From the Sector

Reset
471 results
28.02.2024

SGL Carbon: New Head of Business Unit Carbon Fibers

As of March 1, 2024, Dr. Denis Hinz will become new Head of SGL Carbon's Carbon Fibers Business Unit. The previous Head, Roland Nowicki, will leave SGL Carbon on May 31, 2024 at his own request to pursue new professional challenges. He will be available to the company as a consultant until his leaving date to support a smooth transition.

Roland Nowicki took over as Head of Carbon Fibers in November 2020 and has successfully driven forward the realignment of the business unit over the past three years.  

Dr. Denis Hinz has been with SGL Carbon for more than six years and has held various management positions during this time, including Head of Operations of the Fuel Cell Components division and Managing Director of SGL Fuel Cell Components GmbH in Meitingen since December 1, 2021. The graduate engineer from the Technical University of Munich is an experienced manager who is well networked within SGL Carbon and has closely followed the development of Carbon Fibers in recent years.

As of March 1, 2024, Dr. Denis Hinz will become new Head of SGL Carbon's Carbon Fibers Business Unit. The previous Head, Roland Nowicki, will leave SGL Carbon on May 31, 2024 at his own request to pursue new professional challenges. He will be available to the company as a consultant until his leaving date to support a smooth transition.

Roland Nowicki took over as Head of Carbon Fibers in November 2020 and has successfully driven forward the realignment of the business unit over the past three years.  

Dr. Denis Hinz has been with SGL Carbon for more than six years and has held various management positions during this time, including Head of Operations of the Fuel Cell Components division and Managing Director of SGL Fuel Cell Components GmbH in Meitingen since December 1, 2021. The graduate engineer from the Technical University of Munich is an experienced manager who is well networked within SGL Carbon and has closely followed the development of Carbon Fibers in recent years.

More information:
SGL Carbon Dr. Denis Hinz
Source:

SGL Carbon

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024 (c) FUSE GmbH
26.02.2024

KARL MAYER GROUP: Natural fibre composites and knit to shape products at JEC World 2024

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

At this year's JEC World 2024 from 5 to 7 March, KARL MAYER GROUP will be exhibiting with KARL MAYER Technical Textiles and its STOLL Business

One focus of the exhibition will be non-crimp fabrics and tapes made from bio-based yarn materials for the reinforcement of composites.

"While our business with multiaxial and spreading technology for processing conventional technical fibres such as carbon or glass continues to do well, we are seeing increasing interest in the processing of natural fibres into composites. That's why we have a new product in our trade fair luggage for the upcoming JEC World: an alpine ski in which, among other things, hemp fibre fabrics have been used," reveals Hagen Lotzmann, Vice President Sales KARL MAYER Technische Textilien.

The winter sports equipment is the result of a subsidised project. The hemp tapes for this were supplied by FUSE GmbH and processed into non-crimp fabrics on the COP MAX 5 multiaxial warp knitting machine in the KARL MAYER Technical Textiles technical centre.

The STOLL Business Unit will be focussing on thermoplastic materials. Several knit to shape parts with a textile outer surface and a hardened inner surface will be on display. The double-face products can be made from different types of yarn and do not need to be back-moulded for use as side door panels or housing shells, for example. In addition, the ready-to-use design saves on waste and yarn material.

26.02.2024

SGL Carbon: Review of options for Business Unit Carbon Fibers

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

SGL Carbon SE is currently evaluating various strategic options for the Business Unit Carbon Fibers (CF). These include a possible partial or complete divestment of the Business Unit. In a first step, potential interested parties shall be approached with the general data of the Business Unit to determine their interest in an acquisition. If there is sufficient interest, a structured transaction process will be carried out in a second step. Overall, a share of sales amounting to around € 179.6 million after nine months in 2023 (9M 2022: € 269.0 million) is therefore under review. The CF sales share corresponded to 21.9% of SGL Carbon's consolidated sales after nine months in 2023 (9M 2022: 31.5%). Adjusted EBITDA of the Business Unit excluding the result from joint ventures amounted to minus € 10,9 million after nine months in 2023 (9M 2022: € 27,9 million). Despite the operating loss of CF after nine months in 2023, SGL Carbon maintains its guidance for fiscal year 2023. This shows the positive development of the three other business units and the resilience of SGL Carbon's business model.

