From the Sector

Reset
14 results
Foto: Globetrotter, M. Ersch-Arnolds
07.09.2023

Globetrotter stellt Studie zum Re-Use-Konzept vor

Rund 97 Prozent weniger CO2e-Emissionen, 94 Prozent Re-Use Quote – dies sind nur einige der Ergebnisse der am 5. September in Bonn vorgestellten EPEA-Studie zum Re-Use Konzept des ersten Re:Think-Stores des Hamburger Outdoor-Ausrüsters Globetrotter.

Erst vor wenigen Monaten hat Globetrotter seinen ersten Re:Think Store in Bonn eröffnet – einen Laden mit ganz besonderem Konzept: Denn der Retailer hat nahezu die gesamte Einrichtung des Vormieters Conrad Electronic übernommen und im neuen Store kreativ weitergenutzt. Und auch sonst wurden fast ausschließlich gebrauchte Materialien verwendet: So wurden Staubsauger-Halterungen zu Rucksack-Trägern umfunktioniert und alte OSB-Platten und ausrangierte Bleche verwandelten sich in eine Teststrecke für Wanderschuhe. Ein Highlight des Stores stellt eine von einem Künstler geschaf¬fene Bärenskulptur aus Metallschrott dar. Ergänzt wird das Re:Think-Konzept durch nachhaltige Angebote wie eine eigene Reparaturwerkstatt sowie die bis dato größte 2nd Hand Verkaufsfläche in einem Globetrotter-Store.

Rund 97 Prozent weniger CO2e-Emissionen, 94 Prozent Re-Use Quote – dies sind nur einige der Ergebnisse der am 5. September in Bonn vorgestellten EPEA-Studie zum Re-Use Konzept des ersten Re:Think-Stores des Hamburger Outdoor-Ausrüsters Globetrotter.

Erst vor wenigen Monaten hat Globetrotter seinen ersten Re:Think Store in Bonn eröffnet – einen Laden mit ganz besonderem Konzept: Denn der Retailer hat nahezu die gesamte Einrichtung des Vormieters Conrad Electronic übernommen und im neuen Store kreativ weitergenutzt. Und auch sonst wurden fast ausschließlich gebrauchte Materialien verwendet: So wurden Staubsauger-Halterungen zu Rucksack-Trägern umfunktioniert und alte OSB-Platten und ausrangierte Bleche verwandelten sich in eine Teststrecke für Wanderschuhe. Ein Highlight des Stores stellt eine von einem Künstler geschaf¬fene Bärenskulptur aus Metallschrott dar. Ergänzt wird das Re:Think-Konzept durch nachhaltige Angebote wie eine eigene Reparaturwerkstatt sowie die bis dato größte 2nd Hand Verkaufsfläche in einem Globetrotter-Store.

„Schon bei der ersten Besichtigung des Objektes trieb mich der Gedanke, der Retail und der Ladenbau muss sich ändern. Wir müssen uns ändern. Alles raus und neu, das kann künftig nicht mehr der richtige Ansatz sein,“ erinnert sich Globetrotter Geschäftsführer Andreas Bartmann. CEO Andreas Vogler ergänzt: „Einer der nachhaltigsten Ansätze ist es, Dinge zu nutzen, die bereits da sind. Es erfordert Mut und Pioniergeist, diesen Weg zu gehen. Doch die Ergebnisse der wissenschaftlichen Untersuchung unseres Partners EPEA zeigen, dass es sich lohnt.“

Diese wurden am 5. September im Bonner Store vorgestellt. Keynote-Speaker waren Prof. Michael Braungart, Chemiker und Verfahrenstechniker sowie Miterfinder des Cradle to Cradle-Prinzips und international tätiger Retail-Experte Wolf-Jochen Schulte-Hillen.

Ein konventionelles Ladenbau-Projekt vergleichbarer Größe hätte, so Berechnungen von EPEA, rund 105 Tsd. kg CO2e erzeugt. Durch das Re-Use Konzept des Re:Think Stores wurden nur 3,12 Tsd. kg CO2e emittiert. Die Weiterverwendung bereits vorhandener Materialien trug zu einer CO2e-Vermeidung von 102,23 Tsd. kg, also rund 97 Prozent, bei. Dies entspricht in etwa der Menge an CO2, die entstehen würde, wenn man die Erde rund ein Dutzend Mal mit dem Auto umrunden würde.

Insgesamt kommt der Store auf eine Re-Use Quote von 94 Prozent – d. h. die meisten der verwendeten Materialien und Möbelstücke waren bereits zuvor in Gebrauch, etwa beim Vormieter Conrad Electronic oder in einem Globetrotter Store. Rund 88 % der in der Filiale verbauten Materialien können auch in Zukunft wiederverwendet werden, da sie ohne Beschädigung oder erheblichen Aufwand demontierbar bzw. reparierbar sind: Kreislaufwirtschaft im Ladenbau ist möglich.

Neuer Circularity Passport Interiors
Im Rahmen der Zusammenarbeit mit EPEA entstand die Idee, einen „Circularity Passport Interiors“, kurz CPI, ähnlich dem bereits bestehenden „Circularity Passport Buildings“, zu entwickeln. Dieser dient dazu, die Umsetzung des Cradle-to-Cradle-Designprinzips in Bezug auf die Innenraumgestaltung zu bewerten. Ziel des Designprinzips ist es, Rohstoffe für Produkte, Prozesse und Gebäude so einzusetzen, dass diese entweder in einem technischen Kreislauf in gleicher Qualität erhalten bleiben oder in einen biologischen Kreislauf zurückgeführt und komplett abgebaut werden können.

