From the Sector

Reset
86 results
26.10.2021

We aRe SpinDye with its resource-saving dyeing technology in new collaboration

With its resource-saving dyeing technology, We aRe SpinDye takes place in H&M's latest Innovation Stories collection called Co-exist.

The use of We aRe SpinDye's technology contributes to reducing both water consumption and CO2 emissions, which in turn leads to a lower impact on the world's ecosystem and creates conditions for our co-existence with nature.

Up to 24% of a garment's entire climate footprint occurs during dyeing. We aRe SpinDye's technology can reduce the consumption of the earth's resources in textile production. On average, the reduction of water is -75%, chemicals -90% and energy consumption and CO2 emissions -30%.

In just one year, the clothing industry uses 9 billion cubic meters of water (which is in line with the annual need for drinkingwater for the entire population of our planet) and 168 million tons of process chemicals to dye fabrics. We aRe SpinDye now hopes that more players in the industry will pay attention to the ways that are available when it comes to resource-efficient dyeing process and quickly implement this technology in their production.

With its resource-saving dyeing technology, We aRe SpinDye takes place in H&M's latest Innovation Stories collection called Co-exist.

The use of We aRe SpinDye's technology contributes to reducing both water consumption and CO2 emissions, which in turn leads to a lower impact on the world's ecosystem and creates conditions for our co-existence with nature.

Up to 24% of a garment's entire climate footprint occurs during dyeing. We aRe SpinDye's technology can reduce the consumption of the earth's resources in textile production. On average, the reduction of water is -75%, chemicals -90% and energy consumption and CO2 emissions -30%.

In just one year, the clothing industry uses 9 billion cubic meters of water (which is in line with the annual need for drinkingwater for the entire population of our planet) and 168 million tons of process chemicals to dye fabrics. We aRe SpinDye now hopes that more players in the industry will pay attention to the ways that are available when it comes to resource-efficient dyeing process and quickly implement this technology in their production.

"The enormous resource consumption in the dyeing process is a global problem that must be addressed on a broad front. It is therefore inspiring to work with major brands with an organization that is sensitive to cutting-edge expertise and at the same time shows a willingness to work together to achieve common goals", says Andreas Andrén, CEO of We aRe SpinDye.

Source:

We aRe SpinDye

25.10.2021

TMAS members showcase sustainable finishing technologies

Members of TMAS – the Swedish textile machinery association – are proving instrumental in pioneering new sustainable processes for the dyeing, finishing and decoration of textiles.

The wasteful processes involved in these manufacturing stages are only one component in the development of viable circular supply chains for textiles that are now being established in Sweden.

At the recent Conference on Sustainable Finishing of Textiles, held across three separate afternoons on September 30th, October 1st and October 7th, delegates heard that Sweden will introduce extended producer responsibility (EPR) for waste textiles and clothing at the beginning of 2022, ahead of the adoption of a similar European Union-wide EPR system in 2025.

New fibers
Swedish companies are also active in the development of new fibers derived from waste clothing, building on the country’s legacy leadership in pulp and paper production.

Members of TMAS – the Swedish textile machinery association – are proving instrumental in pioneering new sustainable processes for the dyeing, finishing and decoration of textiles.

The wasteful processes involved in these manufacturing stages are only one component in the development of viable circular supply chains for textiles that are now being established in Sweden.

At the recent Conference on Sustainable Finishing of Textiles, held across three separate afternoons on September 30th, October 1st and October 7th, delegates heard that Sweden will introduce extended producer responsibility (EPR) for waste textiles and clothing at the beginning of 2022, ahead of the adoption of a similar European Union-wide EPR system in 2025.

New fibers
Swedish companies are also active in the development of new fibers derived from waste clothing, building on the country’s legacy leadership in pulp and paper production.

At the Sustainable Finishing of Textiles Conference, however, it was said that all of the environmental gains made by such sustainable new fibers can potentially be cancelled out in the further processing they are subjected to – and especially in resource-intensive conventional dyeing, finishing and decoration.

TMAS members Baldwin Technology and Coloreel have both developed solutions to address this issue.

TexCoat G4
During the conference, Baldwin’s VP of Global Business Development Rick Stanford explained that his company’s TexCoat G4 non-contact spray technology significantly reduces water, chemistry and energy consumption in the finishing process. It consistently and uniformly sprays chemistry across a fabric surface and applies it only where needed, on one or both sides.

Instant coloring
Coloreel’s CEO Mattias Nordin outlined the benefits of his company’s technology which enables the high-quality and instant coloring of a textile thread on-demand and can be paired with any existing embroidery machine without modification. This enables unique effects like shades and gradient to be achieved in an embroidery for the first time.

(c) Marchi & Fildi Group
19.10.2021

Marchi & Fildi Group: Positive balance for 10 years of the photovoltaic installation

10 years after the installation of the photovoltaic plant in the production units in the Biellese region, the Marchi & Fildi Group takes stock of the operation and publishes the data on energy produced, consumed, and fed back into the grid.

The photovoltaic plant owned by the Group is made up of 11,385 modules divided between the three facilities in Biella (Production), Cerrione (Dyeing mill) and Verrone (Logistics), which in total cover a surface of 16,515 sq.m.

The balance to be drawn from these 10 years is a positive one: in total 22,974,828 kWh have been produced, of which 7,292,027 kWh have been used in company activities, with a saving in energy costs of approximately €1m over 10 years.  

The energy kWh produced and not used by the company was fed back into the grid and corresponds to the average annual consumption of around 4630 families.*

10 years after the installation of the photovoltaic plant in the production units in the Biellese region, the Marchi & Fildi Group takes stock of the operation and publishes the data on energy produced, consumed, and fed back into the grid.

The photovoltaic plant owned by the Group is made up of 11,385 modules divided between the three facilities in Biella (Production), Cerrione (Dyeing mill) and Verrone (Logistics), which in total cover a surface of 16,515 sq.m.

