solutions, as well as the handling of new, more environmentally friendly and biodegradable materials, we are on the verge of a breakthrough. We are ready to actively participate in these growth areas,” added Georg Stausberg.

“In realigning the Polymer Processing Solutions Division, Oerlikon will continue to apply our successful recipe of a lean organizational structure to efficiently manage the business. This means clear processes, short decision-making paths and competent teams in a diverse and multicultural organization in which everyone can contribute innovatively to create customer value,” said Georg Stausberg.