Carbon Fibers manufactures textile, acrylic and carbon fibers as well as composite materials at seven locations in Europe and North America. Following the temporary drop in demand for carbon fibers from the important wind industry market, the Business Unit's sales and earnings fell significantly in the course of fiscal year 2023. Due to the importance of the wind industry for the European Green Deal, SGL Carbon and many experts assumed that the wind industry recovers quickly. Unfortunately, this is currently not the case. Even if demand picks up, the company assumes that Carbon Fibers will need additional resources to remain competitive in the international market environment and to exploit market opportunities in the best possible way. Against this background, SGL Carbon is reviewing all possibilities to support a positive further development of the Carbon Fibers Business Unit.

More information:
SGL Carbon carbon fibers
Source:

SGL Carbon SE 

STFI: Lightweight construction innovations at JEC World in Paris (c) silbaerg GmbH and STFI (see information on image)
23.02.2024

STFI: Lightweight construction innovations at JEC World in Paris

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

VliesComp
The aim of the industrial partners Tenowo GmbH (Hof), Siemens AG (Erlangen), Invent GmbH (Braunschweig) and STFI united in the VliesComp project is to bring recycled materials back onto the market in various lightweight construction solutions. The application fields "Innovative e-machine concepts for the energy transition" and "Innovative e-machine concepts for e-mobility" were considered as examples. On display at JEC World in Paris will be a lightweight end shield for electric motors made from hybrid nonwovens - a mixture of thermoplastic fibre components and recycled reinforcing fibres - as well as nonwovens with 100% recycled reinforcing fibres. The end shield was ultimately manufactured with a 100% recycled fibre content. The tests showed that, compared to the variant made from primary carbon fibres using the RTM process, a 14% reduction in CO2 equivalent is possible with the same performance. The calculation for the use of the prepreg process using a bio-resin system shows a potential for reducing the CO2 equivalent by almost 70 %.

Bast fibre reinforcement
To increase stability in the plant stem, bast fibres form in the bark area, which support the stem but, in contrast to the rigid wood, are very flexible and allow slender, tall plants to move in the wind without breaking.A new process extracts the bast bark from hemp by peeling.The resulting characteristic values, such as tensile modulus of elasticity, breaking strength and elongation, are very promising in comparison with the continuous rovings made of flax available on the market.The material could be used as reinforcement in lightweight construction.At JEC World, STFI will be exhibiting reinforcing bars that have been processed into a knitted fabric using a pultrusion process based on bio-based reinforcing fibres made from hemp bast for mineral matrices.

Source:

Sächsische Textilforschungsinstitut e.V. (STFI)

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

DITF: Modular cutting tool recognized with JEC Composites Innovation Award Photo: Leitz
Hermann Finckh (DITF) and Andreas Kisselbach (Leitz GmbH & Co. KG)
16.02.2024

DITF: Modular cutting tool recognized with JEC Composites Innovation Award

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

AkzoNobel: Expansion of powder coatings plant (c) AkzoNobel
14.02.2024

AkzoNobel: Expansion of powder coatings plant in Italy

A major capacity expansion has been completed at AkzoNobel’s Powder Coatings site in Como, Italy, which will help secure supply to customers across Europe, Middle East and Africa (EMEA).

Four new manufacturing lines are now operational following the €21 million project – two of them dedicated to automotive primers and two to architectural coatings. New bonding equipment lines have also been added, ensuring that the products meet and exceed industry standards.

The extra capacity in Como has been installed in a renovated building where powder coatings were originally made – a sustainable reuse of an existing part of the site, which was established in 1992. The new lines also use recycled energy and are focused on meeting the highest standards in sustainable production, supporting the company’s ambition to reduce its carbon emissions by 50% by 2030.

AkzoNobel’s Como site is the company’s largest plant for producing powder coatings. It supplies products for market segments, such as home appliances, architecture, automotive, furniture and more.

A major capacity expansion has been completed at AkzoNobel’s Powder Coatings site in Como, Italy, which will help secure supply to customers across Europe, Middle East and Africa (EMEA).

Four new manufacturing lines are now operational following the €21 million project – two of them dedicated to automotive primers and two to architectural coatings. New bonding equipment lines have also been added, ensuring that the products meet and exceed industry standards.

