From the Sector

Reset
192 results
28.06.2022

EREMA Gruppe and Borealis: K 2022 preview

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

EREMA Group K 2022 preview
In Düsseldorf, the subsidiaries of the EREMA Group - which are EREMA, PURE LOOP, UMAC, 3S, KEYCYCLE and PLASMAC - will present their technological innovations, services and support together at a Group trade fair stand for the first time. Seven new recycling systems and components will be presented that enable large-scale plants with a production capacity of up to 6 t/h while setting a milestone in recyclate quality and process stability. This is made possible by technological innovations in the plasticizing unit that have been specially developed for high throughputs with low specific energy consumption, the new EREMA 406 laser filter with a 50 percent larger screening area, and new digital assistance systems that will be launched at K 2022 and made available on the BluPort® customer platform. These include, for example, the PredictOn app, which helps to anticipate and eliminate imminent malfunctions based on continuous measurement and evaluation of machine data.

New series of machines for new target groups
For customers looking for rapidly available recycling systems for simple applications, EREMA Group subsidiary UMAC has an innovation in store for K 2022. The company, which has so far specialised in refurbishing and trading in previously owned equipment, is expanding its business area and in Düsseldorf will launch READYMAC, a standardised, prefabricated recycling solution that can be produced from stock, based on proven EREMA TVE technology.

Finally, in the inhouse recycling segment, PURE LOOP and PLASMAC will round off the wide range of machines offered by the group of companies with their product portfolio.

Live recycling and lighthouse projects at the Circonomic Center
In the outdoor area of the K show, EREMA will bring plastics recycling to life with live demonstrations in conjunction with cooperation partners. Different waste streams are processed for this purpose. The wide variety of high-quality applications for recyclate will be showcased in the "products made of recyclate" exhibition, ranging from technical components to consumer goods and food packaging.

Borealis – accelerating the transition towards a more circular future
Borealis is committed to using their expertise and global reach to advance the circular economy of plastics. At the joint Pre-K 2022 kick-off on June 13, Borealis provided a preview of their integrated way of circular thinking and featured topics and activities at the K Fair 2022 in October. The preview covered new technologies and innovations including new packaging and infrastructure applications of the Bornewables™ portfolio of circular polyolefin products, manufactured with renewable feedstocks. New applications for Design for Recyclability, Re-Use, chemical recycling and advanced mechanical recycling were also on display.

Source:

EREMA Group GmbH

(c) Borealis
28.06.2022

Borealis introduces portfolio of circular base chemicals

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

The portfolio will initially comprise Borvida B, from non-food waste biomass, and Borvida C, from chemically-recycled waste. In the future, the range will evolve to include Borvida A, sourced from atmospheric carbon capture. Borvida is complementary and is the building block to Bornewables™, a portfolio of polyolefins based on renewably-sourced second generation feedstocks, and Borcycle™, which offers circular polyolefins produced from mechanically- and chemically-recycled plastic waste.

Borealis produces a wide range of base chemicals for use in numerous industries based on various feedstock, such as naphtha, butane, propane and ethane. Through its olefin units (steam cracker and propane dehydrogenation), it converts these into the building blocks of the chemical industry: ethylene, propylene and C4 hydrocarbons (butylenes, ethyl tertiary-butyl ether (ETBE) and butadiene), and C5-6 hydrocarbons (pygas, phenol) among others.

The basis of the Borvida portfolio is Mass Balance, a Chain of Custody model that enables sustainable content to be tracked, traced, and verified through the entire value chain, offering sustainability-assured products from feedstock to end product. Using this model, circular alternatives can be offered in a cost-effective and environmentally-conscious way, which can be scaled up quickly without compromising on quality or efficiency.

Borvida can be used for a wide range of different polymer and chemical applications, also beyond polyolefins (PO). Non-PO polymers, such as polycarbonates, acrylonitrile butadiene styrene (ABS), super absorbant polymer (SAP) and other chemicals, are utilised for various end applications including coatings, plasticizers, adhesives, automotive, electronics, lubricants, detergents, appliances and sports equipment.

Together with key strategic partners, including Neste and Covestro, Borealis strives to provide a long-term solution in order to allow value-chain partners to meet their sustainability goals. Borvida will enable our customers to increase the sustainability of their products, keeping them ahead of forthcoming legislative changes, and meeting their customers’ demands for climate-conscious products.

Introduced on a smaller scale in early 2020, early renewable base chemicals customers include Covestro. “The use of alternative sustainable raw materials is one important pillar of our strategic ambition to become fully circular”, comments Frank Dörner, Managing Director Covestro Procurement Services GmbH & Co. KG. “The new product line is a good example for joint solutions, another strategic pillar, in order to establish new and reliable supply chains creating benefits for our customers.”

Source:

Borealis

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG

(c) ISKO
10.06.2022

ISKO™ purchased new weaving machines by Itema

With the purchase of the latest technology, iSAVER® by Itema, in weaving machines, ISKO pushes the envelope of technological performance and sustainability, making further progress in product and process efficiency.

This decision is an additional, important asset in ISKO’s journey towards a genuine Responsible Innovation™. It is part of other crucial investments made by the company, aimed at further reducing its environmental impact, among which stand out R-TWO™50+ – a new denim generation made with a minimum of 50% pre- and post-consumer recycled blend – and the Green Machine – a pioneering technology providing a 100% post-consumer recycling solution that fully separates and recycles cotton and polyester blends at scale.

After an intensive process, a selection was made where ISKO focuses on the development of technical solutions that enable greater resource savings and more sustainable production methods, always with the protection of workers at heart.

With the purchase of the latest technology, iSAVER® by Itema, in weaving machines, ISKO pushes the envelope of technological performance and sustainability, making further progress in product and process efficiency.

This decision is an additional, important asset in ISKO’s journey towards a genuine Responsible Innovation™. It is part of other crucial investments made by the company, aimed at further reducing its environmental impact, among which stand out R-TWO™50+ – a new denim generation made with a minimum of 50% pre- and post-consumer recycled blend – and the Green Machine – a pioneering technology providing a 100% post-consumer recycling solution that fully separates and recycles cotton and polyester blends at scale.