The balance to be drawn from these 10 years is a positive one: in total 22,974,828 kWh have been produced, of which 7,292,027 kWh have been used in company activities, with a saving in energy costs of approximately €1m over 10 years.  

The energy kWh produced and not used by the company was fed back into the grid and corresponds to the average annual consumption of around 4630 families.*

The Marchi & Fildi Group has always been committed to rationalising electric energy consumption with the aim of contributing towards an eco-sustainable development without compromising the rate of production and the ability to grow. In addition to producing its own electric energy, over the years, the company has also achieved an increasing number of Energy Efficiency Titles (TEE), otherwise known as white certificates. In 2021, 138 TEEs have been awarded as a result of such interventions as the introduction of LED lighting and the optimisation of the production processes which, while still as efficient as before, permit the company to reduce the electric energy consumption of the machinery.

*In the meter class for the range of 3kW to 4.5 kW, the average consumption for residential properties is the equivalent of 3,382 kWh (source: Arera Relazione annual state of services for the year 2020). The calculations are the results of an internal study conducted by the Marchi & Fildi Group.

Source:

Marchi & Fildi Group

14.10.2021

Monforts: Automated finishing at Knopf’s Sohn

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

Knopf’s Sohn, a contract finisher of technical textiles, has installed a fully automated Montex stenter at its plant in Helmbrechts, Germany.
Knopf’s Sohn is processing technical textiles for the automotive, aerospace, home furnishings and workwear markets, based on wool, cellulose, polyamide and polyester fabrics, along with elastane blends, in weights of 80-800gsm.

The Montex machinery range is constantly being upgraded to meet evolving customer needs for greater automation, ease of operation and energy optimisation. The latest ten chamber line at Knopf’s Sohn, with a working width of up to 2.0 metres, was engineered to specific requirements in order to accelerate the company’s move to fully automatic control of its production, and high scaffolding was required for its installation.

The line benefits from two integrated ECO Booster modules to provide high energy savings. These compact, air-to-air heat exchangers, installed within the roof structure of the line, exploit energy from the exhaust gas to preheat up to 60% of the incoming fresh air entering the stenter.

The use of a single ECO Booster unit has been calculated to save up to 35% in energy costs, based on fixation processes. Fully automatic operation, set at the Monforts Qualitex control unit, ensures there is no additional burden on the machine operator.

The line is powered by Exxotherm indirect heating, which practically eliminates the yellowing which can be experienced during the treatment of certain polyamide and elastane-based fabrics, and is also equipped with a Conticlean circulating air filter system for constant high drying capacity.

Software
The latest Qualitex visualisation software offers operators reliability and easy control with its full HD multi-touch monitor and slider function, dashboard function with individual adaptation to operating states and faster access to comprehensive recipe data management.

With the Monformatic control system, the exact maintenance of the dwell time in combined treatment processes (drying and heat-setting) can be monitored. When the heat-setting point is reached, the fan speed is automatically adjusted, keeping energy consumption fully under control.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

14.10.2021

Baldwin brings new connected technology to FEFCO Technical Seminar

Baldwin Technology Company Inc. will showcase its new portfolio of optimized LED-UV curing, IRdrying and automated cleaning solutions—all specifically designed for corrugated high-graphics printers—at the European Federation of Corrugated Board Manufacturers (FEFCO) Technical Seminar, held October 20 to 22 in Copenhagen, Denmark.

Baldwin’s FlexoCleanerBrush™ removes hickeys in four seconds and can clean plates within three to four minutes, increasing print quality and providing a cleaner, safer work environment. This automated cleaner removes fibers, debris and fine lines from printing plates at the beginning, during or at the end of a job, allowing printers to achieve optimal quality with minimal downtime—Baldwin has a proven track record of enabling significant productivity improvements for its long list of customers. Designed to replace all manual activities, this cleaning system eliminates skin contact with wash agents, increasing workers’ safety.

Baldwin Technology Company Inc. will showcase its new portfolio of optimized LED-UV curing, IRdrying and automated cleaning solutions—all specifically designed for corrugated high-graphics printers—at the European Federation of Corrugated Board Manufacturers (FEFCO) Technical Seminar, held October 20 to 22 in Copenhagen, Denmark.

Baldwin’s FlexoCleanerBrush™ removes hickeys in four seconds and can clean plates within three to four minutes, increasing print quality and providing a cleaner, safer work environment. This automated cleaner removes fibers, debris and fine lines from printing plates at the beginning, during or at the end of a job, allowing printers to achieve optimal quality with minimal downtime—Baldwin has a proven track record of enabling significant productivity improvements for its long list of customers. Designed to replace all manual activities, this cleaning system eliminates skin contact with wash agents, increasing workers’ safety.

For wide-format flexo corrugated box printing, Baldwin’s AMS Spectral UV has engineered CorruCure™, a new generation of LEDUV technology that offers more than a 60% reduction in power consumption in an ultra-compact UV lamp head. This revolutionary solid-state curing system, designed specifically for corrugated LED printing, emits almost no heat or ozone, and accommodates width-switching. It also enables the curing of high-value decorative solutions, such as full-gloss, spot and matte coating effects on a variety of corrugated substrates, making it the ideal addition for product enhancement.