Source:

Globetrotter

28.06.2022

EREMA Gruppe and Borealis: K 2022 preview

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

EREMA Group K 2022 preview
In Düsseldorf, the subsidiaries of the EREMA Group - which are EREMA, PURE LOOP, UMAC, 3S, KEYCYCLE and PLASMAC - will present their technological innovations, services and support together at a Group trade fair stand for the first time. Seven new recycling systems and components will be presented that enable large-scale plants with a production capacity of up to 6 t/h while setting a milestone in recyclate quality and process stability. This is made possible by technological innovations in the plasticizing unit that have been specially developed for high throughputs with low specific energy consumption, the new EREMA 406 laser filter with a 50 percent larger screening area, and new digital assistance systems that will be launched at K 2022 and made available on the BluPort® customer platform. These include, for example, the PredictOn app, which helps to anticipate and eliminate imminent malfunctions based on continuous measurement and evaluation of machine data.

New series of machines for new target groups
For customers looking for rapidly available recycling systems for simple applications, EREMA Group subsidiary UMAC has an innovation in store for K 2022. The company, which has so far specialised in refurbishing and trading in previously owned equipment, is expanding its business area and in Düsseldorf will launch READYMAC, a standardised, prefabricated recycling solution that can be produced from stock, based on proven EREMA TVE technology.

Finally, in the inhouse recycling segment, PURE LOOP and PLASMAC will round off the wide range of machines offered by the group of companies with their product portfolio.

Live recycling and lighthouse projects at the Circonomic Center
In the outdoor area of the K show, EREMA will bring plastics recycling to life with live demonstrations in conjunction with cooperation partners. Different waste streams are processed for this purpose. The wide variety of high-quality applications for recyclate will be showcased in the "products made of recyclate" exhibition, ranging from technical components to consumer goods and food packaging.

Borealis – accelerating the transition towards a more circular future
Borealis is committed to using their expertise and global reach to advance the circular economy of plastics. At the joint Pre-K 2022 kick-off on June 13, Borealis provided a preview of their integrated way of circular thinking and featured topics and activities at the K Fair 2022 in October. The preview covered new technologies and innovations including new packaging and infrastructure applications of the Bornewables™ portfolio of circular polyolefin products, manufactured with renewable feedstocks. New applications for Design for Recyclability, Re-Use, chemical recycling and advanced mechanical recycling were also on display.

Source:

EREMA Group GmbH

Photo: JEC Group
26.04.2022

The Winners of the 2022 JEC Composites Innovation Awards

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composites industry. The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

The ceremony took place on April 26th in Paris. Highlighted by the presence of jury members, finalists and winners but most importantly, as it was livestreamed, the gathering of many people all around the world to watch the awaited results.

The enthusiasm for the Innovation Awards, exactly 7 days prior to JEC World, is a good sign of the industry’s eagerness to get back together and ensure the future of composites innovation.

  • Aerospace Application
    Diab (Sweden): 100% thermoplastic panel for cabin interiors
  • Aerospace – Process
    MTorres Disenos Industriales S.A.U. (Spain): Innovative Infusion Airframe Manufacturing System
  • Automotive & road transportation – Structural
    Jaguar Land Rover Limited (UK): TUCANA
  • Automotive & road transportation – Surfaces
    AUDI AG (Germany): Seamless Integration of Flexible Solar Film in FRP
  • Building & Civil Engineering
    Windesheim (Netherlands): Structural Re-Use of Thermoset Composites
  • Design, Furniture and Home
    Kairos (France): Kairlin®, a new recyclable & compostable material
  • Equipment and Machinery
    Fibraworks GmbH (Germany): Winding the future – fibraforce technology
  • Maritime Transportation & Shipbuilding
    Voith Composites SE & Co. KG (Germany): Marine Rotor Blades made of Voith ‘Carbon4Stack’
  • Renewable Energy
    Siemens Gamesa Renewable Energy (Denmark): RecyclableBlade
  • Sports, Leisure & Recreation
    Bcomp Ltd. (Switzerland): Eco-joint from thermoset race and thermoplast road
Source:

JEC Group

Photo: Pixabay
30.03.2022

EURATEX comments “Strategy for Sustainable Textile” calling for a realistic implementation

Today, March 30, the European Commission released its long-awaited Strategy for Sustainable Textile, with the ambition to move the sector towards the path of sustainability. EURATEX welcomes the EU ambitions to act on sustainable textiles and investments, in order to change how textiles are made, chosen and recovered, but calls for a smart and realistic implementation. Many European companies have already chosen this path, therefore the strategy should support them in this process, especially considering today’s energy crisis.

The strategy recognises the strategic importance of textiles, which are not only used as apparel or furniture, but applied in cars, medical equipment, agriculture, etc. It acknowledges the European Industry pro-active initiatives to tackle microplastics, to solve challenges of market surveillance and the skills needs. More cooperation is needed for re-use and recycling of textiles and to set up an EU market for secondary raw materials. On this last point, EURATEX ReHubs initiative is developing proposals to size EPR potential, to transform waste into value, and create a new capacity and jobs.

Today, March 30, the European Commission released its long-awaited Strategy for Sustainable Textile, with the ambition to move the sector towards the path of sustainability. EURATEX welcomes the EU ambitions to act on sustainable textiles and investments, in order to change how textiles are made, chosen and recovered, but calls for a smart and realistic implementation. Many European companies have already chosen this path, therefore the strategy should support them in this process, especially considering today’s energy crisis.