After an intensive process, a selection was made where ISKO focuses on the development of technical solutions that enable greater resource savings and more sustainable production methods, always with the protection of workers at heart.

As a result, ISKO’s Headquarters extend the company's long-term relationship with Itema,
strengthening the company’s position as the mill with one of the world’s largest denim capacities. The new rapier machines are enhanced by the iSAVER® technology, a breakthrough mechatronic innovation that eliminates the waste selvedge on the left side of the fabric, allowing for saving in energy and raw materials, cutting in half the cotton waste that typically results from the weft yarn. All types of ISKO’s innovative fabrics, with a multitude of different constructions and fiber mixtures, can now be produced using these advanced weaving technologies, with a special focus given to the R-TWO™ technology in terms of its sustainable credentials.

More information:
Isko Itema weaving machine
Source:

ISKO / Menabò Group srl

(c) DiloGroup
13.05.2022

DiloGroup at Techtextil with nonwovens technology

The DiloGroup informs at Techtextil in Frankfurt (June 21 – 24, 2022) about new developments aimed at improving production technologies with a focus on needlefelts.

It becomes more evident that the textile industry comes into the focus of regulatory authorities who push respecting sustainability principles and who initiate a new body of laws. Hence all industrial sectors are requested to achieve savings in material and energy. The textile machine building, of course, plays an important role by seizing this initiative and offering solutions for fibre pulp recycling and reduction of energy, water and ancillaries. DiloGroup has made big efforts to meet these challenges together with a circle of partner companies. In this regard focal points of the development work are:

The DiloGroup informs at Techtextil in Frankfurt (June 21 – 24, 2022) about new developments aimed at improving production technologies with a focus on needlefelts.

It becomes more evident that the textile industry comes into the focus of regulatory authorities who push respecting sustainability principles and who initiate a new body of laws. Hence all industrial sectors are requested to achieve savings in material and energy. The textile machine building, of course, plays an important role by seizing this initiative and offering solutions for fibre pulp recycling and reduction of energy, water and ancillaries. DiloGroup has made big efforts to meet these challenges together with a circle of partner companies. In this regard focal points of the development work are:

  1. Intense Needling
    Needling per se is a mechanical production method with a high energy efficiency. For this reason, the development efforts of DiloGroup aim at producing nonwovens by “intense needling” instead of water entangling, even for light nonwovens made of fine fibres for the medical and hygiene sector with an area weight of 30 – 100 g/m². This would result in a reduction of the environmentally relevant production costs; per annum to about 1/3 to 1/5 of current.
    Despite the prospective advantages of the mechanical intense needling method over the hydrodynamical, water entanglement is at the moment the most important production method for low area weights and highest production capacity and is also offered by the DiloGroup as general contractor in cooperation with partner companies.
  2. “Fibre Pulp Recycling”
    Fibrous material in nonwovens and particularly used clothes can be successfully recycled, if staple length can be conserved in the tearing process. In the classical tearing process, staple lengths are dramatically reduced and therefore these fibres can only be used as base material for inferior uses in thermal or acoustic insulation or in protective textiles, transportation or protective covers etc.
    When recycling textile waste in the context of the collection of used clothes, the so called “filament-saving” tearing using special tearing machines and methods must be used to produce fibres with longer staple lengths which can be fed to a nonwoven installation. Hence product characteristics can be better specified and controlled.
  3. Additive nonwoven production
    The additive production method of the “3D-Lofter” is especially suited for automotive parts with differently distributed masses; but there may also be potential for increasing uses in the sector of apparel and shoe production.
  4. “IsoFeed”-card feeding
    In the field of card feeding, the “IsoFeed” method offers great potential for a more homogeneous card feeding at the same time reducing the variation in cross-machine fibre mass distribution and thus the fibre consumption while conserving the end product quality.
Source:

DiloGroup

Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets (c) Hexcel
Hexcel HexPly® Nature Range
11.05.2022

Hexcel Launches HexPly® Nature Range

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

At JEC World in Paris on May 3-5, Hexcel presented an alpine ski produced by the Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature Range M78.1-LT UD flax fiber prepreg. In addition to providing a bio-based material solution, the natural fiber-reinforced prepreg also offers the potential to improve impact performance and vibration damping in the ski.

Claude Despierres, VP of Sales and Marketing – Industrial at Hexcel, said, “Our new HexPly Nature Range forms an important part of providing customers with biobased, TÜV-certified material options based on our established prepreg resin systems. Marine, winter sports, wind energy and automotive manufacturers can now have the choice to switch from petroleum-based material solutions to Hexcel HexPly Nature Range with no compromise in performance or process efficiency.”

More information:
Hexcel’s HexPly® JEC World
Source:

Hexcel

10.05.2022

BB Engineering shortlisted for Plastics Recycling Awards Europe

BB Engineering has been shortlisted for the Plastics Recycling Awards Europe 2022 for the category Recycling Machinery Innovation with its PET recycling line VacuFil® Visco+ for fiber-to-fiber inline recycling.

The process presented as part of the award is the combined VacuFil® Visco+ with VarioFil®. This machinery enables the textile industry to perform closed-loop inline recycling of post-consumer polyester (PET) textile waste. The given recycling technology is a thermo-mechanical recycling process optimized for the textile industry. Key component here is the liquid state polycondensation reactor, known as Visco+, to adjust the intrinsic viscosity. Compared to existing fiber recycling processes, which address rather less demanding textile applications and don’t include subsequent spinning, BBE’s solution is a whole-in-one process that enables the textile industry to perform closed-loop inline recycling of post-consumer PET fiber waste even into high-tech textile yarns with low dpf-values.

BB Engineering has been shortlisted for the Plastics Recycling Awards Europe 2022 for the category Recycling Machinery Innovation with its PET recycling line VacuFil® Visco+ for fiber-to-fiber inline recycling.