Lastly, Baldwin’s FlexoDry2™ infrared dryer, developed for corrugated flexo printing presses, utilizes patented Diamond IR lamps capable of reducing energy consumption by up to 30%, when compared to traditional IR dryers with aluminum or gold reflectors. Dramatically improved drying enhances color definition, and reduces or eliminates marking, while allowing full-speed printing. The system offers an optional integrated hot-air knife with temperature control to provide better surface drying. Taking safety into consideration, the FlexoDry2 comes with an integrated safety light curtain as standard and an optional camera vision system.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

EPTA highlights opportunities for pultruded composites in energy-efficient building (c) EPTA
Arte Charpentier Architectes
06.10.2021

EPTA highlights opportunities for pultruded composites in energy-efficient building

Buildings are responsible for approximately 40% of all energy consumption and 36% of CO2 emissions in the EU. Improving energy efficiency in buildings therefore has a key role to play in achieving the ambitious goal of carbon neutrality by 2050 set out in the European Green Deal. A new briefing from the European Pultrusion Technology Association (EPTA) discusses how composite materials can help improve the thermal performance of the building envelope to satisfy increasingly stringent energy efficiency regulations. The EPTA report, Opportunities for pultruded composites in energy-efficient buildings, explains how pultruded profiles offer durable,  low maintenance solutions which can help reduce both operational and embodied carbon emissions from buildings in applications including energy-saving windows, thermal break connectors, and solar shading and cladding systems.   

Buildings are responsible for approximately 40% of all energy consumption and 36% of CO2 emissions in the EU. Improving energy efficiency in buildings therefore has a key role to play in achieving the ambitious goal of carbon neutrality by 2050 set out in the European Green Deal. A new briefing from the European Pultrusion Technology Association (EPTA) discusses how composite materials can help improve the thermal performance of the building envelope to satisfy increasingly stringent energy efficiency regulations. The EPTA report, Opportunities for pultruded composites in energy-efficient buildings, explains how pultruded profiles offer durable,  low maintenance solutions which can help reduce both operational and embodied carbon emissions from buildings in applications including energy-saving windows, thermal break connectors, and solar shading and cladding systems.   

“Economic and population growth mean energy demand is set to rise, making energy efficiency measures even more critical,“ comments Dr Elmar Witten, Secretary of EPTA. “Regulations and standards will continue to push for lower U-values for building elements, driving the increase use of materials and designs which minimise operational carbon emissions. Pultruded profiles offer an attractive combination of properties for designers of energy-efficient buildings – low thermal conductivity to minimise thermal bridging, together with excellent mechanical performance, durability, and design freedom.“  
 
It is estimated that today, roughly 75% of the EU building stock is energy inefficient, meaning that a large part of the energy used goes to waste. This energy loss can be minimised by improving existing buildings and striving for smart solutions and energy efficient materials for new builds. Areas of focus include improving glazing systems, better insulation of envelope components, and reducing unwanted solar heat gains. The low thermal conductivity of composites is being exploited in components and structures that help to minimise energy required for space conditioning. 

  • Energy-saving windows and doors
  • Thermal break connectors and structural assemblies
  • Solar shading systems
  • Rainscreen cladding and curtain wall facades
  • Building a sustainable future
(c) Trützschler
Ralf Helbig, R & D Engineer for Air Technology (left) and Christian Freitag, Head of Air Technology at Trützschler (right).
27.09.2021

Trützschler: TC 19i sets the benchmark for energy-efficient carding

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

Global energy consumption reached a record high in 2019, following a 40-year trend for rapidly increasing energy demand that was only halted by the Coronavirus pandemic. It’s estimated that more than 80 % of this energy is still generated from fossil fuels that produce CO2 emissions and contribute to climate change. Renewable energy offers a solution to this problem, but saving energy whenever possible is an even more effective approach. That are the motives for Trützschler to develop the intelligent card TC 19i, which sets a new benchmark for energy-efficient carding.

The intelligent Trützschler card TC 19i features the unique T-GO gap optimizer, which continuously and automatically monitors and adjusts the carding gap to an ideal position during production. Innovative drive- and air technology further reduce energy consumption of the TC 19i.

The most energy-intensive elements in a carding machine are the drive, the dust suction process and the compressed air system. Permanent suction is needed to remove dust and cotton waste in key places. Smart optimization of these areas has made the intelligent card TC 19i a benchmark for energy efficiency in carding because it uses less electricity, lower suction pressure and less compressed air than other machines, while providing the highest production rates currently available on the market.

In a head-to-head comparison between the TC 19i and a high-performance card from a competitor, the TC 19i consumed at least 10 % less energy per kilogram of material produced when manufacturing rotor yarn from a cotton and cotton waste mix. The compared energy values included electric power consumption and energy required for suction and compressed air and were measured in both cards at the same production of 180 kg/h. A 10 % reduction in energy per kilogram of sliver produced, as proven here by TC 19i, can have a significant impact on a spinning mill’s profitability; annual savings worth a five-digit sum are frequently possible, depending on factors such as the output of the mill. The customer trial also showed TC 19i’s excellent reliability at the customer’s usual production rate of 180 kg/h, and even demonstrated stable performance at 300 kg/h in the same application. Because the TC 19i with T-GO gap optimizer realizes maximum production rates at no compromise in quality, manufacturers can reduce their energy demand and investment costs drastically: Less machines are needed to achieve the desired output, and energy consumption per production is reduced.

This improvement was made possible by a long and sometimes challenging innovation process involving mathematical models of air flows, as well as flow simulations and prototypes. By combining the final flowoptimized parts in the TC 19i, Trützschler’s experts have developed a card that operates with suction pressure of just -740 Pa and with an air requirement of only 4200 m³/h. This translates into 40 % less energy demand for air technology compared to the latest high-performance competitor model.

More information:
Trützschler carding technology
Source:

Trützschler

(c) Notus Composites. Notus NE7 low temperature curing prepreg
15.09.2021

Notus Composites Launches New Low Temperature Curing NE7 Epoxy Prepreg

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

Notus Composites (UAE), the award-winning producer of epoxy prepreg materials, announces the latest addition to its high-performance epoxy range with the launch of its new NE7 low temperature curing prepreg system. The Notus NE7 formulation allows composite manufacturers to cure components at temperatures as low as 70˚C, reducing energy consumption and enabling more cost-effective tooling options.

