From the Sector

Reset
348 results
Archroma at Techtextil 2024 Photo: Archroma
12.04.2024

Archroma at Techtextil 2024

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

APPRETAN® FFX1540 is a new APEO free and formaldehyde free self-crosslinking polymer, medium soft with very low tackiness, and strongly hydrophobic, developed for the chemical bonding of nonwovens and for the coating of technical textiles, where low water absorption and high-water tightness are required, combined with high durability in severe environment.

For workwear and uniforms that protect people under adverse conditions, Archroma solutions include HELIZARIN® ULTRA-FAST, for printing with pigment dispersions and metallic pigments, and the new ALBAFIX® ECO Plus wet fastness improver. Archroma’s PFC-free PHOBOTEX® R-ACE durable water repellent delivers excellent water repellence while preserving fabric quality and ensuring sustainability. Archroma has also expanded the revolutionary AVITERA® SE GENERATION NEXT range of resource-saving dyes with new colors.

Further solutions for active wear and workwear include the newly launched bio-based PHOBOTEX® NTR-50 durable water repellent product, which is PFAS free, formaldehyde free and crosslinker free, as well NYLOFIXAN® HFS, a new fixing agent for polyamide and blends that is fully compliant with the latest restrictions on bisphenol compounds.

Archroma is also launching ARKOPHOB® NTR-40 at Techtextil 2024. The company’s first crosslinker with an improved sustainability profile, its monomers are partially derived from renewably sourced, plant-based raw materials. Another new innovation is biocide-free OX20, an odor-neutralizing technology launched by Archroma in partnership with SANITIZED AG.

For home textiles, mills and brands can select ARKOFIX® NZW formaldehyde-free* resin for high whiteness and extraordinary product stability, with no yellowing during storage at elevated temperatures, even over a prolonged period of time. For a super-soft handle, the SILIGEN® EH1 is a vegan silicone macro-emulsion softener with 35% plant-based active content.

More information:
Archroma Techtextil
Source:

Archroma

INDA Lifetime Award 2024 INDA
09.04.2024

INDA Honors Three Nonwoven Industry Professionals with Lifetime Awards

INDA, the Association of the Nonwoven Fabrics Industry, announced three recipients for the INDA Lifetime Service Award and Lifetime Technical Achievement Awards. David Powling, Paul Latten, and Arnold Wilkie are being recognized for their key contributions to the advancement of the nonwovens industry and INDA.

David Powling and Paul Latten will receive their awards at the World of Wipes® (WOW) International Conference, June 18th beginning at 4:30 pm
Arnold Wilkie will receive his award at the RISE® Conference, October 1st at 4:30 pm.

The Award recipients are:

INDA, the Association of the Nonwoven Fabrics Industry, announced three recipients for the INDA Lifetime Service Award and Lifetime Technical Achievement Awards. David Powling, Paul Latten, and Arnold Wilkie are being recognized for their key contributions to the advancement of the nonwovens industry and INDA.

David Powling and Paul Latten will receive their awards at the World of Wipes® (WOW) International Conference, June 18th beginning at 4:30 pm
Arnold Wilkie will receive his award at the RISE® Conference, October 1st at 4:30 pm.

The Award recipients are:

David Powling
David Powling has worked for Kimberly-Clark Corporation for nearly 25 years and has been a contributor to the Wipes Task Force and Technical Committees at INDA and EDANA for over 15 years. Powling served as Chairman of the INDA Wipes Task Force from 2009-2013. His work on these committees include developing the first and second edition of the Flushability Guidance Document (GD) and he was later instrumental in the roll out of the third and fourth edition GDs. Throughout this time, Powling coordinated activities with Kimberly-Clark Corporation to provide critical supporting data, as these flushability test protocols were developed.

Powling has been actively involved in collection studies where he was key in framing the work packages of those studies, collating and analyzing the data, and drafting reports. These collection studies include: Moraga, CA (advisor); Maine – Part #1 and Part #2 (hands-on); Jacksonville (hands-on); and the Northern and Southern California studies in 2023, which combined, was the largest study to date. Powling led the charge in the California study and was personally involved in identifying 1,745 samples.

Powling has been a key technical contributor to the INDA Government Relation efforts that has resulted in labelling regulations in multiple U.S. states. He has also been an active participant in efforts to develop an ISO standard for flushable products.  In this effort, he was a test method sub-team leader during the preparation of the proposed ISO standard responsible for organizing appendices of existing flushability methodologies. Additionally, Powling has been awarded, or has pending, 25+ U.S. patents, including many covering the development of dispersible wet wipes.

Paul Latten
Paul Latten has been an active member of the nonwoven and fiber industries for over 35 years. Most recently he has led innovation at Southeast Nonwovens, commercializing more than 75 new nonwoven products per year. Prior to joining Southeast Nonwovens, Latten held senior leadership positions with Basofil, Consolidated Fibers, Invista, and KoSa (and Trevira and Hoechst Celanese precursors to KoSa.)