The process presented as part of the award is the combined VacuFil® Visco+ with VarioFil®. This machinery enables the textile industry to perform closed-loop inline recycling of post-consumer polyester (PET) textile waste. The given recycling technology is a thermo-mechanical recycling process optimized for the textile industry. Key component here is the liquid state polycondensation reactor, known as Visco+, to adjust the intrinsic viscosity. Compared to existing fiber recycling processes, which address rather less demanding textile applications and don’t include subsequent spinning, BBE’s solution is a whole-in-one process that enables the textile industry to perform closed-loop inline recycling of post-consumer PET fiber waste even into high-tech textile yarns with low dpf-values.

The Plastics Recycling Awards Europe 2022 winners will be announced on 23 June, during the second day of the Plastics Recycling Show Europe taking place at the RAI Amsterdam.

03.05.2022

DOMO: Mechanische Struktursimulation für PA6-GF-Werkstoffe

  • Das MMI (Materialmodellierung, mechanische Berechnung und Spritzgusssimulation)-Team für fortgeschrittene Simulationstechnologien bietet erheblich verbesserten Service für PA6-GF-Werkstoffe
  • Integrative Simulationsumgebung lässt sich effektiv mit der Digimat-Software anwenden und gewährleistet präzise und robuste Finite-Elemente-Analysen

DOMOs fortschrittliche Simulationsumgebung MMI für PA66-Bauteile gilt auf dem Markt bereits als Referenz für präzise Simulationen. Ab sofort unterstützt dieses Simulationstool OEMs und Bauteillieferanten bei der Entwicklung von leistungsfähigen, leichten und kosteneffizienten Bauteilen aus PA6. Mit dem DOMO Service Hub können Bauteilentwickler ihre Polyamidlösungen somit schneller in Serie bringen.

Bei glasfaserverstärkten Materialien muss die Ausrichtung der Glasfasern berücksichtigt werden, die während des Spritzgussverfahrens entsteht. Dabei ermöglicht die Digimat-Software eine genaue integrative Simulation. DOMO besitzt ein umfangreiches Fachwissen bei der integrativen Simulation der TECHNYL® A-Serie von PA66-GF-Materialien und ist daher in der Lage, präzise Bauteilsimulationen durchzuführen.

  • Das MMI (Materialmodellierung, mechanische Berechnung und Spritzgusssimulation)-Team für fortgeschrittene Simulationstechnologien bietet erheblich verbesserten Service für PA6-GF-Werkstoffe
  • Integrative Simulationsumgebung lässt sich effektiv mit der Digimat-Software anwenden und gewährleistet präzise und robuste Finite-Elemente-Analysen

DOMOs fortschrittliche Simulationsumgebung MMI für PA66-Bauteile gilt auf dem Markt bereits als Referenz für präzise Simulationen. Ab sofort unterstützt dieses Simulationstool OEMs und Bauteillieferanten bei der Entwicklung von leistungsfähigen, leichten und kosteneffizienten Bauteilen aus PA6. Mit dem DOMO Service Hub können Bauteilentwickler ihre Polyamidlösungen somit schneller in Serie bringen.

Bei glasfaserverstärkten Materialien muss die Ausrichtung der Glasfasern berücksichtigt werden, die während des Spritzgussverfahrens entsteht. Dabei ermöglicht die Digimat-Software eine genaue integrative Simulation. DOMO besitzt ein umfangreiches Fachwissen bei der integrativen Simulation der TECHNYL® A-Serie von PA66-GF-Materialien und ist daher in der Lage, präzise Bauteilsimulationen durchzuführen.

Die neuen MMI-PA6-GF Materialkarten können für eine Vielzahl von Glasfaserkonzentrationen und -temperaturen sowie für elastische und elastoplastische Materialmodelle mit Versagensindikatoren eingesetzt werden. Diese sind in der Digimat Software verfügbar und führen zu den gleichen präzisen Ergebnissen wie bei den TECHNYL® A PA66-Werkstoffen. Die neuen Materialkarten heben somit die PA6-Datenbank auf das gleiche Leistungsniveau wie PA66 an. Im nächsten Schritt werden in die Digimat-Datenbank auch crashspezifische und thermische Modelle eingepflegt.

„Dank der präzisen MMI-Simulation können TECHNYL® Bauteile entwickelt werden, die leichter, leistungsfähiger und kosteneffizienter sind“, erklärt Gilles Robert, Material Expert bei DOMO. „Unsere Kunden profitieren von kürzeren Entwicklungszeiten und haben eine bessere Kontrolle über die internen Kosten. Der kontinuierliche Aufbau der TECHNYL®-Materialdatenbank erweitert das Anwendungsfeld dieser Simulationsumgebung auf PA6 Bauteile.“

Source:

DOMO Chemicals / Marketing Solutions NV

(c) Hexcel Corporation
29.04.2022

Hexcel Composite Solutions for the Automotive, Marine, Wind Energy and Recreation Markets at JEC World 2022

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

Hexcel will present a wide range of high-performance composite innovations for the Automotive, Marine, Wind Energy and Recreation markets during JEC World 2022 in Paris on May 3 – 5.

G-Vent Technology for Marine Structures
Hexcel has developed a new technology for out-of-autoclave (OoA) processing that delivers a game-changing reduction in process time and cost for marine manufacturers without compromising mechanical performance. Hexcel has leveraged its experience in aerospace and wind energy to develop its new G-Vent technology for OoA processing of highly loaded, thick section marine structures such as masts, foils, and wind-assisted ship propulsion (WASP) components. A full range of Hexcel marine prepregs are now available with integrated G-Vent technology, reducing the requirement for debulking steps and ensuring extremely low porosity (<1%) regardless of the laminate thickness. Leading marine non-destructive testing specialists Q.I. Composites recently confirmed that the thick section G-Vent panels they had evaluated had void contents and laminate quality in line with state-of-the-art autoclaved prepreg components. Visitors to the Hexcel stand will see a unique 400mm carbon cube cured in a single stage using 695 layers of HexPly M79 carbon fiber UD600 prepreg with G-Vent technology.

New HexPly® Nature Range Sustainable Prepregs
HexPly® Nature Range prepregs feature proven resins such as HexPly M49, M78 and M79 with bio-derived epoxy resin content. Created for use in all industrial markets, HexPly Nature Range materials can be seamlessly integrated into existing production processes, maintaining consistent mechanical performance and processing properties. A dedicated sustainability corner of the Hexcel stand will detail Nature Range products optimized for automotive, marine, wind energy and winter sport applications. The display will include an alpine ski produced by leading manufacturer Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature M78.1 UD flax prepreg material. In addition to the reduced environmental impact of the sustainably grown reinforcement, the flax fiber laminates also improve impact resistance and vibration damping in the ski.

HexPly® XF Surface Technology for Improved Part Surface Finish Quality
HexPly XF is a lightweight, semi-preg material that replaces traditional in-mold gel coat. It eliminates time-consuming refinishing work typically required to obtain a paint-ready surface and produces lighter, more consistent parts with shorter cycle times and a cleaner working environment. Visitors to the stand will see a composite panel illustrating a high-quality painted surface enabled with XF technology in a diverse range of industrial applications such as super yacht roof parts, Class A surface automotive panels, and both prepreg and infused wind turbine blades.

HexPly® M49 Prepreg for Automotive Visual Carbon Parts
HexPly M49 is easy to process and is especially suitable for visual carbon fiber-look applications such as the Brabus hood scoop on display on the Hexcel stand at JEC.

HexPly® Prepregs and HiMax® Reinforcements for Performance Marine Structures
Using a scale model of a Gunboat 68 performance sailing catamaran, Hexcel will illustrate how its HexPly and HiMax materials provide manufacturers with a complete set of lightweight composite solutions for high-performance marine structures. HexPly prepreg was selected for critical structural parts of the Gunboat 68 and provides very high mechanical performance including high dry and wet Tg.

Heavyweight HiMax reinforcements offer high deposition rates and remain easy to handle after cutting, making them highly suitable for industrial applications. In combination with a lightweight PrimeTex® woven fabric, the package of carbon fiber HiMax materials developed for the Gunboat 68 enabled consistent resin flow during infusion with reduced surface print-through.

Hexcel Fibers and Reinforcements for Lightweight Sporting Equipment
Sporting equipment manufacturers rely on Hexcel composite materials to deliver the ultimate performance at the lowest possible weight. Hexcel will exhibit a number of the latest high-performance sporting equipment applications such as a Bauer hockey stick featuring PrimeTex 98 gsm AS4C 3K fabric and a Corima tri-spoke cycling wheel made with lightweight Hexcel carbon fiber UD tape. Hexcel will also demonstrate how its HexTow® carbon fibers are used in key leisure and marine applications by displaying an AEROrazr solid carbon rigging component manufactured by spar and rigging manufacturer Future Fibres for the 36th America’s Cup.

 

Source:

Hexcel Corporation / 100% Marketing

(c) ChemSec, report Not Quite 100%
28.04.2022

ChemSec' Study: Consumer brands demand clarity on recycled plastics

A new interview study from NGO ChemSec shows that there is a gap between supply and demand when it comes to recycled materials, causing confusion and bottlenecks. Among other things, suppliers go out of their way using elaborate trade schemes to reach the coveted ”100% recycled” tag, which – it turns out – is not that important to consumer product brands. Far more crucial aspects, according to several major B2C companies, are:

  • Honest communication towards customers
  • Comprehensive information from suppliers
  • Clear standards for recycled material

These are some of the conclusions from NGO ChemSec’s survey and interview study with 26 highly well-known consumer product brands. All brands responded to a survey concerning their current plastic use, as well as their needs, expectations and challenges regarding using more recycled material, to enable the shift to a circular economy for plastics.

Ten of the brands then participated in in-depth interviews on the same topics:, Essity, H&M, IKEA, Inditex , Lego, Mars,  SC Johnson, Tarkett, Unilever and Walgreens Boots Alliance.

A new interview study from NGO ChemSec shows that there is a gap between supply and demand when it comes to recycled materials, causing confusion and bottlenecks. Among other things, suppliers go out of their way using elaborate trade schemes to reach the coveted ”100% recycled” tag, which – it turns out – is not that important to consumer product brands. Far more crucial aspects, according to several major B2C companies, are:

  • Honest communication towards customers
  • Comprehensive information from suppliers
  • Clear standards for recycled material

These are some of the conclusions from NGO ChemSec’s survey and interview study with 26 highly well-known consumer product brands. All brands responded to a survey concerning their current plastic use, as well as their needs, expectations and challenges regarding using more recycled material, to enable the shift to a circular economy for plastics.

Ten of the brands then participated in in-depth interviews on the same topics:, Essity, H&M, IKEA, Inditex , Lego, Mars,  SC Johnson, Tarkett, Unilever and Walgreens Boots Alliance.

Is non-mechanical recycling the answer?
Only about ten percent of all discarded plastics is recycled today, which is of course not nearly enough to achieve a circular plastics economy. Despite ambitions and initiatives to reduce plastics use – replacing the materials with other, more sustainable ones – the “plastic tap” is not expected to be turned off anytime soon. Quite the opposite, which makes raising the recycling rates more important than ever.

Although commercially viable, traditional (mechanical) recycling is afflicted with severe flaws, such as legacy chemicals, quality and functionality issues, as well as the lack of clean and sorted waste streams. The brands cited quality and functionality issues as the main obstacles for using more recycled material in their products.

This opens up for non-mechanical recycling, sometimes referred to as chemical recycling, where the plastic is either dissolved or broken down into smaller building blocks. Harmful additives and other hazardous chemicals can be removed in the process, and a material comparable to virgin plastic can be achieved – at least in theory.

So far, however, non-mechanical recycling technologies are costly, energy-intensive, and often require the addition of a great deal of virgin plastic to work – the very material that needs to be phased out.

The chain of custody models needs to be detangled
Apart from these production issues, there is a wide range of chain of custody models surrounding non-mechanical recycling, including mass balance and book & claim, which enable trade of credits or certificates for recycled material.

This cuts the physical connection between input and output, making it possible for a supplier to sell a material as “100% recycled”, when the actual recycled content could be zero.

This is a major issue for the brands ChemSec has spoken to, who value honest and correct communication towards customers. It turns out, perhaps somewhat surprisingly, that being able to slap a “made from 100% recycled plastic” label on a product is not all that important to brands.

To the brands, a physical connection between input (the discarded plastic waste headed for recycling) and output (the product at least partially made from recycled plastics) is far more important.

A physical connection, along with correct and adequate information from suppliers, as well as clearer standards and guidelines than what is available today, is what brands require to increase the use of recycled material and move us closer to a circular economy for plastics.

More information:
ChemSec plastics Recycling
Source:

ChemSec

27.04.2022

Calzedonia chooses Green Label smart nets by Iluna Group

CALZEDONIA chooses products belonging to the GREEN LABEL line by ILUNA GROUP for its new Eco Collection of tights. They are GRS (Global Recycled Standard) and OEKO-TEX® Standard 100 certified and made with recycled yarns.

The ingredients used in the collection are:

CALZEDONIA chooses products belonging to the GREEN LABEL line by ILUNA GROUP for its new Eco Collection of tights. They are GRS (Global Recycled Standard) and OEKO-TEX® Standard 100 certified and made with recycled yarns.

The ingredients used in the collection are:

  • Q-NOVA® by Fulgar, an eco-sustainable nylon 6.6 fiber obtained from regenerated raw materials through a mechanical process that does not involve the use of chemical materials. It has been certified with the Global Recycled Standard (GRS) and for some time now has been part of the HIGG INDEX, the index developed by SAC (Sustainable Apparel Coalition) evaluating the environmental impact of the entire life cycle of a garment;
  • ROICA™ EF by Asahi Kasei, one of the first recycled stretch yarns certified with Global Recycled Standard (GRS).

This collaboration confirms Iluna's commitment to creating products with a environmental responsibility thanks to a technological and corporate system that covers the entire perimeter of production, from materials to processing, dyeing and finishing. An industrial reality that increasingly integrates the value of responsibility, as demonstrated by the fact that the percentage of sustainable production has risen from 3% in 2018 to 52% in 2021.

Source:

Iluna Group / C.L.A.S.S.

(c) SITIP
25.04.2022

Sitip at Performance Days

  • Focus on the embossing technique applied to the recycled fabrics collection of the NATIVE Sustainable Textiles line

Performance Days, the leading trade fair on the latest trends in the development of fabrics for the functional textile industry, has as main focus the PERFORMANCE FORUM, where the most recent innovations and developments are presented with a prize awarded to the winner of the category chosen for the current year, which for 2022 will be “The Journey to Carbon Neutrality - CO2 Reducing Technologies and Measuring Tools”.

Protagonists are therefore all those materials that contain carbon in reduced form and the strategies/technologies that companies implement to ensure the reduction of CO2 emissions during production and how these reductions are actually measured (through energy saving, careful use of resources, use of more sustainable materials, local production and other technological and production measures).

  • Focus on the embossing technique applied to the recycled fabrics collection of the NATIVE Sustainable Textiles line

Performance Days, the leading trade fair on the latest trends in the development of fabrics for the functional textile industry, has as main focus the PERFORMANCE FORUM, where the most recent innovations and developments are presented with a prize awarded to the winner of the category chosen for the current year, which for 2022 will be “The Journey to Carbon Neutrality - CO2 Reducing Technologies and Measuring Tools”.

Protagonists are therefore all those materials that contain carbon in reduced form and the strategies/technologies that companies implement to ensure the reduction of CO2 emissions during production and how these reductions are actually measured (through energy saving, careful use of resources, use of more sustainable materials, local production and other technological and production measures).

In this sense, Sitip’s strategy for reducing CO2 emissions and maximizing the use of resources is based on consolidating and optimizing the layout and logistics of the production plants, installing a cogeneration plant and a new generation smoke smoke abatement system and the transition to an energy-saving lighting system.

Regarding products, at Performance Days Sitip brings its latest innovations with an absolute focus on the embossing technique, a particular system of mechanical processes that can also be used on the recycled items from the NATIVE Sustainable Textiles line, a technology that is applied to fabrics produced with recycled yarns and chemicals with low environmental impact, implementing the GRS standard (Global Recycle Standard), result of the journey towards sustainability implemented by the company.

The collection of embossed designs combines performance, style and sustainability: thanks to special mechanical processes that combine heat and pressure, the fabric is embossed with geometric and design motifs for a more structured and palpable texture.

Source:

SITIP

22.04.2022

Cone Denim launches U.S. Grown Hemp denim collection with BastCore

Cone Denim®, a leader in denim authenticity and sustainable innovation, launches a new U.S. grown hemp denim collection in collaboration with expert hemp processing innovator, BastCore. Cone is excited to expand its sustainable denim offerings and increase its support of the American agriculture industry, featuring denim made with Alabama hemp and U.S. cotton and dyed with natural indigo grown in Tennessee.

Cone Denim is honored to partner with BastCore, a team that aligns with Cone’s values and its commitment to innovation, quality, sustainability, and traceability. The pioneers at BastCore have created patent-pending technology and a proprietary process that produces clean, mechanically processed, OEKO-TEX® STANDARD 100 certified and USDA bio-preferred hemp fiber out of its operation in Montgomery, Alabama.

Cone Denim®, a leader in denim authenticity and sustainable innovation, launches a new U.S. grown hemp denim collection in collaboration with expert hemp processing innovator, BastCore. Cone is excited to expand its sustainable denim offerings and increase its support of the American agriculture industry, featuring denim made with Alabama hemp and U.S. cotton and dyed with natural indigo grown in Tennessee.

Cone Denim is honored to partner with BastCore, a team that aligns with Cone’s values and its commitment to innovation, quality, sustainability, and traceability. The pioneers at BastCore have created patent-pending technology and a proprietary process that produces clean, mechanically processed, OEKO-TEX® STANDARD 100 certified and USDA bio-preferred hemp fiber out of its operation in Montgomery, Alabama.

Cone’s U.S. Hemp Collection includes a range of fabrics featuring classic 3×1 and comfort stretch to modern workwear constructions. The collection further expands upon Cone’s sustainability and traceability practices, driving the future of the industry. The proximity of the hemp, indigo, and cotton crops in the U.S. to the company’s mills in Mexico is also key in creating the smallest environmental impact and footprint possible.

Hemp offers many key benefits in creating the next level of sustainable denim:

  • More than 50% water savings occur, compared to cotton
  • No chemicals, wet processing, pesticides, or herbicides are used
  • Hemp grows in a variety of soils with excellent biodegradability, is antimicrobial, has high tensile strength, moisture regain content, and tenacity
  • Hemp and natural indigo crops have high rates of carbon sequestration, which ultimately benefits the environment and improves the soil’s health for other crops (climate positive)
Source:

Cone Denim

(c) Sicomin
22.04.2022

Sicomin: Upcycled Carbon Fibre from Airbus with GreenPoxy to create Surfboards

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

The new NOTOX technology gives a second life to Airbus carbon fabrics that are declared unusable for aerospace applications due to short roll lengths, an inability to be pre-formed, or other defects. The upcycled materials are combined with Sicomin GreenPoxy 56 and Surf Clear hardener, producing an extremely clear, high gloss laminate with high mechanical properties. NOTOX use a precisely controlled wet lamination process with vacuum bag consolidation to wet out the upcycled woven carbon fabrics and minimise resin consumption in the manufacturing process.

In addition to selecting a high bio-content resin – GreenPoxy 56 derives 56% of its carbon content from plant sources – NOTOX has also sourced the most sustainable carbon fibre fabrics. Full life cycle analysis by NOTOX has shown that using waste carbon fabrics from Airbus is significantly more energy efficient than using other recycled short fibre carbon, confirming the importance of upcycling this key raw material.

More information:
Sicomin carbon fibers Upcycling NOTOX
Source:

Sicomin / 100% Marketing

Hypetex at JEC World 2022 (c) Hypetex
Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
20.04.2022

Hypetex at JEC World 2022

  • Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
  • Hypetex, London, April 20 2022, Booth R52, Hall 6

Hypetex, the market leaders in colouring carbon and natural fibre materials, will demonstrate both the processing and sustainability benefits of its patented colourisation technology when it exhibits for the first time at JEC World 2022.

  • Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
  • Hypetex, London, April 20 2022, Booth R52, Hall 6

Hypetex, the market leaders in colouring carbon and natural fibre materials, will demonstrate both the processing and sustainability benefits of its patented colourisation technology when it exhibits for the first time at JEC World 2022.

Exhibiting as part of the Composites UK stand (Booth R52), Hypetex will display its portfolio of uniquely coloured carbon fibre materials including 3K woven styles, ultra-lightweight spread tow fabrics, UD, and 3D materials. Hypetex will also present details of its latest eco-friendly coloured flax materials  which combine sustainably grown natural flax with sustainable colouring technologies. Hypetex patented colouring technology, available in an extensive palette of standard and bespoke colours and shades, can be applied to traditional woven fabric constructions, non-woven UDs, spread tow and bespoke fabric designs. The technology replaces a traditional coloured painted finish, providing an exceptional depth of colour to any composite part, improving thermal conductivity and reducing heat absorption ,whilst reducing the overall weight and processing time with no compromise to the mechanical performance of the composite structure.

By removing the need for painting, and the associated preparation steps, Hypetex technology provides manufacturers with a repeatable straight out of the mould coloured finish, that is not only easy to integrate into all composite processes, but also takes additional materials, consumables, and process time out of the component cost. As part of its continued commitment to leading the drive for more sustainable composite solutions, and its focus on improvements based on the ESG framework. Hypetex will also display its new range of coloured flax fibre textiles. The advanced colouring technology used protects the natural flax fibres throughout the high temperature processes required for composite production, avoiding burning or any discolouration issues common to natural fibres. In addition, Hypetex colouring solution is an ecofriendly sustainable alternative to traditional dyeing processes which are a significant cause of global water pollution.

The Hypetex team will be on hand throughout the show to provide additional details on Hypetex materials and their integration into the manufacturing process. Visitors to the Hypetex stand will be able see Hypetex carbon and flax products in raw fabric, and how its unique colour palette translates into the most distinctive finished moulded components. Hypetex partners SHD Composites, Textreme, Sigmatex and Angeloni will also have materials and components on display at JEC World 2022, including sporting equipment such as racquets, sticks, and skateboards, which highlight the massive range of processing options and potential applications for this novel technology. One such application, the adidas Kromaskin field hockey stick, with a unique Hypetex coloured Textreme spread tow carbon finish, will also be part of the JEC Innovation Planets feature.

Source:

100% Marketing

Photo: Erema
07.04.2022

EREMA: New R&D centre for innovative recycling technologies

Construction machinery rolls into action again. The ground-breaking ceremony at the EREMA site in Ansfelden on April, 6 signals the start of work on a new R&D centre. Two halls with a total area of 1,550 square metres and a new office building with 50 workplaces will be built. The R&D centre will offer cross-departmental and cross-company test machines and laboratory for research and development of plastics recycling technologies to further advance the circular economy. Completion is scheduled for February 2023.

Plastics recycling is currently evolving very rapidly from a niche to a trend. This is driven by the legislative targets for plastics recycling that the European Union and many countries around the world have enacted, as well as by the European Green Deal, which aims to make Europe the first climate-neutral continent and in which the circular economy plays a very central role.

Construction machinery rolls into action again. The ground-breaking ceremony at the EREMA site in Ansfelden on April, 6 signals the start of work on a new R&D centre. Two halls with a total area of 1,550 square metres and a new office building with 50 workplaces will be built. The R&D centre will offer cross-departmental and cross-company test machines and laboratory for research and development of plastics recycling technologies to further advance the circular economy. Completion is scheduled for February 2023.

Plastics recycling is currently evolving very rapidly from a niche to a trend. This is driven by the legislative targets for plastics recycling that the European Union and many countries around the world have enacted, as well as by the European Green Deal, which aims to make Europe the first climate-neutral continent and in which the circular economy plays a very central role.