The extra capacity in Como has been installed in a renovated building where powder coatings were originally made – a sustainable reuse of an existing part of the site, which was established in 1992. The new lines also use recycled energy and are focused on meeting the highest standards in sustainable production, supporting the company’s ambition to reduce its carbon emissions by 50% by 2030.

AkzoNobel’s Como site is the company’s largest plant for producing powder coatings. It supplies products for market segments, such as home appliances, architecture, automotive, furniture and more.

Source:

AkzoNobel

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

AkzoNobel participates in research program with SusInkCoat project (c) The Dutch Research Council (NWO)
05.02.2024

AkzoNobel participates in research program with SusInkCoat project

More than 82 companies, businesses and social organizations – including AkzoNobel – are involved in a major Dutch research program focused on developing new technologies that will help solve some of today’s societal challenges.
 
Seven broad consortia have been established as part of the government-funded “Perspectief” program, with AkzoNobel set to play a leading role in the SusInkCoat project, which will explore how to make inks and coatings more sustainable.

The company will work together with private partners and other societal stakeholders to develop new materials, processes and applications to improve the durability, functionality and recyclability of coatings, thin films and inks. The program, which will run for the next five years, is backed by the Ministry of Economic Affairs and Climate Policy and the Dutch Research Council (NWO).

More than 82 companies, businesses and social organizations – including AkzoNobel – are involved in a major Dutch research program focused on developing new technologies that will help solve some of today’s societal challenges.
 
Seven broad consortia have been established as part of the government-funded “Perspectief” program, with AkzoNobel set to play a leading role in the SusInkCoat project, which will explore how to make inks and coatings more sustainable.

The company will work together with private partners and other societal stakeholders to develop new materials, processes and applications to improve the durability, functionality and recyclability of coatings, thin films and inks. The program, which will run for the next five years, is backed by the Ministry of Economic Affairs and Climate Policy and the Dutch Research Council (NWO).

“Our discussions about collaborating with our SusInkCoat partners have been very positive,” says AkzoNobel’s R&D Director of Scientific Academic Programs, André van Linden, who is also the co-lead of SusInkCoat. “We’re all facing the same societal challenges – how to become more circular – and we’re looking for the same solutions in different application areas. But we’ve never done that together for this specific research topic, so we need an ecosystem to help us solve these challenges.
 
Van Linden adds that the program – one of many R&D projects the company is involved with – will also support AkzoNobel’s ambition to achieve 50% less carbon emissions in its own operations – and across the value chain – by 2030.
 
 “We want to make the recyclability of materials - such as furniture, building materials and steel constructions - easier by introducing functionalities like self-healing, higher durability and triggered release,” he continues. “The more you can leave the materials in their original state, the more sustainably you can operate.”

AkzoNobel will be collaborating with Canon, Evonik, GFB, PTG and RUG Ventures, who together possess extensive knowledge of market demands, supply chains and production processes. All the SusInkCoat partners will also work with academic researchers at several Dutch universities in an effort to identify promising developments that can be commercialized, used for education purposes or for outreach to the public.

Research being conducted by the other six consortia includes investigating methods to make tastier plant-based food; flat optics for more sustainable hi-tech equipment; and cheaper and more accessible medical imaging technology.

More information:
AkzoNobel Coatings Sustainability
Source:

AkzoNobel

26.01.2024

Solvay reduces transportation carbon footprint

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

Solvay is partnering with transportation providers KIITOSIMEON and ADAMS LOGISTICS to reduce the carbon footprint of its facility in Voikkaa, Finland. Known for its hydrogen peroxide technology, the site has a yearly capacity of 85 kilotons, making it the largest hydrogen peroxide unit in the country and one of the largest in Europe. However, the transportation of its products results in more than 850 tons of CO2 emissions annually, attributed to the several thousands deliveries conducted each year.

While the Voikkaa site has been operating on 100% wind-generated electricity since 2023, the journey towards decarbonization takes another step forward as it transitions transportation fuel from diesel to biofuel in the first quarter of 2024. This shift will result in a significant annual reduction of over 700 tons of CO2 emissions, representing more than 8O% reduction in the site's transportation carbon footprint.