The strategy recognises the strategic importance of textiles, which are not only used as apparel or furniture, but applied in cars, medical equipment, agriculture, etc. It acknowledges the European Industry pro-active initiatives to tackle microplastics, to solve challenges of market surveillance and the skills needs. More cooperation is needed for re-use and recycling of textiles and to set up an EU market for secondary raw materials. On this last point, EURATEX ReHubs initiative is developing proposals to size EPR potential, to transform waste into value, and create a new capacity and jobs.

The proposed “transition pathways”, which will translate the strategy into action, will be critical in this respect: how will these sustainability targets be reached, what will the cost for SMEs be, how can companies be supported in that green transition, what about the impact on global competitiveness? These are essential questions to be addressed in the coming months.
The Textile strategy is part of much broader package, including as many as 16 new legislative actions and other policies which will directly impact on textile value chain. In particular the Sustainable Product Initiative Regulation released on March, 30 includes game-changing provisions on Digital Product Passport, Eco-Design, SMEs and Green Public Procurement.  The Regulation has an overwhelming ambition and, to be realistic, it would require a new way of joint working between institutions and business, and which builds on lessons learned on data flow across value chains, interoperability, conformity assessment and effective measures to support SMEs.

If wrongly implemented, such an unprecedented wave may cause a complete collapse of the European textile value chain under the burden of restrictions, requirements, costs and unlevel playing field. On the contrary, the changes ahead can boom the entire textile ecosystem and create a model of successful green and digital transition in manufacturing, which starts in Europe and expands globally.

Already in 2019, EURATEX asked policy makers to work together and remove barriers to circular economy, solve the market surveillance paradox in which laws are made but not checked, and to help create scale economies to make sustainable textiles affordable, hence the norm.

For example, there are 28 billion products circulating per year in EU, which is an impressive task for market surveillance authorities including customs. EURATEX has been stressing non-sufficient market surveillance and it is actively working on solutions for a fair and effective market surveillance of textile products through Reach4Textiles. EURATEX very much welcomes that the European Commission recognizes our work and the need for market surveillance by establishing more harmonised efforts in the EU.

EURATEX also welcomes the establishment of the Digital Product Passport. It has a high potential to improve every step in the textile value chain, from design and manufacturing to recycling and purchasing. At the same time, EURATEX calls the co-legislators to take into account the role of SME’s in this transition and to put forward pragmatic initiatives, supporting SME’s across the EU in a systematic approach.

Alberto Paccanelli, EURATEX President, concludes: EURATEX calls for true cooperation with all policy makers and other stakeholders across the value chains to advise, pressure-test and use this opportunity for a successful transition. Our ambition must be to reconcile sustainability, resilience and competitiveness; we know it can be done”.

Source:

EURATEX

Borealis: Innovative Recycling Solutions with Renasci N.V. (c) Renasci
01.07.2021

Borealis: Innovative Recycling Solutions with Renasci N.V.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

SCP concept leaves no waste behind
The SCP concept developed by Renasci is a proprietary method of maximising material recovery in order to achieve zero waste. It is unique because it enables the processing of multiple waste streams using different recycling technologies – all under one roof. At the newly-built Renasci SCP facility in Oostende, Belgium, mixed waste – plastics, metals, and biomass – is automatically selected and sorted multiple times.

After sorting, plastic waste is first mechanically recycled, and then in a second step any remaining material is chemically recycled into circular pyrolysis oil and lighter product fractions, which are used to fuel the process.

Other types of sorted waste such as metals and organic refuse are further processed using other technologies. In the end, only 5% of the original waste remains, and even this residual material is not landfilled, but used as filler in construction materials. Because of this extremely efficient way of processing, the overall CO2 footprint of these waste streams is greatly reduced – yet another advantage of the circular SCP concept.

The cascade model is Borealis’ integrated circular approach
Borealis circular cascade model sits at the heart of its ambition to achieve a truly circular economy, by combining carefully chosen technologies in a complementary and cascading way to achieve full circularity. In this way, Borealis aims to give plastic products multiple lifetimes in the most sustainable way possible. Starting with optimising product design, first for eco-efficiency, then for re-use and finally for recycling. Once a product has reached its end of life, we must close the plastics loop: first with mechanical recycling to make products with the highest possible value, quality and lowest carbon footprint; then utilising chemical recycling, as a complement to mechanical recycling, to further valorise residual streams which would otherwise go to incineration, or even worse to landfills. The valorised material from mechanical and chemical recycling is then processed with Borealis Borcycle™ recycling technology consisting of Borcycle M for mechanical recycling and Borcycle C for chemical recycling, providing high quality solutions for more sophisticated applications, such as food packaging and healthcare.

The SCP concept is aligned to Borealis’ ambition to close the loop on plastic waste as encapsulated in its circular cascade model.

Source:

Borealis

17.06.2021

C.L.A.S.S. ICON AWARD 2021 goes to DUARTE

The second C.L.A.S.S. ICON AWARD expands its vision embracing fashion streetwear with an attitude and bets on DUARTE, an emerging label committed to sustainability that shows a new way of being cool, yet responsible. “The C.L.A.S.S. ICON AWARD is much more than prize, it’s an open workshop with influential professionals that will support DUARTE in reaching the next level and being able to share my vision for responsible fashion”, comments Ana Duarte.