Notus Composites has developed the new NE7 prepreg systems for applications across the Marine, Architecture, Industrial and Wind Energy sectors, with the novel low temperature curing chemistry delivery significant cost benefits. Existing prepreg manufacturers can now use more cost-effective composite tooling, with new prepreg users able to switch easily from existing infusion or wet laminating processes without creating expensive new high temperature tooling.

NE7 prepregs can be cured at temperatures as low as 70˚C, with the standard cure cycle being 12 hours at 70˚C, matching the typical cycle time for an infused part with a component Tg of 85˚C. NE7 materials have a good outlife of 30 days at 20˚C and are available in all prepreg and Notus single sided N1-Preg formats with unidirectional, multiaxial, and woven reinforcements. NE7 can also be supplied as a resin film.

Notus has recently supplied NE7 low temperature prepregs to Dubai based Aeolos Composites for the production of their new Aeolos P30 racing yacht. The P30 is a futuristic new craft created by top German sailor and designer, Hans Genthe, with a super light carbon fibre construction and large sail area that promises spectacular on the water performance for a thirty foot yacht. Notus delivered a range NE7 prepregs for the build, including woven, multiaxial, and unidirectional carbon fibre reinforcements as well as adhesive films for core bonding.

More information:
Notus prepreg material
Source:

Notus Composites.

01.09.2021

CHT Group generates 62% of 2020 sales with sustainable products

  • Sustainability Report 2020 published

As an internationally positioned company, the CHT Group is one of the leading suppliers of speciality chemicals. The company supplying chemical products for the most diverse applications and industries, presented their annual edition of the Sustainability Report, for the period January to December 2020,

The report has been prepared in accordance with the standards of the Global Reporting Initiative (GRI) and is based on the Core option. The focus is on human resources development, energy and water consumption as well as company-wide emissions and waste management.

Particularly noteworthy here is the group-wide reduction in specific resource consumption in the areas under review. In relation to the volume produced, for example, the following key figures show the reduction of environmental impacts:

  • Sustainability Report 2020 published

As an internationally positioned company, the CHT Group is one of the leading suppliers of speciality chemicals. The company supplying chemical products for the most diverse applications and industries, presented their annual edition of the Sustainability Report, for the period January to December 2020,

The report has been prepared in accordance with the standards of the Global Reporting Initiative (GRI) and is based on the Core option. The focus is on human resources development, energy and water consumption as well as company-wide emissions and waste management.

Particularly noteworthy here is the group-wide reduction in specific resource consumption in the areas under review. In relation to the volume produced, for example, the following key figures show the reduction of environmental impacts:

  • 21% share of renewable energies in total consumption
  • 440,000 EUR investment in environmental protection and nature conservation
  • 5.8% less energy consumption and less CO2 emission

62% of CHT Group's 2020 sales were generated with sustainable products. For this, 91% of the strategic raw material volume was sourced from suppliers classified as sustainable.

At the center of the report are the current working topics and outlooks that showcase CHT's commitment to sustainability and its innovative strength to achieve the United Nations Sustainable Development Goals (SDGs).

CHT considers 11 of the SDGs to be particularly relevant for the future of the Group of companies. For this reason, the recently revised global corporate strategy is directly geared to the Sustainable Development Goals of the United Nations.

The current edition of the report, which is published for the first time exclusively online in a resource-saving manner, is available here: https://sustainability-report.cht.com

More information:
CHT Group Sustainability Report
Source:

CHT Gruppe

(c) Autefa
25.08.2021

Swiss Textile Machinery: Top Technology for Nonwovens

Originally conceived as a low-cost, high-volume alternative to knitting and weaving, nonwovens was already expanding its market boundaries by the 1970s with new applications in ‘disposables’ such as diapers, hygiene and teabags.

In the past five decades, the nonwovens business has exploded in all directions, reaching a global market worth USD 40.5 billion in 2020, projected to grow to USD 53.5 billion by 2025. This annual growth rate of 5.7% (MarketsandMarkets, Nonwoven Fabric Market Report) is based on countless new applications and expansion into durable, as well as additional disposable, products.

Major growth drivers include the hygiene sector, and filtration media for power plants and air conditioning systems. Especially during the peak of the COVID pandemic in 2020 and 2021, demand in the hygiene sector multiplied. Worldwide capacities for both meltblown and spunlace production rocketed compared to a normal business year. Swiss Autefa Solutions, for example, significantly benefited from this trend, notably with the launch of a fully-automatic machine for producing face masks.

Originally conceived as a low-cost, high-volume alternative to knitting and weaving, nonwovens was already expanding its market boundaries by the 1970s with new applications in ‘disposables’ such as diapers, hygiene and teabags.

In the past five decades, the nonwovens business has exploded in all directions, reaching a global market worth USD 40.5 billion in 2020, projected to grow to USD 53.5 billion by 2025. This annual growth rate of 5.7% (MarketsandMarkets, Nonwoven Fabric Market Report) is based on countless new applications and expansion into durable, as well as additional disposable, products.

Major growth drivers include the hygiene sector, and filtration media for power plants and air conditioning systems. Especially during the peak of the COVID pandemic in 2020 and 2021, demand in the hygiene sector multiplied. Worldwide capacities for both meltblown and spunlace production rocketed compared to a normal business year. Swiss Autefa Solutions, for example, significantly benefited from this trend, notably with the launch of a fully-automatic machine for producing face masks.

The automotive industry is the second big growth area, with many new applications being pioneered. The trend to electric and hybrid vehicles has helped this, as nonwovens reinforced with carbon fibres are widely used as battery housings.

Swiss nonwovens competence
Innovative applications across all sectors have driven the rapid evolution of sophisticated nonwovens machinery. Today’s trends demand higher productivity, sustainability and Industry 4.0 compatibility – demonstrated by the full equipment portfolio of Swiss Textile Machinery member Autefa Solutions. With V-Jet Futura, the company recently sealed the link in its product range between web forming and drying technology. This latest Hydroentanglement Machine, together with the SQ-V Square Drum Dryer, embodies advanced technology combined with significant reductions in energy consumption compared to other process solutions.

A vital contribution to nonwovens production is offered by Rieter subsidiary Graf, a leading supplier of clothing and combs for carding and combing processes in spinning and nonwovens. Graf's Hipro card clothings – suitable for any man-made fibres in the nonwovens sector – are focussing on higher productivity. Their superior performance delivers up to 10% higher throughput and greater carding efficiency compared to conventional clothings. These reliable card clothing elements also ensure a consistently reproducible high web quality, as well as 20% fewer failures in the web, thanks to the precise fibre transfer to and from the cylinder.

Another constant trend in nonwovens today is the drive for better quality. Manufacturers want to take charge of contamination levels in their processes, as well as eradicating defects which may arise during production. Uster Technologies, a leading provider of quality management solutions from fibre to fabric, offers a combined solution to achieve both these required quality standards. At the fibre preparation stage, Uster Jossi Vision Shield N ensures the best possible initial inspection and removal of contamination. Then, at the end of the production sequence, Uster EVS Fabriq Vision N handles automated detection and marking of all the main defects caused during production. This combined solution avoids material waste and takes full advantage of the potential for process optimization.

Source:

Swiss Textile Machinery Association

(c) Suominen Corporation
24.08.2021

Suominen: Progress in Sustainability, decreasing EBITDA expected

As part of Suominen Corporation’s Half-Year Financial Report for January 1 – June 30, 2021 the company shared their insights and actions defined in their sustainability agenda.
A new Code of Conduct was launched in the beginning of 2021 and a mandatory training program about the Code will be start in the third quarter of this year.

Suominen is committed to continuously improving their production efficiency and the efficient utilization of natural resources. What active measures towards reducing energy consumption, greenhouse gas emissions, water consumption and waste to landfill are concerned, the commitment is to diminish them by 20% per ton of product by 2025 compared to the base year of 2019.
Offering a comprehensive portfolio of sustainable nonwovens and continuously developing new and innovative solutions with a reduced environmental impact, the target is a 50% increase in sales of sustainable nonwovens by 2025 compared to 2019, and to have at least 10 sustainable product launches per year. During the first half of the year, nine sustainable product launches were made.

As part of Suominen Corporation’s Half-Year Financial Report for January 1 – June 30, 2021 the company shared their insights and actions defined in their sustainability agenda.
A new Code of Conduct was launched in the beginning of 2021 and a mandatory training program about the Code will be start in the third quarter of this year.

Suominen is committed to continuously improving their production efficiency and the efficient utilization of natural resources. What active measures towards reducing energy consumption, greenhouse gas emissions, water consumption and waste to landfill are concerned, the commitment is to diminish them by 20% per ton of product by 2025 compared to the base year of 2019.
Offering a comprehensive portfolio of sustainable nonwovens and continuously developing new and innovative solutions with a reduced environmental impact, the target is a 50% increase in sales of sustainable nonwovens by 2025 compared to 2019, and to have at least 10 sustainable product launches per year. During the first half of the year, nine sustainable product launches were made.

OUTLOOK FOR 2021
As announced on August 12, 2021 Suominen expects that its comparable EBITDA (earnings before interest, taxes, depreciation and amortization) in 2021 will decrease from 2020 due to the slowdown in the demand for nonwovens in the second half of 2021 as well as some continuing volatility in the raw material and transportation markets. In 2020, Suominen’s comparable EBITDA was EUR 60.9 million.

More information:
Suominen nonwovens
Source:

Suominen Corporation

(c) Brückner Trockentechnik GmbH & Co. KG
BRÜCKNER ECO-HEAT and ECO-AIR system on the stenter at FEINJERSEY
19.08.2021

Sustainable production technology from BRÜCKNER

  • Long-term partnership between the Austrian textile producer FEINJERSEY and the German textile machinery manufacturer BRÜCKNER

The Feinjersey Group is an internationally operating textile company and supplies the "global players" of the textile industry worldwide. The value chain of the company, which is based in Götzis, Austria, ranges from yarn processing to the finished product.

As a fully integrated production company, the internationally active textile company Feinjersey attaches great importance to a high quality standard and guarantees care at every step in the process chain. With approx. 250 employees and annual sales of around 45 million euros, the company knits, dyes and finishes top-quality knitted fabrics as well as elastic woven fabrics for a wide range of applications.

Products are made for the fashion, sports, workwear and technical textiles sectors. Among other things, fabrics for the automotive industry, laminating backings and coating substrate for artificial leather or foils, construction textiles or fabrics for medical technology are all produced.

  • Long-term partnership between the Austrian textile producer FEINJERSEY and the German textile machinery manufacturer BRÜCKNER

The Feinjersey Group is an internationally operating textile company and supplies the "global players" of the textile industry worldwide. The value chain of the company, which is based in Götzis, Austria, ranges from yarn processing to the finished product.

As a fully integrated production company, the internationally active textile company Feinjersey attaches great importance to a high quality standard and guarantees care at every step in the process chain. With approx. 250 employees and annual sales of around 45 million euros, the company knits, dyes and finishes top-quality knitted fabrics as well as elastic woven fabrics for a wide range of applications.

Products are made for the fashion, sports, workwear and technical textiles sectors. Among other things, fabrics for the automotive industry, laminating backings and coating substrate for artificial leather or foils, construction textiles or fabrics for medical technology are all produced.

The Austrian textile manufacturer has been certified with the Bluesign textile seal and ensures efficient use of resources with modern machinery. Water and energy consumption as well as pollutant emissions are to be reduced to a minimum.

In textile finishing in particular, the focus is on minimising energy consumption as this process is the most energy-intensive in the entire process chain. Feinjersey uses its own photovoltaic system for this purpose, as well as the heat recovery and exhaust air purification systems on the stenter frames. By using the waste heat from production, the company's buildings are heated. All six stenter frames at Feinjersey are made by BRÜCKNER and produce with three-stage heat recovery and exhaust air purification systems.

The latest BRÜCKNER line has a working width of 4.20 m and is mainly used for the finishing of high-ly elastic and extremely sensitive knitted fabric. In order to avoid yellowing on the fabric, the stenter is equipped with an indirect gas heating system. The knitting oil vapours coming from the fabric during the heat-setting process are extracted from the dryer and cleaned in a BRÜCK-NER ECO-AIR exhaust air cleaning system before being extracted to atmosphere. The complete exhaust air treat-ment on the newest stenter is carried out by a multistage BRÜCKNER ECO-HEAT and ECO-AIR system.

Source:

Brückner Trockentechnik GmbH & Co. KG

TexCoat G4 non-contact precision spray fabric-finishing system (c) Baldwin Technology Company Inc.
02.08.2021

Baldwin at Techtextil North America

  • Introducing TexCoat G4 to US textile industry
  • Non-contact precision spray fabric-finishing system enhances sustainability and process control

Baldwin Technology Company Inc. will be showcasing its TexCoat G4 non-contact precision spray fabric-finishing system at the Techtextil North America trade show, held Aug. 23 to 25, in Raleigh, North Carolina.

With extensive sustainability benefits, unprecedented tracking and process control, and Industry 4.0 integration, the TexCoat G4 provides consistently high-quality fabric finishing, with no chemistry waste, and significantly reduced water and energy consumption.

Baldwin’s innovative non-contact spray technology eliminates chemistry dilution in wet-on-wet processes. The TexCoat G4 consistently and uniformly sprays chemistry across the fabric surface and applies it only where needed, on one or both sides.

  • Introducing TexCoat G4 to US textile industry
  • Non-contact precision spray fabric-finishing system enhances sustainability and process control

Baldwin Technology Company Inc. will be showcasing its TexCoat G4 non-contact precision spray fabric-finishing system at the Techtextil North America trade show, held Aug. 23 to 25, in Raleigh, North Carolina.

With extensive sustainability benefits, unprecedented tracking and process control, and Industry 4.0 integration, the TexCoat G4 provides consistently high-quality fabric finishing, with no chemistry waste, and significantly reduced water and energy consumption.

Baldwin’s innovative non-contact spray technology eliminates chemistry dilution in wet-on-wet processes. The TexCoat G4 consistently and uniformly sprays chemistry across the fabric surface and applies it only where needed, on one or both sides.

Customers can expect no bath contamination during the finishing process, as well as minimal downtime during changeovers, which are made easy with recipe management that includes automated chemistry and coverage selection. The TexCoat G4 also enhances sustainability by wasting no chemistry during color, fabric or chemistry changeovers, and because only the required chemistry volume is applied to the fabric, wet pick-up levels can be reduced by up to 50 percent—leading to 50 percent less water and energy consumption.

Furthermore, in single-side applications, drying steps can be eliminated for various textiles, including those that are back-coated and laminated, thereby streamlining and simplifying the production process.

Source:

Baldwin Technology Company Inc.

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
20.07.2021

Baldwin to unveil FlexoCleanerBrush™ at SuperCorrExpo

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Baldwin Technology Company Inc. will showcase a new generation of innovative technologies for optimized corrugated high-graphics package printing at SuperCorrExpo, taking place in Orlando, Florida, from Aug. 8 to 12.

The FlexoCleanerBrush™ enhances the print quality and improves worker safety in corrugated printing. The system automatically removes dust and contamination from the plate in seconds during production, without stopping the press. It also performs full end-of-job plate cleaning and drying in fewer than four minutes, enabling increased uptime and sustainability. A carbon fiber core keeps even the ultra-wide FlexoCleanerBrush to a minimal weight, and ensures cleaning is stable, uniform and consistent throughout the plate’s width. Because the system is fully automatic and spans the entire width of the plate cylinder, the FlexoCleanerBrush improves safety by eliminating routine operator contact with the machine, while also reducing the risk of cylinder nip injuries and contact with wash agents.

Also on view in Baldwin’s SuperCorrExpo booth, the FlexoDry™ is a fully integrated IR drying system, specifically developed for corrugated flexo printing presses. It reduces energy consumption by up to 30 percent over standard IR dryers through patented Diamond IR™ lamps. The system delivers improved drying results because of a unique optical design that produces higher intensity for enhanced color definition, and reduces or eliminates marking altogether, allowing for high-speed and full-confidence printing.

Additionally, Baldwin will showcase LED-UV technology, designed by its AMS Spectral UV division for wide-format flexo corrugated box printing.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

(c) Autoneum
14.07.2021

Autoneum: Carpets even more eco-friendly

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Lightweight, textile-based carpet technologies such as Di-Light or Relive-1 significantly improve the environmental performance of carpets. For example, Di-Light-based carpets consist of up to 97% recycled PET; aside from that, they are around 20% lighter than conventional needlepunch carpets, thus contributing to lower fuel consumption and CO2 emissions from vehicles. In addition, Autoneum needlepunch carpets are now even more sustainable thanks to the innovative ABC process, which uses a thermoplastic adhesive instead of latex in the backcoating: Unlike latex, thermoplastic adhesives can be heated and melted down together with the carpet components made of pure PET at the end of the product life cycle, which facilitates recycling considerably. Furthermore, since the fibers of the thermoplastic mono-material are easier to open, carpet cut-outs can be reclaimed more easily, thereby reducing the consumption of natural resources as well as waste volumes and thus CO2 emissions. The environmental  performance of Autoneum’s needlepunch carpets, which already contain a high proportion of recycled PET, is thus further improved.

Moreover, backcoatings without latex improve the sustainability of carpets not only thanks to better recyclability at the end of the product life cycle. Since the application of the thermoplastic adhesive using the innovative ABC process consumes significantly less energy than the production of latexbased backcoatings and does not require any water at all, the environmental impact can already be minimized in the manufacturing process. Additionally, thermoplastic adhesives developed in-house by Autoneum will open up new possibilities in the future for adapting backcoatings to the individual needs of vehicle manufacturers in terms of their acoustic performance, stiffness and abrasion resistance.

Models from various customers in Europe and North America are already equipped with latex-free needlepunch carpets from Autoneum. In the near future, backcoatings with thermoplastic adhesives will also be used for Autoneum’s tufted carpets. Production of the new, even more sustainable generation of tufted carpets is scheduled to start in early 2022.

Trützschler: New Pre-Cleaner CL-X for Cotton (c) Trützschler GmbH & Co. KG
09.07.2021

Trützschler: New Pre-Cleaner CL-X for Cotton

Double the production rate, with lower energy consumption per kilogram of fiber material – that might sound like a contradiction, but the new Trützschler pre-cleaner CL-X makes it possible. It gently and reliably removes coarse contaminants like leaf debris, stalks or seeds from cotton with minimum loss of good fibers. The pre-cleaner CL-X provides more efficiency and lays the foundation for a high-quality end-product before the cotton is further processed in mixers and fine cleaners.

CL-X features at one glance

Double the production rate, with lower energy consumption per kilogram of fiber material – that might sound like a contradiction, but the new Trützschler pre-cleaner CL-X makes it possible. It gently and reliably removes coarse contaminants like leaf debris, stalks or seeds from cotton with minimum loss of good fibers. The pre-cleaner CL-X provides more efficiency and lays the foundation for a high-quality end-product before the cotton is further processed in mixers and fine cleaners.

CL-X features at one glance

  • Continuous production of 1,600 kilograms per hour for present blow room configuration.
  • 30% energy saving compared to the current benchmark.
  • Integrated WASTECONTROL for automatic adjustment recommendation of waste excretion to avoid unnecessary fiber loss.
  • 2.60 m long cleaning section.
  • New and improved grid geometry for better separation and gentle tuft treatment.
  • Material draft due to 10 % higher speed of second opening roller for reliable and consistent fiber transport.
  • Optimal cleaning level and minimal fiber loss due to individual and stepless grid adjustment for each opening roller by motor.
  • Gentle tuft treatment with adjustable opening roller speed.
  • Synchronized lot management (automatic lot change for up to three lots).
  • Connection possibility for a waste box (for waste analysis).
  • Lower cost of ownership.
Baldwin showcases innovations for corrugated flexo printers at ConneXion (c) Baldwin, Barry-Wehmiller
20.05.2021

Baldwin showcases innovations for corrugated flexo printers at ConneXion

Baldwin Technology Company Inc. will showcase its key innovative technologies for optimized corrugated high-graphics package printing at the ConneXion virtual expo, taking place from June 1 to 8. In Baldwin’s virtual exhibit, visitors will experience fully automated flexo plate-cleaning systems, an energy-efficient IR (infrared) drying solution and LED-UV curing systems, all of which increase print quality and productivity, with operator safety and sustainability in mind.

Key innovative technologies:

Baldwin Technology Company Inc. will showcase its key innovative technologies for optimized corrugated high-graphics package printing at the ConneXion virtual expo, taking place from June 1 to 8. In Baldwin’s virtual exhibit, visitors will experience fully automated flexo plate-cleaning systems, an energy-efficient IR (infrared) drying solution and LED-UV curing systems, all of which increase print quality and productivity, with operator safety and sustainability in mind.

Key innovative technologies:

  • The FlexoCleanerBrush™, a solution to enhance print quality and improve worker safety in corrugated printing.
  • The FlexoCleanPick™, a system designed to automatically remove hickeys—typically caused by paper fibers, dust and ink contamination, and other causes of printing defects—from the plate during the print run without stopping the press or requiring operator skin contact with wash agents.
  • The FlexoDry2™, a fully integrated IR drying system, specifically developed for corrugated flexo printing presses, that reduces energy consumption by up to 30 percent over standard IR dryers via the use of patented Diamond IR™ lamps.
  • A new generation of LED-UV technology—designed by AMS Spectral UV, a Baldwin Technology company, for wide-format flexo corrugated box printing—represents the latest in solid-state LED curing innovations and offers more than a 50 percent reduction in power consumption, compared to traditional UV systems, in an ultra-compact lamphead that fits at the end of the press or between printing units.

You can register here.

Source:

Barry-Wehmiller

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists (c) JEC Group
17.05.2021

GREENBOATS, Sicomin and Bcomp Selected as JEC Innovation Awards 2021 Finalists

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

GREENBOATS, Sicomin and Bcomp are nominated as finalists for the JEC Innovation Awards 2021. The three project partners have been selected as finalists in the awards’ Renewable Energy category for their innovative Green Nacelle – the first offshore nacelle manufactured with natural fibre composites (NFC).

The Green Nacelle was designed by NFC innovators GREENBOATS, who were also responsible for the structural engineering, manufacturing and assembly of the nacelle.  By incorporating Bcomp’s ampliTex™ flax reinforcements, FSC certified balsa wood cores and bio-based resins, the Green Nacelle’s NFC construction saves approximately 60% CO2 equivalent and reduces the energy consumption by over 50% compared to a nacelle made with existing GFRP technology.

In addition to the lower CO2 footprint, the natural fibre composite structure also introduces viable options for the end of the nacelles’ life unlike traditional GFRP structures - an issue of increasing concern for the wind energy sector that presents a great opportunity for natural fibre composites to bring a sustainable change to this market.

Sicomin, the formulator and supplier of the leading range of GreenPoxy bio-based epoxy resin systems, supplied its DNV GL approved InfuGreen 810 resin system that was used to infuse the Green Nacelle’s main structural sandwich panels, as well as providing intumescent FR gelcoats, bio-based laminating resins and UV resistant clear coatings for the groundbreaking new nacelle.  Materials, as well as on-site technical support, were delivered by Sicomin’s German distributor TIME OUT Composites.

The winners of the awards will be announced during JEC Connect which will be held on the 1st and 2nd June 2021.

Source:

100% Marketing

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry (c) Beaulieu International Group
08.03.2021

B.I.G. Yarns launches EqoCycle Yarns designed for the carpet industry

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

  • 75% recycled content yarn with no performance compromise
  • A circular, endlessly recyclable solution for contract, automotive and residential carpets
  • Significant resource efficiency in EqoCycle production compared to virgin-based PA6 yarn: 58% reduction in fossil fuel use; 27% less energy consumption; 37% CO₂ emission reduction

B.I.G. Yarns announces its latest development, EqoCycle, a fully recyclable PA6 yarn with 75% recycled content, offering the same high-quality performance of virgin PA6 yarn. The new recycled yarn mainly based on post-industrial waste supports contract, automotive and residential carpet manufacturers with a drop-in circular solution to reduce the ecological footprint of their end products.

EqoCycle is made with recycled granulates derived from pre-consumer recycled and regenerated PA6, certified by Control Union for Global Recycled Standard (GRS) Certification. The use of less virgin materials implicates a decrease of fossil fuels by 58% and a 27% decrease in energy consumption. On top, EqoCycle yarns allow a reduction of 37% of CO₂ eq./kg compared to the fossil based yarns. The environmental impacts of EqoCycle with 75% recycled content were calculated through an LCA analysis, verified according to ISO 14025 and EN 15804+A1 and published in an Environmental Product Declaration (EPD registration number S-P-02415).

Customers have the assurance that for every 1.000 tons of EqoCycle yarn, 13,562 barrels of oil are saved and 2.700 tons of CO₂ emission are reduced, compared to PA6 traditionally made from virgin materials.

Emmanuel Colchen, General Manager Yarns Division, comments: “EqoCycle is a perfect example of how higher resource efficiency in our industry can promote greater circularity in our customers’ industries. Minimizing waste, re-using materials, and saving energy and carbon emissions in production, it provides our customers and carpet brands with a new sustainable alternative that won’t compromise their end-product performance but will support their increasing focus on CO₂ reduction and global warming potential. All part of our wider commitment to encourage decoupling from the need for only virgin feedstocks and moving towards a circular economy for yarns and soft flooring industries.”

EqoCycle is the latest circular solution in B.I.G. Yarns’ PA6 portfolio, joining EqoBalance PA6, based on biomass balance renewable resources, which offers up to 75% CO₂ reduction. Both exemplify the company’s on-going investment in developing new products that better serve customers’ needs in a sustainable way. B.I.G. Yarns fully pursues opportunities to support and solve the global environmental challenges through innovation, investment and collaboration, as part of its sincere belief in, and broader commitment to, Social Responsibility.

The innovation of EqoCycle and EqoBalance PA6 aligns with the company’s active integration of the UN Sustainable Development Goals (SDGs) into its business activities, creating value for customers and engaging employees and value chain partners.

09.02.2021

Sicomin: Collaboration with GREENBOATS® for natural fibre composite

Sicomin announces its latest collaboration with GREENBOATS® as they deliver the first ever natural fibre composite (NFC) nacelle for an offshore wind turbine.  

With more than 2.5 million tons of composite materials in use in the wind industry globally, and the first generation of wind turbines now approaching end of life, there is still a lack of well-established recycling options. GREENBOATS’ mission is to demonstrate how large-scale NFC structures in wind energy can lower energy consumption in manufacturing and significantly improve the sustainability of the composite materials used in the turbine.

In 2020, GREENBOATS was commissioned by a leading wind energy technology developer to design and manufacture a sustainable NFC nacelle. The resulting 7.3m long structure has a surface area of approximately 100m2 and was engineered by GREENBOATS to satisfy all DNV-GL load cases required for an offshore turbine nacelle, including 200km/h max wind loads and 2KN loads on the guard rails.

Sicomin announces its latest collaboration with GREENBOATS® as they deliver the first ever natural fibre composite (NFC) nacelle for an offshore wind turbine.  

With more than 2.5 million tons of composite materials in use in the wind industry globally, and the first generation of wind turbines now approaching end of life, there is still a lack of well-established recycling options. GREENBOATS’ mission is to demonstrate how large-scale NFC structures in wind energy can lower energy consumption in manufacturing and significantly improve the sustainability of the composite materials used in the turbine.

In 2020, GREENBOATS was commissioned by a leading wind energy technology developer to design and manufacture a sustainable NFC nacelle. The resulting 7.3m long structure has a surface area of approximately 100m2 and was engineered by GREENBOATS to satisfy all DNV-GL load cases required for an offshore turbine nacelle, including 200km/h max wind loads and 2KN loads on the guard rails.

Sicomin’s market leading GreenPoxy® range met these challenging engineering requirements, with the company’s recently expanded manufacturing capability also matching the potential supply volumes required by wind turbine manufacturers.  

Sicomin’s DNV-GL type approved bio-based epoxy was used to infuse BComp flax fibre reinforcements and balsa cores, with Sicomins’ intumescent weatherproof gelcoat applied on the outer surface. Cured panels were cut to shape, formed over a male plug and bonded together, before flax reinforcement plies, hand laminated with GreenPoxy resins and vacuum bagged, were added along all the panel joints lines.  Finally, Sicomin’s highly UV resistant clear coating products were used to protect and enhance the finish of the flax fibre feature stripe details.

Source:

100% Marketing