As part of its commitment to carbon neutrality by 2050, Solvay has outlined a sustainability roadmap with around 40 energy transition projects. These projects focus on eliminating coal usage, emphasizing renewable energy sources, prioritizing energy efficiency, and driving process innovation. Solvay has further committed to reduce its emissions* along the value chain by 20% by 2030.

*scope 3 emissions, focus 5 categories, 2021 baseline

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

Long-lived lamellas for reinforcing buildings Image: Pixabay
08.01.2024

Long-lived lamellas for reinforcing buildings

Carbon fiber-reinforced polymer lamellas are an innovative method of reinforcing buildings. There are still many unanswered questions regarding their recycling, however. A research project by Empa's Mechanical Systems Engineering lab is now set to provide answers. Thanks to the support from a foundation, the project could now be launched.

The construction sector is responsible for around 60 percent of Switzerland's annual waste. The industry's efforts to recycle demolition materials are steadily increasing. Nevertheless, there are still end-of-life materials that, for the time being, cannot be reused as recycling would be too time-consuming and expensive. One of these are carbon fiber-reinforced polymer (CFRP) lamellas.

Carbon fiber-reinforced polymer lamellas are an innovative method of reinforcing buildings. There are still many unanswered questions regarding their recycling, however. A research project by Empa's Mechanical Systems Engineering lab is now set to provide answers. Thanks to the support from a foundation, the project could now be launched.

The construction sector is responsible for around 60 percent of Switzerland's annual waste. The industry's efforts to recycle demolition materials are steadily increasing. Nevertheless, there are still end-of-life materials that, for the time being, cannot be reused as recycling would be too time-consuming and expensive. One of these are carbon fiber-reinforced polymer (CFRP) lamellas.

Making buildings "live" longer
The reinforcing method developed by Urs Meier, former Empa Director at Dübendorf, has been used in infrastructure construction for 30 years. CFRP lamellas are attached with epoxy adhesive to bridges, parking garages, building walls and ceilings made of concrete or masonry. As a result, the structures can be used for 20 to 30 years longer. The method is increasingly being applied worldwide – mainly because it massively improves the earthquake resistance of masonry buildings.

"By significantly extending the lifespan of buildings and infrastructure, CFRP lamellas make an important contribution to increasing sustainability in the construction sector. However, we need to find a way how we can further use CFRP lamellas after the buildings are being demolished," explains Giovanni Terrasi, Head of the Mechanical Systems Engineering lab at Empa. To achieve this, he wants to develop a method for recycling CFRP lamellas. Convinced by this idea, a foundation supported it with a generous donation. The project officially launched in October.

Gentle separation
First, a mechanical process will be developed to detach the CFRP lamellas from the concrete without damaging them. Initial tests at Empa are encouraging: After the lamellas were separated from the concrete, they still had a strength of 95 percent – even if they had already been used for 30 years.

Then, the demolished CFRP lamellas shall be used to produce reinforcement for prefabricated components. Terrasi's goal: saving thousands of tons of CFRP lamellas from ending up in landfills after the demolition of old concrete structures and reuse them in low-CO2 concrete elements. After completion of the project, Giovanni Terrasi and his team – consisting of Zafeirios Triantafyllidis, Valentin Ott, Mateusz Wyrzykowski and Daniel Völki – want to produce railroad sleepers from recycled concrete, which will be reinforced and prestressed with demolition CFRP lamellas. This would give the "waste-to-be" material a second life in Swiss infrastructure construction.

Source:

Empa

Vesta Corporation presented first Sustainability Report (c) Vesta Corporation
05.01.2024

Vesta Corporation: First Sustainability Report

The Tuscan tannery Vesta Corporation has presented to its stakeholders a report outlining its current commitment and future objectives, with a view to innovating, safeguarding and fostering high-end leather material processing.

Ever since it was founded in 1966 in Ponte a Egola, the Tuscan hub for the production of leather for vegetable tanned soles, Vesta has been a supplier and partner of haute couture and sportswear brands, from lightweight calf and half-calf leather, to heavy leathers made with hind and rump hide, for leatherware and shoes.

The Tuscan tannery Vesta Corporation has presented to its stakeholders a report outlining its current commitment and future objectives, with a view to innovating, safeguarding and fostering high-end leather material processing.