However, there is not just one recycling solution for all types of plastic waste, but rather different solutions depending on the type of plastic, the product and the application intended for the recycled plastic. While some plastics processing loops, such as for PET bottles, have already been closed, many other plastic waste streams still require a great deal of R&D in cooperation with everyone involved in the value chain to produce recycled pellets that meet the very highest standards for the production of new products. More space will be available for this in the new centre.

R&D is decentralised at EREMA. In recent years, approximately 5 percent of turnover was reinvested annually in research and development. Employees from different departments handle process engineering challenges, innovations in mechanical engineering and automation technology, and special technologies with a view to further improving the quality of recycled pellets. They also focus on new recycling technologies for waste plastic materials for which there is currently no satisfactory circular economy solution. The decisive factor here is also to exploit the potential of digitalisation. By collecting and analysing machine data, not only can recycling processes and product quality be further improved, but we can also develop our digital service offering for our customers. Such offerings include customer-specific information tools that feature plant and process data, predictive maintenance and online support as well as commissioning via remote access.

For material tests, which are necessary for research and development work, an expanded machine park will be available following completion of the new R&D centre. Here, the recycling process can be evaluated end-to-end, including upstream and downstream processes such as shredding and further processing of the recycled pellets. The material tests are supported by detailed analysis in the professionally equipped laboratory, which will be relocated to the new premises and upgraded where necessary with the very latest lab equipment.

More information:
EREMA plastics recycling
Source:

EREMA Engineering Recycling Maschinen und Anlagen GmbH

Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel (c) Kornit
Kornit Atlas MAX Poly
06.04.2022

Kornit Digital Printing for Unique Fashion

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

Kornit’s Atlas MAX Poly capitalizes on the demand for fashionable, unique sportswear and apparel. As the industry emerges from a post-pandemic environment in which athletic and leisurewear became mainstream, there is increasing demand for apparel combining polyester and poly-blends with vivid designs across a range of colors. Atlas MAX Poly can transform the multi-billion-dollar professional and recreational sports apparel and teamwear markets, limited today by limitations in mass customization of polyester.

“Kornit Atlas MAX Poly is a game-changer,” said Omer Kulka, Chief Marketing Officer at Kornit Digital. “As fashion and sports apparel merge, there’s new opportunity for innovative fashion on polyester, currently the fastest-growing textile vertical. For the first time, recreational sportswear, promotional, and sports brands can embrace vibrant and colorful design with Kornit’s proven MAX technology – setting superior quality standards for on-demand production previously not possible.”

Unveiled during Kornit Fashion Week Tel Aviv 2022, Atlas MAX Poly incorporates Kornit’s field-proven MAX technology for high-quality premium decoration, process automation, and smart autonomous quality control. With Kornit’s XDi decorative applications, Atlas MAX Poly enables endless designs and creativity on polyester, and empowers new styles for multiple effects and unlimited combinations such as emulating threadless embroidery, high-density vinyl, screen transfer emulations, and 3D effects.

The solution is compatible with mesh and plain fabrics, including brushed polyester, while maintaining durability and breathability. It brings the highest throughput for on-demand polyester decoration, reducing total cost of ownership to drive profitability. Customers gain competitive advantage via Pantone color-matching and a wide color gamut including neon colors for bright and vibrant impressions, using single-step mechanisms minimizing production footprints while maximizing versatility.

Beyond superior quality, graphics, color, and application variety, Kornit Atlas MAX Poly offers efficient, reliable, profitable end-to-end polyester production via:

  • Kornit’s ActiveLoad automated garment-loading and pallet adjustment for repeatable, high-quality output with minimal errors reducing time and waste, eliminating operator ramp-up and boosting throughput up to 20%.
  • Seamless integration with KornitX Global Fulfillment Network, enabling a pixel-to-parcel-to-doorstep experience. This unleashes untapped demand for polyester short-run production, personalization, and disruptive direct-to-fan and direct-to-recreational business models.
  • Integration with KornitX’s workflow ecosystem and Kornit Konnect™ dashboard, optimizing process visibility and control, adding data-driven insights for production floor efficiencies.
Beaulieu International Group
24.03.2022

Beaulieu Fibres International at IDEA®22

  • Complete fibre portfolio for geotextiles, hygiene & wipes, floor coverings, automotive, upholstery, filtration, RTM and construction
  • Increasing nonwoven & engineered fabric performance with new fibres that reduce carbon footprint & support design for recycling
  • Exploring new possibilities for collaboration using BFI’s expertise, pilot line and equipment

 Beaulieu Fibres International, the largest and most differentiated European staple fibre producer, turns the spotlight on future-focused solutions for nonwovens & engineered fabrics at IDEA®22, 28-31 March. A key priority is innovation in polyolefin and BICO fibres to advance sustainable design, end-of-life recyclability, and resource and carbon footprint reduction for industrial and hygiene applications.

Sustainability is key to Beaulieu Fibre International’s long-term strategy, and the company is heavily focused on defining its green portfolio to support evolution in diverse market applications.

  • Complete fibre portfolio for geotextiles, hygiene & wipes, floor coverings, automotive, upholstery, filtration, RTM and construction
  • Increasing nonwoven & engineered fabric performance with new fibres that reduce carbon footprint & support design for recycling
  • Exploring new possibilities for collaboration using BFI’s expertise, pilot line and equipment

 Beaulieu Fibres International, the largest and most differentiated European staple fibre producer, turns the spotlight on future-focused solutions for nonwovens & engineered fabrics at IDEA®22, 28-31 March. A key priority is innovation in polyolefin and BICO fibres to advance sustainable design, end-of-life recyclability, and resource and carbon footprint reduction for industrial and hygiene applications.

Sustainability is key to Beaulieu Fibre International’s long-term strategy, and the company is heavily focused on defining its green portfolio to support evolution in diverse market applications.

Bio-based fibres
From June 2022, Beaulieu Fibres International will offer ISCC+ certification on mono-PP and BICO PP/PE fibres. The fibres will be offered in 1,3-8,9 dtex and will be available with all the main available finish classes (ie. hydrophilic, hydrophobic, etc.) suitable for the main carding and consolidation technologies. These drop-in solutions with no loss in quality will support customers looking to reduce reliance on virgin fossil carbon in their nonwoven and engineered fibre applications. The bio-based fibres enable customers to contribute to the transition towards a circular economy.

Achieving material savings
For customers in industrial segments like geotextiles, high-tenacity HT8 staple fibres enable customers to achieve nonwovens for construction projects with high mechanical performance but with 15% less weight. The durability of the fibres means that customers can use less raw material for a longer service lifetime, supporting more sustainable design in addition to resource reduction.
For hygiene nonwovens, the Meralux fibres provide significant sustainable design advantages. Meralux fibres deliver substantial sustainability benefits including around 55% savings in raw materials, with equivalent carbon emission savings. These emission savings are thanks to weight reduction in nonwovens with the same coverage level and also the higher recyclability of PP/PE compared to BICO materials.

Source:

Beaulieu International Group

16.03.2022

TMAS: TEXO AB sees Demand for Compfelt Weaving Looms

TEXO AB, a member of TMAS, the Swedish textile machinery association, is currently seeing a surge in demand for its Compfelt weaving looms for press felt base fabrics.

“These are far from standard machines,” explains TEXO President Anders Svensson. “Off-the-shelf industrial weaving machines generally range in their working widths from 1.9 to 3.2 metres, with those purpose-built for technical applications such as geotextiles extending to wider widths of six metres and beyond. Meanwhile, one of the machines we have recently successfully delivered and commissioned has a working width of 23 metres and is not even the widest of the many such machines the company has engineered and delivered worldwide since its formation.”

A second recently-delivered line has a more modest working width – in relative terms – of 13 metres.

TEXO AB, a member of TMAS, the Swedish textile machinery association, is currently seeing a surge in demand for its Compfelt weaving looms for press felt base fabrics.

“These are far from standard machines,” explains TEXO President Anders Svensson. “Off-the-shelf industrial weaving machines generally range in their working widths from 1.9 to 3.2 metres, with those purpose-built for technical applications such as geotextiles extending to wider widths of six metres and beyond. Meanwhile, one of the machines we have recently successfully delivered and commissioned has a working width of 23 metres and is not even the widest of the many such machines the company has engineered and delivered worldwide since its formation.”

A second recently-delivered line has a more modest working width – in relative terms – of 13 metres.

Paper machines
The demand for such machines comes from the suppliers of paper machine clothing (PMC) to paper mills, who in turn operate colossal machines for paper manufacturing.
On of the largest paper making machines is currently believed to be located on Hainan Island off the southern coast of China and is 428 metres long – roughly the length of four football pitches. Naturally, such machines require equally large-scale components, which is where TEXO comes in. All paper machines require a regular supply of PMC fabrics which are employed in three separate areas of the paper machine – the forming section, the press section and the drying section.

Press felts
TEXO Compfelt weaving machines are specifically employed for the production of endless (tubular) woven base fabrics for the press section of paper machines, where water is mechanically removed from the newly formed sheet of fibres. In the simplest press, the sheet is carried by the PMC fabric between two rolls, where water is squeezed out by the application of load and pressure. This can also be assisted by the use of vacuum and heat. The PMC fabrics here need to be replaced regularly, with a maximum lifespan of six months.

Press felts have become increasingly sophisticated over the years, consisting of complex woven base structures which are subsequently combined with nonwovens via needlepunching on equally huge machines. The woven base fabrics are primarily made from polyamide for its strength and hygroscopic and elastic properties.

Dobby harness
“A major refinement of the machine has been the ability to equip it with up to 24 dobby harness frames to meet the demand for sophisticated structures from the PMC manufacturers. Although the PMC business represents a small proportion of the total cost of manufacturing paper, it can have a significant impact on the quality of the paper, the efficiency of a machine and machine production rates.”

Another significant development has been that of a self supporting base pre-filled with concrete, which has eliminated the need to dig out foundations in a plant to support the machine.

Retrofits
TEXO’s looms are built to last, but technology moves forward, and the company is also currently active in the retrofitting of existing machines built as far back as the 1970s.

Integration
TEXO has also just integrated its offices and production centre at its base in Älmhult, Sweden, to create a unified 5,000 square metre site.

Source:

TMAS / AWOL Media

Photo: Pixabay
10.03.2022

Carbios: White PET fiber from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste
Worldwide, around 90 million tons of PET are produced each year, more than 2/3 of which are used to manufacture fibers. However, only 13% of textile waste is currently recycled, mainly for downcycling, i.e. for lower quality applications (such as padding, insulators or rags). By successfully manufacturing at pilot scale a white PET fiber that is 100% enzymatically recycled from colored textile waste, Carbios is paving the way for the circular economy in the textile industry.  C-ZYME™ is now on the doorstep of industrialization and will soon enable the biggest brands to move closer to their sustainability goals.
 
Emmanuel Ladent, Chief Executive Officer of Carbios: « Thanks to our breakthrough process, it will soon be possible to manufacture, on a large scale, t-shirts or bottles using polyester textile waste as raw material. This is a major breakthrough that gives value to waste that currently has little or no value. It is a concrete solution that opens up a global market of 60 million tons per year of potential raw materials and will help to reduce the use of fossil resources. »
 
Separate collection of textile waste soon to be mandatory in Europe
From 1 January 2025 the separate collection of textile waste, which is already in place in some countries, will be mandatory for all EU Member States (European Directive 2018/851 on waste).  Carbios’ process will enable this waste to be sustainably recovered and included in a true circular economy model.
 
These technological validations were carried out as part of the CE-PET research project, co-funded by ADEME3. In particular, the project aimed to develop Carbios’ enzymatic PET recycling process on textile waste. The C-ZYME™ technology is complementary to thermomechanical recycling and will make it possible to process plastic and textile waste deposits that are currently not or poorly recovered. For the validation of this stage of the project, Carbios received €827,200 (€206,800 in grants and €620,400 in repayable advances).

More information:
Carbios PET textile waste
Source:

Carbios