Latten has a successful career of reinvigorating company R&D efforts by instilling a focus on customer-centric innovation. He is an inventor of record for a number of patents and pending applications. Latten has given numerous presentations on innovative nonwoven materials, at events such as INDA’s World of Wipes® (WOW) International Conference, RISE® (Research, Innovation & Science for Engineered Fabrics), the VISION International Conference, and the Converting and Bonding (CAB) Conference.

His recent innovations have been diverse in scope and include nonwovens for use in hydrogen fuel cells, moisture detection media, proprietary wipe designs, and natural fiber-based packaging. Aside from new fiber and nonwoven products, Latten has championed process innovation that has resulted in tangible output gains that broadened the market opportunity for his current and prior companies.

Latten’s portfolio of innovations has spanned across the nonwoven markets, often involving wetlaid and drylaid nonwovens. These include materials for moisture detection, synthetic papers, fuel cell cathodes, protective covers for treats, melamine nonwovens for surface treatment, and the development of binder fibers. His work also touched upon disposable hygiene applications entailing dry-laid web containing hollow synthetic fibers to improve absorbent core fluid uptake.

Latten has been a board member of INDA for multiple terms and served as Chairman in 2008-2010. Additionally, he has contributed to many INDA conference planning committees, helping drive the success of these events.

Arnold Wilkie
Arnold Wilkie has a distinguished career in advancing yarn, fiber, and nonwoven technologies since 1970. Since 1988, he has been President and Owner of Hills, Inc. where he has sustained their innovative culture. Wilkie has over 40 patents and applications covering yarns, bicomponent fibers, ultra-fine fibers, nanofibers, dissolvable filaments, meltblown nonwovens, and polymer processing innovations. He established Hills as a leading innovator in bicomponent fiber nonwovens and in the equipment to produce these materials. During Wilkie’s time leading Hills, their pilot capabilities have become well-known and highly regarded for enabling material innovations.

Many of his patents pertain to the development of equipment solutions that enable the production of complex bi- and multi-component fiber structures. These solutions include the method of forming a continuous filament spun-laid web, the method and apparatus for producing polymer fibers and fabrics including multiple polymer components, the method and apparatus for controlling airflow in a fiber extrusion system, and controlling the dissolution of dissolvable polymer components in plural component fibers.

Arnold Wilkie, President, Hills, Inc., earned his bachelor’s degree in Mechanical Engineering from the University of Tennessee and an MBA from the University of West Florida. He is a licensed Professional Engineer in Florida, and has been engaged in the synthetic fibers industry since 1970. The first 17 years were with the Monsanto Company, where he held positions in Fiber Process Engineering, Fiber Product R&D, and Product Management. Since 1988, he has been a majority Owner and President of Hills, Inc., a 52-year-old company located in West Melbourne, Florida, specializing in the development, manufacture, and supply of advanced custom fiber extrusion equipment. Wilkie has been involved with and supported The Nonwovens Institute, since its founding in 1991 as the Nonwovens Cooperative Research Center (NCRC), with Hills joining as a Member in 2001

More information:
INDA lifetime achievement
Source:

INDA

INDA remembers CK Wong (c) INDA
03.04.2024

INDA remembers CK Wong

INDA is warmly remembering CK Wong, a veteran of the nonwovens industry for more than five decades and long-time member of INDA’s Board of Directors and Executive Committee. Wong passed away on March 22, 2024 at the age of 86.

Wong recognized the importance of the emerging nonwovens industry in the early 1970s. He began his career in the 1980s as a marketing consultant and, one year later, Wong set up his corporate headquarters in Hong Kong to convert nonwoven roll goods into disposable medical and industrial protection products. Over the past 35 years, Wong’s business grew to include household, beauty salon, sports applications, and other value-added products.

In 1994 Wong’s company officially became U.S. Pacific Nonwovens Industry Limited. His business expanded with a new converting plant in Dongguan, China, and in 2007 he invested in an adjacent building to handle his growing business. In 2018 Wong’s business broadened to include manufacturing PLA nonwovens. In addition to converted products, Wong’s business provided sales, service, and training for nonwovens equipment.

INDA is warmly remembering CK Wong, a veteran of the nonwovens industry for more than five decades and long-time member of INDA’s Board of Directors and Executive Committee. Wong passed away on March 22, 2024 at the age of 86.

Wong recognized the importance of the emerging nonwovens industry in the early 1970s. He began his career in the 1980s as a marketing consultant and, one year later, Wong set up his corporate headquarters in Hong Kong to convert nonwoven roll goods into disposable medical and industrial protection products. Over the past 35 years, Wong’s business grew to include household, beauty salon, sports applications, and other value-added products.

In 1994 Wong’s company officially became U.S. Pacific Nonwovens Industry Limited. His business expanded with a new converting plant in Dongguan, China, and in 2007 he invested in an adjacent building to handle his growing business. In 2018 Wong’s business broadened to include manufacturing PLA nonwovens. In addition to converted products, Wong’s business provided sales, service, and training for nonwovens equipment.

Wong was an active member at INDA since the late 90s. He served as Vice Chair of Finance on the Board of Directors for many years before becoming an Appointee on INDA’s Executive Committee. Wong was instrumental in helping INDA set up partnerships with key contacts and associations in China. He was also the Honorable Chairman for the Guangdong Nonwovens Association (GDNA) and the China Nonwovens & Industrial Textiles Association (Spunbond Division).

More information:
INDA nonwovens
Source:

INDA, the Association of the Nonwoven Fabrics Industry

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

18.03.2024

Lenzing: Combined annual and sustainability report 2023

  • Combination of financial and non-financial reporting as evidence of the central role of sustainability
  • Measurable progress in achieving sustainability and climate targets
  • Recognized for sustainability and prepares for the European Green Deal

The Lenzing Group has published a combined annual and sustainability report for the first time, reaffirming the strategic importance of social and environmental responsibility for the company. With the title “Ready to join?”, Lenzing would like to extend an invitation to all customers and partners to join forces to renew the textile and nonwovens industries and bring about positive change.

“This annual and sustainability report is also an invitation to find answers together. Lenzing is working tirelessly to make the industries in which it operates even more sustainable and to drive the transformation of the textile business model from linear to circular. For this transformation to be successful, further efforts by the entire industry and a policy designed to ensure a level playing field for sustainability pioneers are needed,” says Stephan Sielaff, CEO of the Lenzing Group.

  • Combination of financial and non-financial reporting as evidence of the central role of sustainability
  • Measurable progress in achieving sustainability and climate targets
  • Recognized for sustainability and prepares for the European Green Deal

The Lenzing Group has published a combined annual and sustainability report for the first time, reaffirming the strategic importance of social and environmental responsibility for the company. With the title “Ready to join?”, Lenzing would like to extend an invitation to all customers and partners to join forces to renew the textile and nonwovens industries and bring about positive change.

“This annual and sustainability report is also an invitation to find answers together. Lenzing is working tirelessly to make the industries in which it operates even more sustainable and to drive the transformation of the textile business model from linear to circular. For this transformation to be successful, further efforts by the entire industry and a policy designed to ensure a level playing field for sustainability pioneers are needed,” says Stephan Sielaff, CEO of the Lenzing Group.

The results for the 2023 financial year were already published. The report was once again prepared in digital form and is now available.

Source:

Lenzing AG

13.03.2024

IDEA®25: Call for abstracts

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

  • Natural Fibers (Cotton, Hemp, Bamboo, Banana, Wood Pulp, Regenerated Cellulose, Wool, Fur, Chitin, Feathers)
  • Polymers (Biopolymers, Regenerated and Recycled polymers, Unconventional and Alternatives to Traditional Polymers)
  • Sustainable Chemistries (finishes, lubricants, adhesives, and additives)

INNOVATIONS IN SUSTAINABILITY

  • Process Improvements with Sustainability Impact (reduced waste, reduced energy, reduced water consumption)
  • Product Design Improvements with Sustainability Impact (lightweighting, designs for end-of-life, “good enough” design)

END-OF-LIFE SOLUTIONS

  • End-of-Life or Next-Life Considerations (compostability, biodegradability, recycling, advanced recycling and circularity)
  • Presenting is an opportunity for technical professionals to showcase pioneering research, innovative solutions, and expert insights with technology scouts.

Abstracts must be submitted via the INDA website by June 7, 2024.

Source:

INDA - Association of the Nonwoven Fabrics Industry

Trützschler Group auf der Techtextil (c) Trützschler Group SE
13.03.2024

Trützschler Group auf der Techtextil

Vom 23. bis 26. April 2024 zeigt die Trützschler Group auf der Techtextil in Frankfurt am Main die neuesten Entwicklungen für die Herstellung von Vliesstoffen auf Faserbasis. Im Fokus stehen die T-SUPREMA Vernadelungsanlagen und nachhaltige Lösungen für Vliesstoffe aus Zellulosefasern. Auf der Techtextil 2022 wurde die Kooperation zwischen Trützschler Nonwovens und dem italienischen Unternehmen Texnology offiziell bekannt gegeben. Mit der Einweihung der T-SUPREMA Vernadelungsanlage im Technikum in Egelsbach geht Trützschler in diesem Jahr den nächsten Schritt. Im Bereich Textilrecycling stellt Trützschler Spinning mit dem Kooperationspartner Balkan sein aktuelles Portfolio vor.

Vliesstofflösungen
Auf dem Gemeinschaftsstand von Trützschler Nonwovens und dem italienischen Unternehmen Texnology S.l.r. können sich die Besucher über T-SUPREMA informieren. Das Konzept zielt auf hohe Produktqualität und Systemeffizienz im Bereich oder mechanisch vernadelte Vliesstoffe - als Basis für Anwendungen wie Geotextilien, Automobiltextilien, Filtermedien und verschiedene industrielle Anwendungen.

Vom 23. bis 26. April 2024 zeigt die Trützschler Group auf der Techtextil in Frankfurt am Main die neuesten Entwicklungen für die Herstellung von Vliesstoffen auf Faserbasis. Im Fokus stehen die T-SUPREMA Vernadelungsanlagen und nachhaltige Lösungen für Vliesstoffe aus Zellulosefasern. Auf der Techtextil 2022 wurde die Kooperation zwischen Trützschler Nonwovens und dem italienischen Unternehmen Texnology offiziell bekannt gegeben. Mit der Einweihung der T-SUPREMA Vernadelungsanlage im Technikum in Egelsbach geht Trützschler in diesem Jahr den nächsten Schritt. Im Bereich Textilrecycling stellt Trützschler Spinning mit dem Kooperationspartner Balkan sein aktuelles Portfolio vor.

Vliesstofflösungen
Auf dem Gemeinschaftsstand von Trützschler Nonwovens und dem italienischen Unternehmen Texnology S.l.r. können sich die Besucher über T-SUPREMA informieren. Das Konzept zielt auf hohe Produktqualität und Systemeffizienz im Bereich oder mechanisch vernadelte Vliesstoffe - als Basis für Anwendungen wie Geotextilien, Automobiltextilien, Filtermedien und verschiedene industrielle Anwendungen.

Darüber hinaus erhalten die Besucher Einblicke in die digitale Arbeitsumgebung von T-ONE und deren Rolle bei der Sicherstellung einer nachhaltig hohen Vliesstoffqualität und Prozesseffizienz. T-ONE ist ein Bestandteil des T-SUPREMA Anlagenkonzepts, kann aber an jede faser- oder polymerbasierte Vliesstoffanlage angepasst werden.

Auch wird sich Trützschler Nonwovens auf seine Nassvlies-/ Spunlace- (WLS) und Krempel-/ Pulpanlagen (CP) für biologisch abbaubare Vliesstoffe auf Cellulosebasis konzentrieren. In Zusammenarbeit mit Voith treibt Trützschler Nonwovens die Entwicklung innovativer und umweltfreundlicher WLS- und CP-Produkte voran.

Spinnereivorbereitung
Zusammen mit dem türkischen Unternehmen Balkan präsentiert Trützschler Komplettlösungen für das mechanische Recycling und die Spinnereivorbereitung von Textilabfällen. Balkan ergänzt mit seinen Schneid- und Reißanlagen das Produktportfolio von Trützschler.

Die Besucher werden sowohl über die Balkan Reißanlagen als auch über die Putzereianlagen von Trützschler, die neue Integrierte Strecke IDF 3 und die intelligente Karde TC 30Ri für das Recycling, informiert. Das neue Flaggschiff der Karden verwandelt Sekundärfasern aus gerissenen Textilabfälle in hochwertige Faserbänder für neue Garne.

Source:

Trützschler Group SE

INDA: Five new Board of Directors' members (c) INDA
05.03.2024

INDA: Five new Board of Directors' members

INDA, the Association of the Nonwoven Fabrics Industry, announced the election of five new members to serve on its 2024 Board of Directors. The Board of Directors play a key role in advancing INDA’s strategic objectives, actively supporting both the industry and the membership. Their primary responsibility lies in ensuring that INDA remains responsive to the evolving needs of its members and the broader nonwovens industry, guiding the formulation of policies and programs.

The five new Board members include:

  • Jaren J. Edwards, President, Stein Fibers
  • Edward McNally, Sales Director Nonwoven, Oerlikon Nonwoven
  • Thomas Olsen, Senior Vice President, Americas Business Area, Suominen
  • Patricia A Sargeant, Vice President, Glatfelter Corporation
  • Paul Wood, President, Ontex North America

The Board is comprised of elected Board Officers. One-third of the entire Board is elected each year for a three-year term by INDA’s general membership. INDA’s Executive Committee, empowered to act on behalf of the Board between meetings, consists of the Board Officers plus appointees.
The Executive Committee includes:

INDA, the Association of the Nonwoven Fabrics Industry, announced the election of five new members to serve on its 2024 Board of Directors. The Board of Directors play a key role in advancing INDA’s strategic objectives, actively supporting both the industry and the membership. Their primary responsibility lies in ensuring that INDA remains responsive to the evolving needs of its members and the broader nonwovens industry, guiding the formulation of policies and programs.

The five new Board members include:

  • Jaren J. Edwards, President, Stein Fibers
  • Edward McNally, Sales Director Nonwoven, Oerlikon Nonwoven
  • Thomas Olsen, Senior Vice President, Americas Business Area, Suominen
  • Patricia A Sargeant, Vice President, Glatfelter Corporation
  • Paul Wood, President, Ontex North America

The Board is comprised of elected Board Officers. One-third of the entire Board is elected each year for a three-year term by INDA’s general membership. INDA’s Executive Committee, empowered to act on behalf of the Board between meetings, consists of the Board Officers plus appointees.
The Executive Committee includes:

  • Chair: Mark Thornton, Vice President, The Procter & Gamble Company
  • Vice Chair: Barbara Lawless, VP of Sales and Marketing – Medical Products, Precision Fabrics Group, Inc.
  • Past Chair: Bryan Haynes, Senior Technical Director for Global Nonwovens, Kimberly-Clark Corporation
  • Appointee: Mike Clark, President, Filtration Solutions, Hollingsworth & Vose Company
  • Appointee: Jodi Russell, Vice President R&D, Cleaning Innovation, Packaging & Sustainability, The Clorox Company
  • Appointee: Jeff Stafford, Vice President of Nonwovens, Milliken & Company
  • Appointee: Robert Weilminster, EVP & General Manager, US & Canada – Health, Hygiene and Specialties Division, Berry Global
  • Appointee: Tom Zaiser, CEO, Indorama Ventures
Source:

INDA, Association of the Nonwoven Fabrics Industry

Freudenberg: Fully synthetic wetlaid nonwovens for filtration (c) Freudenberg Performance Materials Holding GmbH
Freudenberg’s fully synthetic wetlaid material for reverse osmosis membranes
01.03.2024

Freudenberg: Fully synthetic wetlaid nonwovens for filtration

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Freudenberg Performance Materials (Freudenberg) is unveiling a new 100 percent synthetic wetlaid nonwoven product line made in Germany. The new materials can be manufactured from various types of polymer-based fibers, including ultra-fine micro-fibers, and are designed for use in filtration applications as well as other industrial applications.

Customers in the filtration business can use Freudenberg’s new fully synthetic wetlaid nonwovens in both liquid and air filtration. Applications include reverse osmosis membrane support, support for nanofibers or PTFE membranes as well as oil filtration media. The new materials are suited to use in the building & construction industry or the composites industry.
For filtration applications, the new fully synthetic wetlaid nonwovens are marketed under the Filtura® brand.

Versatile and flexible manufacturing
Freudenberg’s fully synthetic wetlaid nonwovens can be made of polyester, polyolefin, polyamide and polyvinyl alcohol (PVA), using staple fibers of up to 12mm fiber length and microfibers as fine as 0.04dtex. In terms of weight, the product range spans weights of between 8g/m² and 250g/m². Freudenberg’s flexible wetlaid manufacturing line has the capability to combine various thermal and chemical bonding technologies. The materials have high precision in weight and thickness as well as a defined pore size and high porosity.

Wetlaid capabilities for various applications
In addition to its fully synthetic range, Freudenberg can also incorporate glass fibers, viscose and cellulose. General industry applications for Freudenberg wetlaid nonwovens are surfacing veils for glass-fiber reinforced plastics, compostable desiccant bags, battery separators, acoustics, heatshields, and apparel applications such as embroidery substrates.

Source:

Freudenberg Performance Materials Holding GmbH

23.02.2024

RISE® 2024: Call for Presentations and Award Nominations

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for presentations and award nominations for the RISE® (Research, Innovation & Science for Engineered Fabrics) Conference. RISE will be held October 1-2, 2024, at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, North Carolina. RISE is a two-day conference presenting new research and science that drives innovation and product development. The theme for this year’s event is “The Other Sustainability Story: Extended Use and Reduced Consumption.”

Nonwoven professionals are encouraged to submit their technical abstracts by Friday, April 12, 2024. Topics being considered are raw materials, equipment and processing, product-related technologies, and applications.  Abstracts may be submitted via the RISE website. For questions about abstract submissions, contact Deanna Lovell.

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for presentations and award nominations for the RISE® (Research, Innovation & Science for Engineered Fabrics) Conference. RISE will be held October 1-2, 2024, at the James B. Hunt, Jr. Library, North Carolina State University, Raleigh, North Carolina. RISE is a two-day conference presenting new research and science that drives innovation and product development. The theme for this year’s event is “The Other Sustainability Story: Extended Use and Reduced Consumption.”

Nonwoven professionals are encouraged to submit their technical abstracts by Friday, April 12, 2024. Topics being considered are raw materials, equipment and processing, product-related technologies, and applications.  Abstracts may be submitted via the RISE website. For questions about abstract submissions, contact Deanna Lovell.

RISE® Innovation Award
In addition, INDA is requesting nominations for innovative nonwoven products and technologies for the RISE® Innovation Award. INDA will consider categories such as raw materials, roll goods, converting, packaging, active ingredients, binders, additives and end products for nominations. This Award recognizes innovation in areas within and on the periphery of the nonwovens industry, utilizing advanced science and engineering principles to develop solutions to problems and advance the usage of nonwovens.

Three finalists will be chosen to present their innovations to technology scouts, scientists, researchers, and industry professionals on Tuesday, October 1st. Nominations may be submitted via the INDA website. The Award submission deadline is July 29, 2024. For questions about the Award, contact Vickie Smead.

Last year, the RISE® Innovation Award was presented to TiHive for their SAPMonit technology.

Source:

INDA, the Association of the Nonwoven Fabrics Industry

STFI: Lightweight construction innovations at JEC World in Paris (c) silbaerg GmbH and STFI (see information on image)
23.02.2024

STFI: Lightweight construction innovations at JEC World in Paris

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

At this year's JEC World, STFI will be presenting highlights from carbon fibre recycling as well as a new approach to hemp-based bast fibres, which have promising properties as reinforcement in lightweight construction.

Green Snowboard
At JEC World in Paris from 5 to 7 March 2024, STFI will be showcasing a snowboard from silbaerg GmbH with a patented anisotropic coupling effect made from hemp and recycled carbon fibres with bio-based epoxy resin. In addition to silbaerg and STFI, the partners Circular Saxony - the innovation cluster for the circular economy, FUSE Composite and bto-epoxy GmbH were also involved in the development of the board. The green snowboard was honoured with the JEC Innovation Award 2024 in the “Sport, Leisure and Recreation” category.

VliesComp
The aim of the industrial partners Tenowo GmbH (Hof), Siemens AG (Erlangen), Invent GmbH (Braunschweig) and STFI united in the VliesComp project is to bring recycled materials back onto the market in various lightweight construction solutions. The application fields "Innovative e-machine concepts for the energy transition" and "Innovative e-machine concepts for e-mobility" were considered as examples. On display at JEC World in Paris will be a lightweight end shield for electric motors made from hybrid nonwovens - a mixture of thermoplastic fibre components and recycled reinforcing fibres - as well as nonwovens with 100% recycled reinforcing fibres. The end shield was ultimately manufactured with a 100% recycled fibre content. The tests showed that, compared to the variant made from primary carbon fibres using the RTM process, a 14% reduction in CO2 equivalent is possible with the same performance. The calculation for the use of the prepreg process using a bio-resin system shows a potential for reducing the CO2 equivalent by almost 70 %.

Bast fibre reinforcement
To increase stability in the plant stem, bast fibres form in the bark area, which support the stem but, in contrast to the rigid wood, are very flexible and allow slender, tall plants to move in the wind without breaking.A new process extracts the bast bark from hemp by peeling.The resulting characteristic values, such as tensile modulus of elasticity, breaking strength and elongation, are very promising in comparison with the continuous rovings made of flax available on the market.The material could be used as reinforcement in lightweight construction.At JEC World, STFI will be exhibiting reinforcing bars that have been processed into a knitted fabric using a pultrusion process based on bio-based reinforcing fibres made from hemp bast for mineral matrices.

Source:

Sächsische Textilforschungsinstitut e.V. (STFI)

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

INDA and ISSA host Clean Advocacy Summit (c) INDA
19.02.2024

INDA and ISSA host Clean Advocacy Summit

INDA, the Association of the Nonwoven Fabrics Industry, will join the ISSA – The Worldwide Cleaning Industry Association to host the 2024 Clean Advocacy Summit, April 10-11, in Washington, D.C. This advocacy and fly-in summit will offer participants the “inside scoop” on the key public policy issues facing their industry, including labor and supply chain challenges, cleaning product regulations, promoting healthy workplaces, ending period poverty, and more.

The summit will include networking opportunities and scheduled meetings with members of Congress and their staff to discuss key policies and legislation pertaining to the nonwovens industry. Attendees will have the chance to advocate for their businesses to support innovation, growth, and sustainability within the industry, while also highlighting their contributions to economic development and job creation.

INDA, the Association of the Nonwoven Fabrics Industry, will join the ISSA – The Worldwide Cleaning Industry Association to host the 2024 Clean Advocacy Summit, April 10-11, in Washington, D.C. This advocacy and fly-in summit will offer participants the “inside scoop” on the key public policy issues facing their industry, including labor and supply chain challenges, cleaning product regulations, promoting healthy workplaces, ending period poverty, and more.

The summit will include networking opportunities and scheduled meetings with members of Congress and their staff to discuss key policies and legislation pertaining to the nonwovens industry. Attendees will have the chance to advocate for their businesses to support innovation, growth, and sustainability within the industry, while also highlighting their contributions to economic development and job creation.

More information:
INDA ISSA nonwovens hygiene market
Source:

INDA, the Association of the Nonwoven Fabrics Industry

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem

INDA: Sustainability as Top Priority for 2024 (c) INDA
14.02.2024

INDA: Sustainability as Top Priority for 2024

INDA announces Sustainability as a primary focus for 2024. This strategic initiative, backed by resounding support from INDA’s leadership, is a direct response to feedback from association members affirming that sustainability remains one of the nonwovens industry’s highest priorities.

INDA’s sustainability endeavor will center around three core pillars crucial to the industry’s future: Responsible Sourcing, End-of-Life Solutions, and Innovations in Sustainability. This multifaceted initiative will introduce a spectrum of new and enhanced offerings, including:

  • Webinars addressing sustainability issues impacting members and the industry.
  • Specialized technical and government affairs committees enabling members to collaborate on sustainability opportunities and challenges.
  • The inaugural release of a comprehensive sustainability report from INDA’s Market Intelligence department.
  • A dedicated sustainability special edition of the International Fiber Journal, produced by INDA Media.
  • Sustainability programming at INDA events, including a dedicated focus at the IDEA® 2025 conference.

INDA announces Sustainability as a primary focus for 2024. This strategic initiative, backed by resounding support from INDA’s leadership, is a direct response to feedback from association members affirming that sustainability remains one of the nonwovens industry’s highest priorities.

INDA’s sustainability endeavor will center around three core pillars crucial to the industry’s future: Responsible Sourcing, End-of-Life Solutions, and Innovations in Sustainability. This multifaceted initiative will introduce a spectrum of new and enhanced offerings, including:

  • Webinars addressing sustainability issues impacting members and the industry.
  • Specialized technical and government affairs committees enabling members to collaborate on sustainability opportunities and challenges.
  • The inaugural release of a comprehensive sustainability report from INDA’s Market Intelligence department.
  • A dedicated sustainability special edition of the International Fiber Journal, produced by INDA Media.
  • Sustainability programming at INDA events, including a dedicated focus at the IDEA® 2025 conference.
Source:

INDA - Association of the Nonwoven Fabrics Industry

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

World of Wipes Innovation Award® INDA
09.01.2024

World of Wipes Innovation Award®: Nominations Are Open

INDA, the Association of the Nonwoven Fabrics Industry, announced that nominations are open for the 2024 World of Wipes Innovation Award®. This Award recognizes a product or technology in the wipes sector that creatively uses nonwovens. The Award will be presented at the World of Wipes® (WOW) International Conference, June 17-20 at the Hyatt Regency Minneapolis, Minneapolis, MN.

Nominations will be accepted online through Monday, April 15th via www.inda.org/awards/wow-innovation-award.html. Nominees will be selected from a range of products and technologies that have been commercially available two years prior to WOW 2024. Products and technologies may include end product components, fabrication techniques, or end-products that use a nonwoven technology. Award categories include dry or wet wipes, institutional or industrial wipes, raw materials, and equipment. Three finalists will present their innovations to industry leaders attending WOW on Tuesday, June 18th. The winner will be announced Thursday, June 20th.

INDA, the Association of the Nonwoven Fabrics Industry, announced that nominations are open for the 2024 World of Wipes Innovation Award®. This Award recognizes a product or technology in the wipes sector that creatively uses nonwovens. The Award will be presented at the World of Wipes® (WOW) International Conference, June 17-20 at the Hyatt Regency Minneapolis, Minneapolis, MN.

Nominations will be accepted online through Monday, April 15th via www.inda.org/awards/wow-innovation-award.html. Nominees will be selected from a range of products and technologies that have been commercially available two years prior to WOW 2024. Products and technologies may include end product components, fabrication techniques, or end-products that use a nonwoven technology. Award categories include dry or wet wipes, institutional or industrial wipes, raw materials, and equipment. Three finalists will present their innovations to industry leaders attending WOW on Tuesday, June 18th. The winner will be announced Thursday, June 20th.

VEOCEL™ showcased LENZING™ Lyocell Dry fiber (c) Lenzing Group
18.12.2023

VEOCEL™ showcased LENZING™ Lyocell Dry fiber

With the growing demand among brands and consumers for plastic-free materials and ingredient transparency, VEOCEL™, the flagship specialty nonwovens brand of Lenzing Group, showcased LENZING™ Lyocell Dry fiber at Hygienix 2023. LENZING™ Lyocell Dry fiber which is not classified as “plastic” according to EU SUPD, meets the growing interest for plastic-free nonwoven products across the industry and among consumers. Additionally, along with being an environment-friendly solution, the fiber delivers high-performance dryness and comfort which makes it the optimum fiber choice for absorbent hygiene applications.

Comprised of mostly fossil-based materials, absorbent hygiene products are an essential part of many consumers’ daily lives. With heightened concerns towards environmental impact, the product segment has been undergoing a change caused by shifting consumer preferences, increased consciousness and concerns towards plastic waste, and technology advancement. LENZING™ Lyocell Dry fiber has embraced these changes without compromising on quality or performance.

With the growing demand among brands and consumers for plastic-free materials and ingredient transparency, VEOCEL™, the flagship specialty nonwovens brand of Lenzing Group, showcased LENZING™ Lyocell Dry fiber at Hygienix 2023. LENZING™ Lyocell Dry fiber which is not classified as “plastic” according to EU SUPD, meets the growing interest for plastic-free nonwoven products across the industry and among consumers. Additionally, along with being an environment-friendly solution, the fiber delivers high-performance dryness and comfort which makes it the optimum fiber choice for absorbent hygiene applications.

Comprised of mostly fossil-based materials, absorbent hygiene products are an essential part of many consumers’ daily lives. With heightened concerns towards environmental impact, the product segment has been undergoing a change caused by shifting consumer preferences, increased consciousness and concerns towards plastic waste, and technology advancement. LENZING™ Lyocell Dry fiber has embraced these changes without compromising on quality or performance.

LENZING™ Lyocell Dry is a cellulosic environment-friendly wood-based alternative to fossil-based fibers. Besides offering great performance features such as liquid management, dryness, gentle-on-the-skin comfort, softness, and quality, LENZING™ Lyocell Dry helps to meet the needs of customers who are aiming to produce plastic-free applications or end products that do not harm the planet without compromising on performance or comfort.

Featuring Lenzing’s unique Dry technology, LENZING™ Lyocell Dry’s hydrophobic characteristics and liquid-controlling properties make it the ideal fiber for absorbent hygiene products. Its high-performing hydrophobicity makes it the optimal choice for a wide range of applications, including baby diapers, feminine care and personal hygiene products as well as adult incontinence products.

The fiber has consistently been tested by Lenzing as the softest* fiber among cellulosic fibers in both dry and wet stages. LENZING™ Lyocell Dry will enable brands and manufacturers to deliver quality hygiene products that provide a high level of comfort, softness, and dryness.

*Lenzing AG softness panel test

Source:

Lenzing Group

15.12.2023

VIATT 2024 as the response to Vietnam's developing textile sector

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

In line with the industry’s anticipation, the country was identified as the ideal location for ASEAN’s new comprehensive textile platform for several key reasons. Vietnam’s pro-business policies, strategic geographical location, abundant labour force, and favourable trade agreements have contributed to its rise as a global textile manufacturing hub. Agreements such as the Regional Comprehensive Economic Partnership (RCEP); the Indo-Pacific Economic Framework for Prosperity (IPEF); and 15 free trade agreements (FTAs) covering over 60 countries and regions, will further enable participants from across the value chain to conduct cross-border business after connecting at next year’s show. In addition, several key travel initiatives that serve international players have been implemented, including the country’s APEC Business Travel Card programme[1], availability of e-visas to all nationalities, and visa-free travel for select countries[2].  

Exhibitors from multiple textile sub-sectors converge in February
In Vietnam’s home textile segment, rising urbanisation, emerging young consumers, and higher disposable incomes are interrelated factors driving growth[3]. Globally, three of the top trends include recycling; utilising green fibres; and the increasing use of technical fabrics for enhanced comfort and health. At the fair, confirmed home textiles exhibitors include Hanyang Eco Tex, Hohmann GmbH, Phuong Nam Feather, and SIGMA, set to showcase their most up-to-date products, covering bedding, upholstery fabrics, curtain, and sun protection.
 
Utilised for automobiles, civil aviation, construction, health care, and more, Vietnam's exports of technical textiles reached USD 676.6 million for the first nine months of 2022, up 17.1% compared to the same period in 2021[4]. This in turn bodes well for the country’s import prospects of quality machinery and equipment. Hoping to cater to domestic demand at VIATT 2024, international suppliers in this category include Julai, SIGMA, and Skwentex.

Meanwhile, apparel-related products make up the lion’s share of the country’s textile exports – according to Vietnam Textile & Apparel Association (VITAS), in 2022 these numbered USD 29.1 billion. From Ho Chi Minh to Hanoi, numerous international fashion brands have a manufacturing presence, including Adidas, H&M, Lacoste, Lululemon, Nike, The North Face, Uniqlo, and many more. At next year’s fair, exhibitors such as Avery Dennison, Lenzing, Stylem Takisada-Osaka, and Texwinca, will aim to draw the attention of apparel brands and a wide range of other domestic and international buyers.

The Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) is organised by Messe Frankfurt (HK) Ltd and the Vietnam Trade Promotion Agency (VIETRADE), covering the entire textile industry value chain.

[1] ‘Everything You Need to Know About Traveling to Vietnam with an APEC Business Travel Card’, April 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/apec-business-travel-card-vietnam.html/ (Retrieved: November 2023)
[2] ‘Vietnam Introduces E-Visa for All Nationalities from August 15, 2023’, August 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/vietnam-introduces-e-visa-for-all-nationalities-from-august-15-2023.html/ (Retrieved: November 2023)
[3] ‘Vietnam Home Textile Market Size & Share Analysis’, 2023, Mordor Intelligence, https://shorturl.at/wQVWZ (Retrieved: November 2023)
[4] ‘Vietnam's technical fabric exports continue to be positive’, October 2022, Web Portal of Supporting Industry of Vietnam, https://shorturl.at/lmnvX (Retrieved: November 2023)

Source:

Messe Frankfurt (HK) Ltd

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University