Ever since it was founded in 1966 in Ponte a Egola, the Tuscan hub for the production of leather for vegetable tanned soles, Vesta has been a supplier and partner of haute couture and sportswear brands, from lightweight calf and half-calf leather, to heavy leathers made with hind and rump hide, for leatherware and shoes.

To draft this Report, reference was made to the “Global Reporting Initiative Sustainability Reporting Standards” established by the Global Reporting Initiative (GRI). The information in the balance sheet refers to the year 2022 (from 1 January to 31December 2022). Wherever possible, data for the previous year are included, to allow for a comparison of data over time and to assess the trend of Vesta activities. Sustainability is an objective-driven process. This means that comparing data allows for concretely measuring the company’s progress, as it pursues this accounting process year after year.

The improvement actions already implemented by Vesta involve corporate responsibility from an environmental, social and governance perspective. An example are the improved heating and processing plants (which entails the construction of a new tumbling department based on 4.0 technology). This guarantees significant energy, water and economic savings. Along with numerous corporate certifications, the company has passed the Raw Material Traceability test with a score of EXCELLENT, as well as the Carbon and Water footprint analysis.

As confirmation of its commitment to improving corporate performance levels, Vesta has been upgraded from BRONZE (2020) to GOLD in 2023, as assessed by the Leather Working Group (which measures leather manufacturers’ environmental performance for ecological production and for a systemic management of quality, environmental, safety and ethical factors).

Becoming energy-independent is a major step in the pipeline, involving the installation of a photovoltaic plant. This is complemented by the implementation of a project aimed at totally compensating its CO2 emissions for the year subject to accounting and certification. This neutrality will be achieved through the acquisition of credits deriving from projects certified by the United Nations. For example, with the construction of an important hydro-electric plant to which Vesta is contributing. With regard to production, corporate research is currently focused on developing solutions to reduce water and energy use. It is also implementing circular trends by adopting an increasing number of bio-based products, to guarantee the most sustainable end-of-life and waste management for its products.

Source:

Vesta Corporation

04.01.2024

The climate-friendly carbon fiber - up to 50% less CO2 emissions

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

SGL Carbon relies on climate-friendly manufacturing processes in the production of its own carbon fibers. By using renewable energy, the carbon footprint of SGL fiber can be reduced by up to 50% compared to a conventional fiber.  

SGL carbon fiber is produced at the Lavradio (Portugal) and Moses Lake (USA) sites. When the Moses Lake site was selected in the 1990s, the use of hydropower as an energy source played a particularly decisive role. As a result, around 75,000 tonnes of CO2 can be saved in Moses Lake by purchasing electricity from hydropower plants compared to a fossil fuel-based electricity mix.

As part of the consistent implementation of its climate strategy, SGL Carbon will be using a CO2-neutral biomass system to generate energy from the beginning of 2024, which will make the production system, which was previously based on natural gas, more flexible and climate-friendly. At full capacity, the biomass system in Lavradio can save more than 90,000 tons of CO2.

The raw material used is wood pellets, which are sourced from a radius of 250 kilometres via short transport routes.

The climate-friendly energy supply at the site in Moses Lake (USA) combined with the new biomass plant in Lavradio (Portugal) lead to a reduction in CO2 emissions of up to 50% in the production of SGL's own carbon fibers compared to conventional fibers. With the investment in the biomass system, SGL Carbon is pursuing its climate strategy. The target is to save 50% CO2 emissions by the end of 2025 compared to the base year 2019 and to be climate-neutral by the end of 2038. In the period 2019 to 2022, SGL Carbon has reduced its CO2 emissions by 17%.

Source:

SGL Carbon SE

Carbios published Sustainability Report for 2022 (c) Carbios
29.12.2023

Carbios published 2022 Sustainability Report

CARBIOS published its second Sustainability Report with 2022 as the reference year. Like the first, this report is not subject to any publication obligation for the company, confirms CARBIOS' commitment and desire for transparency in terms of environmental, social and governance (ESG) initiatives.

In 2022, several objectives were achieved:

CARBIOS published its second Sustainability Report with 2022 as the reference year. Like the first, this report is not subject to any publication obligation for the company, confirms CARBIOS' commitment and desire for transparency in terms of environmental, social and governance (ESG) initiatives.