The designer (b.1991) launched her label DUARTE in 2016 just after graduation. Since then, the fresh, colourful and power-propelling brand has conquered both catwalks and cities’ streets with a responsible message. “Sustainability means durability, fair work practices, recycled materials and zero-waste,” is Ana’s mantra. Indeed, the collection is the result of a virtuous balance between production and locally-sourced, recyclable high-quality materials harnessed from factories’ deadstock. DUARTE also means circularity, the garments can be re-used and upcycled to create new collections.

The second C.L.A.S.S. ICON AWARD expands its vision embracing fashion streetwear with an attitude and bets on DUARTE, an emerging label committed to sustainability that shows a new way of being cool, yet responsible. “The C.L.A.S.S. ICON AWARD is much more than prize, it’s an open workshop with influential professionals that will support DUARTE in reaching the next level and being able to share my vision for responsible fashion”, comments Ana Duarte.

The designer (b.1991) launched her label DUARTE in 2016 just after graduation. Since then, the fresh, colourful and power-propelling brand has conquered both catwalks and cities’ streets with a responsible message. “Sustainability means durability, fair work practices, recycled materials and zero-waste,” is Ana’s mantra. Indeed, the collection is the result of a virtuous balance between production and locally-sourced, recyclable high-quality materials harnessed from factories’ deadstock. DUARTE also means circularity, the garments can be re-used and upcycled to create new collections.

The C.L.A.S.S. ICON AWARD is a project led by C.L.A.S.S. with the special support of IDEE BRAND PLATFORM which assists fashion brands in commercial activity, WHITE Milano, international fair supporting the new generations and independent brands with special projects since its inception and responsible shopping platform Renoon. Together they will all support DUARTE for a full year at 360°, from consultancy to communication.

Source:

C.L.A.S.S. / GB Network Marketing & Communication

ANDRITZ Nonwoven bietet innovative Lösungen zur Optimierung des Ressourcenverbrauchs (c)ANDRITZ
Spunlace pilot line
28.04.2021

ANDRITZ Nonwoven offers innovative solutions for optimization of raw material consumption

International technology Group ANDRITZ has always been at the forefront in providing innovative and sustainable solutions for the global nonwovens industry. Optimization of resource management, especially reducing the consumption of raw materials and other substances used and also keeping resources in use for as long as possible, are decisive factors in enabling nonwovens producers to offer competitive and sustainable products.

As a world market leader for nonwovens production equipment and services, ANDRITZ offers a full range of products to meet these challenging demands.

International technology Group ANDRITZ has always been at the forefront in providing innovative and sustainable solutions for the global nonwovens industry. Optimization of resource management, especially reducing the consumption of raw materials and other substances used and also keeping resources in use for as long as possible, are decisive factors in enabling nonwovens producers to offer competitive and sustainable products.

As a world market leader for nonwovens production equipment and services, ANDRITZ offers a full range of products to meet these challenging demands.

Maximizing the evenness of the product across the entire production line is one of the key success factors. The weight profiling product range of ANDRITZ – consisting of ProDynTM and ProWidTM – has been extended by ProWinTM. This new development is the combination of the two existing systems ProDynTM and ProWidTM. It allows nonwovens producers to achieve optimum weight profiling at the crosslapper delivery and increase their process speed by up to 15% at the same time. ProWin combines the long-term process experience and in-depth knowledge ANDRITZ has on needlepunch lines with innovative software to synchronize action across the line. Guillaume Julien, Head of Needlepunch Sales at ANDRITZ Nonwoven, explains,

“We have developed a self-regulating, advanced technology to reduce fiber deposits at the edges of the web and eliminate the “smile” effect across its width. ProWin enables producers to optimize the CV ratio autonomously and precisely while also generating significant fiber savings of up to 10% and increasing production speed. Thus, it also provides a faster ROI.“

When it comes to the spunlace process, a better product quality can be obtained by ensuring that the different equipment units in the production line are consistent with one another. The TT card, the Jetlace hydroentanglement unit, and the neXdry through-air dryer are the perfect combination to obtain premium visual quality and characteristics in the web. For an equivalent amount of fibers, this set-up is designed to produce an even web with significant bulkiness and an excellent MD:CD ratio without impacting the production capacity.

Maximizing performance by minimizing the raw material input and the amount of waste produced is a real driver of cost optimization. This is why ANDRITZ has created and integrated a solution that allows nonwovens producers to retrieve the wasted edges of their spunlace fabric and re-use it as recycled fibers. As a result, roll-good producers can even obtain the same web characteristics as when using virgin fibers, and most importantly, the exact same quality.

ANDRITZ also offers – under the brand Metris – ANDRITZ digital solutions – a variety of several service apps for optimum customer benefit. The Metris Cost Management app is used to track raw material consumption. It is an advanced system aimed at monitoring fiber consumption and allowing in-depth diagnoses to investigate raw material losses and savings grouped by different process areas. Thanks to this Metris application, ANDRITZ customers are able to optimize their system’s consumption of raw materials.

All these innovations are available in ANDRITZ’s technical centers, where ANDRITZ process experts will be glad to welcome customers in order to discuss and define their product expectations.

01.04.2021

Devan/Jeanologia: Reduced water usage for post garment treatments

Devan, one of the leading companies in sustainable and functional textile finishes, has been working together with Jeanologia, a global leader in sustainable and efficient finishing technologies for textiles, to reduce further water consumption during the application of Devan’s awarded BI-OME® antimicrobial and R-Vital® skincare range.

With increased attention to climate change and limiting excess water consumption in textile production (whether denim or other textiles), Devan and Jeanologia worked together to evaluate the application of Devan finishes onto garments via the patented e-Flow technology.

Devan, one of the leading companies in sustainable and functional textile finishes, has been working together with Jeanologia, a global leader in sustainable and efficient finishing technologies for textiles, to reduce further water consumption during the application of Devan’s awarded BI-OME® antimicrobial and R-Vital® skincare range.

With increased attention to climate change and limiting excess water consumption in textile production (whether denim or other textiles), Devan and Jeanologia worked together to evaluate the application of Devan finishes onto garments via the patented e-Flow technology.

e-Flow technology can accomplish a considerable number of finishing effects with the highest quality, a minimal amount of water and zero discharge. The technology uses micronization and nebulization to substitute traditional abrasion process and deliver performance chemistry using nano-bubbles instead of water. It reduces the cost of application, saves the amount of water used and ensures that the correct amount of chemistry stays in the garment and not in the water. e-Flow is the perfect fit for every industrial washing machine. This allows mills and brands to apply Devan’s technologies in a more sustainable way than using traditional application equipment, even for smaller production runs and direct onto garments.

“With the global textile production using 4% of the global freshwater withdrawal, here at Devan we are continuously working on more sustainable solutions”, says Dr. Vanessa Daelman, CTO at Devan. “Next to this, we of course highly value sustainable application methods from Jeanologia, like e-Flow, in order to reduce the excess water usage during textile application. We are delighted that we could work together with Jeanologia and establish that Devan technologies can be easily applied via these technologies onto garments or fabrics like denim and with full retention of functionality. This application method also allows post garment treatment of our finishes, for example an antimicrobial treatment onto already finished garments, which will be increasingly important in a more circular textile world where re-use plays an important role”, Dr. Daelman concludes.

Source:

Marketing Solutions NV

 

A collection reborn: Light on the Land 2.0 is out! (c) ISKO
Light on the Land 2.0
01.12.2020

A collection reborn: Light on the Land 2.0 is out!

  • Miles Johnson and ISKO’s Creative Room present the new responsible collection.

The second edition of this partnership tells the story of a unique combination of creativity and expertise brought to the table by ISKO’s style and design center, Creative Room Italy, and the innovative designer Miles Johnson, resulting in a collection featuring responsible R-TWO™ fabrics and a selection of sustainable accessories and details.

An act of care for the planet and its people, Light on the Land 2.0 is the new capsule designed by Miles Johnson and ISKO. Former Design Director at Levi Strauss & Co. and Senior Creative Director of Product Design and Development at Patagonia, Inc., Miles joined forces with Creative Room and Iskoteca, ISKO’s Italian style and washing research hubs, to develop a collection that brings responsibility in the fashion industry to the next level.

  • Miles Johnson and ISKO’s Creative Room present the new responsible collection.

The second edition of this partnership tells the story of a unique combination of creativity and expertise brought to the table by ISKO’s style and design center, Creative Room Italy, and the innovative designer Miles Johnson, resulting in a collection featuring responsible R-TWO™ fabrics and a selection of sustainable accessories and details.

An act of care for the planet and its people, Light on the Land 2.0 is the new capsule designed by Miles Johnson and ISKO. Former Design Director at Levi Strauss & Co. and Senior Creative Director of Product Design and Development at Patagonia, Inc., Miles joined forces with Creative Room and Iskoteca, ISKO’s Italian style and washing research hubs, to develop a collection that brings responsibility in the fashion industry to the next level.

The project includes 32 unique pieces, each of them realized with seasonless designs and sustainably-minded details. All the fabrics used in the collection were carefully selected from ISKO’s R-TWO™ platform. Using a mixture of reused cotton and recycled fibers, the technique embeds material circularity into the production processes, designing waste out of the system and minimizing impact at scale. Certified to Textile Exchange environmental credentials according to the percentage of materials contained, R-TWO™ ensures better use of raw materials and resource efficiency. ISKO’s Environmental Product Declarations (EPD®s), available for all its +25,000 products, offer a unique opportunity to measure the impact of R-TWO™’s savings in the Lifecycle Assessments (LCAs) framework, where resource savings can be seen in carbon impact, water-use reductions and many other impact KPIs.

Light on the Land 2.0 incorporates responsible design principles such as Cadica’s new and innovative trims, made of vegan apple “leather”, and has been developed using ecoconscious finishing techniques. The collection also features many additional sustainable facets such as efficient low-waste pattern cutting and design, efficient sewing methods, removeable rivets for end-of-life and biodegradable thread which can be removed at high heats.

“When we first started working on this project, we knew it was going to be amazing,” explained Massimo Munari, Manager and Art director Creative Room, ISKO. “To design a collection like this, you need to begin with the right mindset and of course, the right materials. R-TWO was the perfect ingredient, thanks to the re-used and re-cycled content. We then aimed to minimize impact at all stages: incorporating sustainable design ideas, washing processes and trims. We are proud to have created such an inspiring, and sustainable collection, and to bring our collective vision to light.”

Due to the unprecedented challenges of this time, the collection was entirely developed through remote working and creative solutions to ensure the safety and health of all parties involved. To this end, everyone was kept safe thanks to ISKO Vital™+ reusable and eco-friendly face covers, created with organic cotton to cater for comfort and sustainability.

20.05.2019

The CHT Group is chemical partner at Lidl

For the cooperation with Lidl within the project “Biodegradable textiles with prints” the CHT Group developed innovative recyclable textile print products.

These Lidl textiles are produced with CHT print pastes and pigments and were certificated by the internationally active consulting institute EPEA GmbH - Part of Drees & Sommer according to the Cradle to Cradle Certified™ Gold Standard. With this pilot project the companies demonstrate their sense of responsibility for people and the environment as well as their commitment in the field of circular economy.

For the cooperation with Lidl within the project “Biodegradable textiles with prints” the CHT Group developed innovative recyclable textile print products.

These Lidl textiles are produced with CHT print pastes and pigments and were certificated by the internationally active consulting institute EPEA GmbH - Part of Drees & Sommer according to the Cradle to Cradle Certified™ Gold Standard. With this pilot project the companies demonstrate their sense of responsibility for people and the environment as well as their commitment in the field of circular economy.

According to the Cradle to Cradle approach, shortly C2C, products shall merge into a biological or technical cycle after the end of their life cycle. This re-use helps prevent waste and save raw materials. The impact on the environment and health of all of the ingredients of C2C textiles is already tested in the design stage and during manufacturing. C2C experts additionally ensure a gapless control of the manufacturing processes. They check the chemicals in use, make sure that the water is kept clean and that renewable energies are used. Since this control affects the complete textile supply chain, it guarantees absolute transparency.

The CHT Group can now offer high quality and sustainable substitutes for common textile print pastes with its first biodegradable print pastes and pigments.

More information:
LIDL CHT Gruppe C2C
Source:

CHT Group

12.03.2019

Recycling of Coated and Painted Textile and Plastic Materials

The EU-funded Project, in which Devan Chemicals is a key partner, held a kick off meeting end of February 2019 at the EU Commission in Brussels, Belgium. The project consortium, led by Belgian R&D centre CENTEXBEL, consists of 17 European partners from across the value chain including design, manufacturing, NGOs, and research and innovation.

The focus of the consortium is on coated and painted textiles and plastic materials which are currently not recyclable. Ambitious plastic recycling targets of 50% have been set by the European Plastics Industry, and to meet these targets, smart solutions to enable the circular use of textile and plastic parts with multi-layer coatings must be considered.

DECOAT has therefore been established to investigate triggerable smart polymer material systems and appropriate recycling processes. The solutions will be based on smart additives (like microcapsules or microwave triggered additives) that will enable the efficient of coatings and other finishes, activated by a specific trigger (heat, humidity, microwave, chemical) to permit recycling.        

The EU-funded Project, in which Devan Chemicals is a key partner, held a kick off meeting end of February 2019 at the EU Commission in Brussels, Belgium. The project consortium, led by Belgian R&D centre CENTEXBEL, consists of 17 European partners from across the value chain including design, manufacturing, NGOs, and research and innovation.

The focus of the consortium is on coated and painted textiles and plastic materials which are currently not recyclable. Ambitious plastic recycling targets of 50% have been set by the European Plastics Industry, and to meet these targets, smart solutions to enable the circular use of textile and plastic parts with multi-layer coatings must be considered.

DECOAT has therefore been established to investigate triggerable smart polymer material systems and appropriate recycling processes. The solutions will be based on smart additives (like microcapsules or microwave triggered additives) that will enable the efficient of coatings and other finishes, activated by a specific trigger (heat, humidity, microwave, chemical) to permit recycling.        

Devan’s specific role is in the development of microcapsules that will release its active core on application of a certain trigger (e.g. heat) at the end of life of the article. This active core material may be something that, for example, will promote the detachment of different coating layers (by separating them), opening the possibility for recyclability/re-use of the base materials. Different active core ingredients will be evaluated, and Devan will develop processes for each type of core ingredient and for each type of coating layer/matrix.

The bold aim of the four-year project is to decrease landfill by 75% of coated articles that are presently difficult to recycle, such as clothing, electronic goods and automotive components. A reduction in the carbon footprint by at least 30% for the considered products is aimed for. By enabling the recycling of such materials, DECOAT is expected to generate in the medium term a new market valued at over 150 million Euros in Europe.

More information:
Devan Chemicals NV Devan
Source:

Marketing Solutions NV

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

Fast Concept - Paper leather jacket, by Prof Kay Politowicz and Dr Kate Goldsworthy UAL (c) RISE AB
Fast Concept - Paper leather jacket, by Prof Kay Politowicz and Dr Kate Goldsworthy UAL
23.11.2018

New research pushing the limits for ‘fast’ and ‘slow’ fashion towards a sustainable, circular future

  • conceptual and commercial garments presented at exhibition in London

After two years of research Mistra Future Fashion is honoured to present, in collaboration with Centre for Circular Design at University of the Arts London and Filippa K, an exhibition pushing the limits of ‘fast’ and ‘slow’ fashion. Started in 2017, the industry-embedded project Circular Design Speeds takes a unique systemic approach, showcasing what could be accomplished using existing value chains as well as what the future of sustainable fashion holds. Ground-breaking textile research from University of the Arts London is questioning normative use and design of garments in creating prototypes to be worn across a spectrum of 24 hours to 50 years. By implementing research into existing value chains, Filippa K have produced a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The research results and garments will be presented at the launch event at the University of the Arts London, on November 23rd and open to public on the 24th and 25th of November.

  • conceptual and commercial garments presented at exhibition in London

After two years of research Mistra Future Fashion is honoured to present, in collaboration with Centre for Circular Design at University of the Arts London and Filippa K, an exhibition pushing the limits of ‘fast’ and ‘slow’ fashion. Started in 2017, the industry-embedded project Circular Design Speeds takes a unique systemic approach, showcasing what could be accomplished using existing value chains as well as what the future of sustainable fashion holds. Ground-breaking textile research from University of the Arts London is questioning normative use and design of garments in creating prototypes to be worn across a spectrum of 24 hours to 50 years. By implementing research into existing value chains, Filippa K have produced a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The research results and garments will be presented at the launch event at the University of the Arts London, on November 23rd and open to public on the 24th and 25th of November.

On Friday November 23rd the exhibition Disrupting Patterns: Designing for Circular Speeds opens up at University of the Arts London. The exhibition is the results of a two-year research project called Circular Design Speeds aiming at pushing the limits of ‘fast’ and ‘slow’ fashion by testing new concepts for sustainable design in an industry setting. On display are exploratory prototypes, as well as commercial garments produced by industry partner Filippa K using existing value chains. In addition, research results on innovative materials, consumer acceptance, composting studies and Life Cycle Assessments are presented. The aim of this project is to implement research results in a real fashion industry context, focusing on speed of use and maximising fabric value retention in products.

The Service Shirt developed by Professor Rebecca Earley is designed to last for over 50 years. The concept garment explores the multiple complexities, challenges and opportunities associated with design for circular business models in extended use contexts. The Service Shirt was designed as a ‘deliberate extreme’ to have a total lifecycle of 50 years. This lifecycle includes in-house and external remanufacturing processes, as well as various use cycles – often moving between single ownership and rental and sharing contexts. It becomes the lining for a jacket and then crafted in to fashion accessories, before finally being chemically regenerated in the year 2068.

On the opposite side of the spectrum the Fast-Forward concept, developed by Prof Kay Politowicz and Dr Kate Goldsworthy, explores alternative modes of production and use for a sustainable ‘fast-fashion’ application. Advantages with regards to climate impact are enabled through lighter material choices, nonwoven fabric production, no launder, clear routes to recovery and redistributed manufacturing systems. A sliding scale of ‘speed’ from ultra-fast forward through to a more widely accepted length of use, with adaptations to production processes and end of life, is presented. The prototypes are made from a new bio-based nonwoven material co-developed with Dr Hjalmar Granberg at RISE Research Institute of Sweden & University of the Arts London. The composition of the paper is a mix of cellulose pulp and bio-based PLA fibre, making the garment 100% biodegradable or recyclable in existing paper recycling systems.

Working closely with industry partner Filippa K made commercial testing possible. By implementing research into existing value chains, Filippa K was able to produce a coat that is 100% recycled and recyclable, as well as a concept dress that is 100% bio-based and biodegradable. The garments are a part of Filippa K’s Front Runner series and will be available in selected stores on November 26th. With a focus on products’ length of use and maximizing fabric value retention, Filippa K are dedicated to becoming fully circular by 2030.

“Being part of the fashion industry comes with many challenges, especially when considering the fact that we are the second most polluting industry after oil. Our industry needs to change and we believe adapting to circular models, like nature’s ecosystem, is one important solution. We want to be able to offer beautiful clothing and to make business within the planetary boundaries.”
- Elin Larsson, Sustainability Director, Filippa K

To validate the design research presented, a Life Cycle Assessment was performed on the prototypes. Mistra Future Fashion affiliated Dr. Greg Peters, Chalmers University of Technology, together with additional LCA Researchers at RISE, conclude that the production of fibres and fabrics are the main processes impacting the environment during the garment life cycles. Therefore, to extend the lifetime of existing garments and design for re-use, as done in the Service Shirt, is indeed the superior alternative compared to a reference garment.

“Compared with garments of the same mass, the extended life garments represent a large improvement in environmental performance over the reference garments, outperforming the reference garments in all effect categories. This superiority is primarily a consequence of avoiding garment production via reprinting and reassembly of the initial garment to extend its useful life.”
- Dr Greg Peters, LCA Researcher at Chalmers University of Technology

Another way to circumvent the impacts of fast fashion is to develop materials with considerably lower impacts during production, and which also avoid the barriers to recycling faced by conventional garments. Instead of hinder consumers from buying new, the act of acquiring a new garment could in fact be sustainable. The paper-based short life garments considered in this assessment show considerable impact savings when compare to the benchmark garment. Dr. Peters says,

“The paper-based garments benefit from the lower impacts of the material (fibre production, spinning and knitting) compared with conventional cotton, from their relatively light weight and also on account of the lower impacts in garment production and use.”

26.02.2018

Hexcel’s Product Innovations for Aerospace, Automotive, Wind Energy and Marine at JEC WORLD 2018

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

Among the Aerospace promotions at Hexcel’s booth are carbon-reinforced 3D printed parts, made from Hexcel’s HexAM™ additive manufacturing technology that uses PEKK ultra-high performance polymers. Hexcel acquired this technology from Oxford Performance Materials in December 2017 to provide a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Aircraft engines benefit from a number of Hexcel technologies that will be promoted at JEC 2018, including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.
Another honeycomb innovation from Hexcel is Acousti-Cap® broadband noise-reducing honeycomb that significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs. An example of this technology will be on display at JEC 2018.

Rounding off the aircraft engine exhibits is a CTi fan blade for new generation lightweight turbofan engines from Rolls-Royce, manufactured from Hexcel’s HexPly® M91 high toughness and impact-resistant epoxy prepreg. Hexcel supplies HexPly® M91 as slit tape for the automated lay-up of the complex aerodynamic shape, with a constantly changing thickness across the blade length. The blade which is thinner and lighter than titanium fan blades is currently undergoing flight tests.
Hexcel’s HiTape® and HiMax™ dry carbon reinforcements that were developed for the automated lay-up of preforms for resin-infused aerospace structures will be promoted at the show. Two demonstrator parts, one made with HiMax™ and one with HiTape®, were both infused with HexFlow® RTM6 resin to demonstrate the potential benefits of an integrated design for aircraft skins, spars and stiffeners that meets OEM requirements for production rate increases and cost effectiveness.

Hexcel is also introducing its new range of HiFlow™ advanced liquid resins for aerospace structures manufactured by liquid molding technologies. Based on novel proprietary chemistry, the new resin family will enhance the performance of composites and ease processing when combined with HiTape® and HiMax™ dry carbon reinforcements. HiFlow™ HF610 is the first resin in the range.
Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil last October. Hexcel is relaunching the acquired products under the new HexBond™ brand name at JEC World. This fast-growing range of pastes, liquid shim and film adhesives has a wide spectrum of operating temperatures and is in qualification with a large number of aerospace and industrial OEMs.
In the Planet Aerospace area at JEC, Daher and Hexcel will jointly display an aircraft spar manufactured from HexPly® M56 prepreg. Hexcel’s Neil Parker and Daher R&T Director Dominique Bailly will give a joint presentation focusing on the materials used and the benefits for the finished part. The aircraft spar was designed and manufactured by Daher using Hexcel’s HexPly® M56 prepreg, in slit tape format, that was developed for automated deposition and out-of-autoclave curing. The spar was manufactured using only the vacuum bag process and demonstrates very low porosity levels. It is currently undergoing testing and validation through CORAC funding.

Hexcel’s Automotive promotions at JEC World 2018 include a new prepreg for composite leaf springs, HexPly® M901. In contrast to steel leaf springs used for suspension on vans, trucks and SUVs, newer composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. Hexcel’s HexPly® M901 prepreg raises the bar further, reducing mold cure time below 15 minutes, a 50% reduction compared to standard industrial prepregs. HexPly® M901 provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure. Hexcel’s expertise in manufacturing heavy weight glass UD prepregs, with fiber areal weights of up to 1600gsm, allows the company to offer a highly cost-competitive solution for the rapid manufacture of these safety critical components.

Hexcel is constantly seeking ways to ensure that customers obtain the maximum benefit from composites and has recently acquired state-of-the-art simulation technology that accurately predicts how HiMax™ non-crimp fabrics will drape in a mold. Working in collaboration with Nottingham University Hexcel has created a car seat shell, for which the material selection was optimized using this new drape simulation technology. Visitors to Hexcel’s stand at JEC will see an on-screen demonstration that illustrates how the simulation tool operates, predicting process and performance and ensuring that the optimum fabric architecture is quickly identified, reducing the need for expensive trial programs.
Hexcel’s HexMC®-i 2000 carbon fiber/epoxy molding compound has been successfully used by Audi to manufacture a high-performance engine cross brace. HexMC®-i is a fast curing high-performance molding material, suitable for the series production of complex shaped parts and providing excellent mechanical properties. The Audi cross brace covers the engine, providing torsional stiffness for enhanced drive dynamics.

Hexcel’s product offering for customers in the Marine industry has expanded following the acquisition of Formax in 2016 and Structil in 2017. At JEC World, Hexcel will promote its enhanced portfolio of carbon fibers, prepregs, woven reinforcements and multiaxial fabrics for builders of racing catamarans and luxury yachts.
Marine customers have supplied a number of parts for display to illustrate their expertise in manufacturing composite structures from Hexcel materials. These include part of a Diam 24 yacht mast made by ADH Inotec from Hexcel’s HexPly® M79 fast curing, low temperature cure prepreg. ADH Inotec purchased the prepreg from Composites Distribution, a Hexcel Official Distributor that also supplied HexPly® M9.6 prepreg to Lorima for the Outremer 5X catamaran mast section on display. Part of Lorima’s 42m wing mast for a multihull racing boat made with HexPly® prepreg from Vert-Le-Petit (formerly Structil) will complete the marine display.

Hexcel’s innovations for Wind Energy include Polyspeed® pultruded laminates for load-carrying elements in wind blades. These continuous cross-section profiles, made from a polyurethane matrix reinforced with unidirectional carbon fiber, provide consistently high mechanical properties, including high stiffness, fracture toughness and shear strength, combined with low weight and durability. Visitors to Hexcel’s stand will see a 2m diameter coil of pultruded carbon laminate that contains 255m of material in a single roll. This technology offers an economical way of reinforcing large-scale composite structures such as wind turbine blades. Hexcel will also launch its surface finishing prepreg for wind turbine blades and components. This provides a tough, durable and ready-to-paint blade surface without the use of gel coat and results in faster blade manufacture, saving time in production and reducing material costs. The benefits of the new surfacing prepreg will be demonstrated via a wind blade exhibit that has been given four different treatments across the blade surface. These include a section with gel coat, a section of standard prepreg without gel coat, and a section where a fleece has been added to improve surface quality but still requires preparation before painting due to pin holes. The final section made with new HexPly® XF2P surfacing prepreg has a ready-to-paint surface, straight from the mold, without any requirement for gel coat, fleece or finishing operations.

More information:
Hexcel JEC World 2018 Aircraft
Source:

Dorothée DAVID & Marion RISCH, AGENCE APOCOPE