In 2022, several objectives were achieved:

  • Increase of the number of independent directors on the Board of Directors,
  • Completion of the first carbon footprint report to sustainably reduce greenhouse gas emissions,
  • Consolidation of the life cycle analysis (LCA) of the PET enzymatic depolymerization process,
  • Continuation of employee training in safety and environmental issues.

In October 2023, CARBIOS appointed Bénédicte Garbil as Senior Vice President of Corporate Affairs and Sustainability: "In 2022, CARBIOS strengthened its governance, building a solid foundation for our continued growth and commitment to Corporate Social Responsibility (CSR). This strategic development demonstrates our commitment to operational excellence and transparency. We have integrated the principles of sustainability, ethics and environmental responsibility at the heart of our governance, putting CSR at the forefront of our actions."

Source:

Carbios

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

Graphic Toray
20.12.2023

Recycled carbon fiber: When a Boeing 787 turns into a Lenovo ThinkPad

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

Toray Industries, Inc. announced the successful development of recycled carbon fiber (rCF) derived from the production process of the Boeing 787 components using Toray’s advanced carbon fiber, TORAYCA™. The rCF, which is based on pyrolysis recycling process, has been integrated into the Lenovo ThinkPad X1 Carbon Gen 12 as reinforcement filler for thermoplastic pellets. Toray and Lenovo will continue to collaborate to expand the usage of rCF in other Lenovo products.

Toray rCF is the outcome of Boeing and Lenovo’s shared commitment to minimize their environmental impact. Boeing’s objective is to reduce solid waste going to landfill and produce recyclable materials, while Lenovo has been exploring materials to reduce the carbon footprint of their products. Toray rCF connects these visions by repurposing Toray’s high-performance carbon fiber from the Boeing aircraft production process into Lenovo’s ultra-light laptop PC.

TORAYCA™ is an established aerospace material known for its high strength, stiffness, and lightweighting properties. These qualities have led to its adoption in other applications such as electrical and electronic equipment housings, sports equipment, and other industrial applications.

A key advantage of carbon fiber is the ability to retain its primary mechanical properties even after the recycling process. Toray is actively advancing recycling technologies and establishing a strategic business model for rCF. Given that the carbon footprint of rCF is lower than that of virgin carbon fiber, Toray is proactively recommending the adoption of rCF to reduce the environmental impact of customers’ products. This commitment aligns with Toray’s dedication to fostering a circular economy, thereby reducing landfill waste.

Source:

Toray Industries

Indorama
19.12.2023

Indorama Ventures again a member of the DJSI World and DJSI Emerging Markets

Indorama Ventures Public Company Limited has been selected for inclusion in the Dow Jones Sustainability World Index (DJSI World) for the fifth consecutive year and the Dow Jones Sustainability Emerging Markets Index (DJSI Emerging Markets) for the seventh year in a row.

Indorama Ventures ranked in the 92nd percentile amongst 11 chemical companies eligible for listing out of 89 chemical companies invited, with a Corporate Sustainability Assessment (CSA) Score of 73 out of 100. The score reflects the company’s best-in-class performance in innovation management, covering product innovation, process innovation, and open innovation, which involves collaborative research and development with external organizations such as customers, suppliers, brand owners, and academic institutions. It also recognizes the company’s achievements in decarbonization, climate change resiliency and adaptation, plastic waste management and recycling, corporate social responsibility, and contribution to the Sustainable Development Goals (SDGs).

Indorama Ventures Public Company Limited has been selected for inclusion in the Dow Jones Sustainability World Index (DJSI World) for the fifth consecutive year and the Dow Jones Sustainability Emerging Markets Index (DJSI Emerging Markets) for the seventh year in a row.

Indorama Ventures ranked in the 92nd percentile amongst 11 chemical companies eligible for listing out of 89 chemical companies invited, with a Corporate Sustainability Assessment (CSA) Score of 73 out of 100. The score reflects the company’s best-in-class performance in innovation management, covering product innovation, process innovation, and open innovation, which involves collaborative research and development with external organizations such as customers, suppliers, brand owners, and academic institutions. It also recognizes the company’s achievements in decarbonization, climate change resiliency and adaptation, plastic waste management and recycling, corporate social responsibility, and contribution to the Sustainable Development Goals (SDGs).

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG