From the Sector

Reset
231 results
DITF: Recyclable event and trade fair furniture made of paper (c) DITF
Structurally wound paper yarn element with green sensor yarn.
26.01.2024

DITF: Recyclable event and trade fair furniture made of paper

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

The unusual look is created in the structure winding process. In this technology developed at the DITF, the yarn is deposited precisely on a rotating mandrel. This enables high process speeds and a high degree of automation. After the winding process, the individual yarns are fixed, creating a self-supporting component. A starch-based adhesive, which is also made from renewable and degradable raw materials, was used in the project for the fixation.

The recyclability of all the basic elements developed in the project was investigated and confirmed. For this purpose the research colleagues at the project partner from the Department of Paper Production and Mechanical Process Engineering at TU Darmstadt (PMV) used the CEPI method, a new standard test procedure from the Confederation of European Paper Industries.

Sensor and lighting functions were also implemented in a recycling-friendly manner. The paper sensor yarns are integrated into the components and detect contact.

Also, a modular system for trade fair and event furniture was developed. The furniture is lightweight and modular. For example, the total weight of the counter shown is well under ten kilograms and individual parts can easily be shipped in standard packages. All parts can be used several times, making them suitable for campaigns lasting several weeks.

A counter, a customer stopper in DIN A1 format and a pyramid-shaped stand were used as demonstrators. The research work of the DITF (textile technology) and PMV (paper processing) was supplemented by other partners: GarnTec GmbH developed the paper yarns used, the industrial designers from quintessence design provided important suggestions for the visual and functional design of the elements and connectors and the event agency Rödig GmbH evaluated the ideas and concepts in terms of usability in practical use.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

Long-lived lamellas for reinforcing buildings Image: Pixabay
08.01.2024

Long-lived lamellas for reinforcing buildings

Carbon fiber-reinforced polymer lamellas are an innovative method of reinforcing buildings. There are still many unanswered questions regarding their recycling, however. A research project by Empa's Mechanical Systems Engineering lab is now set to provide answers. Thanks to the support from a foundation, the project could now be launched.

The construction sector is responsible for around 60 percent of Switzerland's annual waste. The industry's efforts to recycle demolition materials are steadily increasing. Nevertheless, there are still end-of-life materials that, for the time being, cannot be reused as recycling would be too time-consuming and expensive. One of these are carbon fiber-reinforced polymer (CFRP) lamellas.

Carbon fiber-reinforced polymer lamellas are an innovative method of reinforcing buildings. There are still many unanswered questions regarding their recycling, however. A research project by Empa's Mechanical Systems Engineering lab is now set to provide answers. Thanks to the support from a foundation, the project could now be launched.

The construction sector is responsible for around 60 percent of Switzerland's annual waste. The industry's efforts to recycle demolition materials are steadily increasing. Nevertheless, there are still end-of-life materials that, for the time being, cannot be reused as recycling would be too time-consuming and expensive. One of these are carbon fiber-reinforced polymer (CFRP) lamellas.

Making buildings "live" longer
The reinforcing method developed by Urs Meier, former Empa Director at Dübendorf, has been used in infrastructure construction for 30 years. CFRP lamellas are attached with epoxy adhesive to bridges, parking garages, building walls and ceilings made of concrete or masonry. As a result, the structures can be used for 20 to 30 years longer. The method is increasingly being applied worldwide – mainly because it massively improves the earthquake resistance of masonry buildings.

"By significantly extending the lifespan of buildings and infrastructure, CFRP lamellas make an important contribution to increasing sustainability in the construction sector. However, we need to find a way how we can further use CFRP lamellas after the buildings are being demolished," explains Giovanni Terrasi, Head of the Mechanical Systems Engineering lab at Empa. To achieve this, he wants to develop a method for recycling CFRP lamellas. Convinced by this idea, a foundation supported it with a generous donation. The project officially launched in October.

Gentle separation
First, a mechanical process will be developed to detach the CFRP lamellas from the concrete without damaging them. Initial tests at Empa are encouraging: After the lamellas were separated from the concrete, they still had a strength of 95 percent – even if they had already been used for 30 years.

Then, the demolished CFRP lamellas shall be used to produce reinforcement for prefabricated components. Terrasi's goal: saving thousands of tons of CFRP lamellas from ending up in landfills after the demolition of old concrete structures and reuse them in low-CO2 concrete elements. After completion of the project, Giovanni Terrasi and his team – consisting of Zafeirios Triantafyllidis, Valentin Ott, Mateusz Wyrzykowski and Daniel Völki – want to produce railroad sleepers from recycled concrete, which will be reinforced and prestressed with demolition CFRP lamellas. This would give the "waste-to-be" material a second life in Swiss infrastructure construction.

Source:

Empa

04.01.2024

Panda Biotech Marks Final Stage Commissioning

Panda Biotech announced that building construction is complete and the official commissioning process to bring its Panda High Plains Hemp Gin™ (the “Panda Hemp Gin”) project online began in early Q4. The commissioning process marks the final stage before beginning commercial operations in Q1 2024 at the 500,000 square foot Wichita Falls, Texas facility. The Panda Hemp Gin will process 10 metric tons of industrial hemp per hour to produce textile-grade fiber, hurd, short-fiber hurd mix, and a nutrient-rich co-product that will be pelletized. The facility is expected to be the largest hemp decortication center in the Western Hemisphere and among the largest in the world.

Using only renewable energy sources, the engineering and production process at the Panda Hemp Gin has been certified green by Mid-South Engineering Company, in accordance with the International Capital Market Association’s Green Bond Principles. Panda Biotech has also partnered with Oritain, a scientific traceability company, to bring the most traceable hemp grown 100 percent in the United States to market.

Panda Biotech announced that building construction is complete and the official commissioning process to bring its Panda High Plains Hemp Gin™ (the “Panda Hemp Gin”) project online began in early Q4. The commissioning process marks the final stage before beginning commercial operations in Q1 2024 at the 500,000 square foot Wichita Falls, Texas facility. The Panda Hemp Gin will process 10 metric tons of industrial hemp per hour to produce textile-grade fiber, hurd, short-fiber hurd mix, and a nutrient-rich co-product that will be pelletized. The facility is expected to be the largest hemp decortication center in the Western Hemisphere and among the largest in the world.

Using only renewable energy sources, the engineering and production process at the Panda Hemp Gin has been certified green by Mid-South Engineering Company, in accordance with the International Capital Market Association’s Green Bond Principles. Panda Biotech has also partnered with Oritain, a scientific traceability company, to bring the most traceable hemp grown 100 percent in the United States to market.

Additionally, Panda Biotech is actively signing contracts with producers to grow the hemp feedstock for the 2024 growing season, as well as purchasing hemp fiber that has already been harvested or processed. The company recently unveiled an unmatched pay-to-grow program for producers to begin growing Panda hemp. With up-front, guaranteed money and agronomy support, Panda producers also receive tested and proven seed at no cost, successfully mitigating the risk producers may assume and underscoring Panda’s commitment and promise to the farming community. The benefits of growing hemp are substantial, as it is an excellent rotational crop that remediates the soil and provides a competitive margin.

“Each piece of the Panda Hemp Gin production line, including the three miles of overhead pneumatic duct lines, refining, blending, mechanical cottonization, hurd bagging and storage, baling, and more, must be individually started, checked, balanced, and commissioned,” says Panda Biotech Executive Vice President Scott Evans. “Currently, all equipment is individually being brought online to be officially placed in service.”

More information:
Panda Biotech hemp
Source:

Panda Biotech, LLC.

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

15.12.2023

Italian textile machinery industry at Colombiatex 2024

At the upcoming edition of Colombiatex, that will take place in Medellin from January 23 to 25, 2024, the leading Italian manufacturers of textile machinery will be present in the common area organized by Italian Trade Agency and ACIMIT, the Association of Italian Textile Machinery Manufacturers.

There will be 23 companies exhibiting in the Italian pavilion. Among these, ACIMIT members companies are: Btsr, Color Service, Danti, Fadis, Flainox, Isotex, Itema, Kairos Engineering, Lgl, Lonati, Mcs, Monti-Mac, Nexia, Orox, Ratti, Reggiani Macchine, Salvadè, Santoni, Srs, Stalam, Tecnorama, Ugolini.

The Colombian textile and clothing industry has experienced significant growth in recent years. Consequently, imports of textile machinery have also increased. In 2023, Colombian imports are expected to reach 58 million euros. For the period 2024-2027, the Country’s import growth is projected to be an average of 2.2% annually, according to data compiled by ACIMIT.

At the upcoming edition of Colombiatex, that will take place in Medellin from January 23 to 25, 2024, the leading Italian manufacturers of textile machinery will be present in the common area organized by Italian Trade Agency and ACIMIT, the Association of Italian Textile Machinery Manufacturers.

There will be 23 companies exhibiting in the Italian pavilion. Among these, ACIMIT members companies are: Btsr, Color Service, Danti, Fadis, Flainox, Isotex, Itema, Kairos Engineering, Lgl, Lonati, Mcs, Monti-Mac, Nexia, Orox, Ratti, Reggiani Macchine, Salvadè, Santoni, Srs, Stalam, Tecnorama, Ugolini.

The Colombian textile and clothing industry has experienced significant growth in recent years. Consequently, imports of textile machinery have also increased. In 2023, Colombian imports are expected to reach 58 million euros. For the period 2024-2027, the Country’s import growth is projected to be an average of 2.2% annually, according to data compiled by ACIMIT.

Italy has long been a technological partner for Colombian textile companies that have invested in the modernization of the production process. Italian exports to Colombia in 2022 exceeded 18 million euros (a 50% increase from the previous year). In the first six months of 2023, Italian exports to Colombia reached 9 million euros.

More information:
ACIMIT Colombiatex
Source:

ACIMIT

Groz-Beckert and Mayer & Cie. develop sinker and energy-saving needle (c) Groz-Beckert KG
Relanit sinker SNK F
24.11.2023

Groz-Beckert and Mayer & Cie. develop sinker and energy-saving needle

Together with the German circular knitting machine builder Mayer & Cie., Groz-Beckert has developed the optimized Relanit sinker SNK F over the past years. Independently of this, the development of the new LCmax™ energy-saving needles took place. The focus of both developments is on efficiency, energy savings and increased process reliability.

Groz-Beckert offers interested machine builders different cooperation options to jointly develop new products or optimize existing ones. The Groz-Beckert Technology and Development Center (TEZ) provides the appropriate framework for so-called co-development projects. At the ITMA in Milan in June 2023, Groz-Beckert presented some of the successful cooperations under the motto "Innovation through cooperation". Among them were two new developments realized with Mayer & Cie. Groz-Beckert presented the two new products for the first time in Asia at ITMA Asia in November 2023.

Together with the German circular knitting machine builder Mayer & Cie., Groz-Beckert has developed the optimized Relanit sinker SNK F over the past years. Independently of this, the development of the new LCmax™ energy-saving needles took place. The focus of both developments is on efficiency, energy savings and increased process reliability.

Groz-Beckert offers interested machine builders different cooperation options to jointly develop new products or optimize existing ones. The Groz-Beckert Technology and Development Center (TEZ) provides the appropriate framework for so-called co-development projects. At the ITMA in Milan in June 2023, Groz-Beckert presented some of the successful cooperations under the motto "Innovation through cooperation". Among them were two new developments realized with Mayer & Cie. Groz-Beckert presented the two new products for the first time in Asia at ITMA Asia in November 2023.

Optimized Relanit sinker SNK F
At the end of 2018, circular knitting machine manufacturer Mayer & Cie. approached Groz-Beckert with a request to jointly develop an improved and more efficient sinker for selected machines of their Relanit family that would run more smoothly and reliably in the needle tricks. The innovative sinker has an integral spring with a spring force that is adapted to the sinker thickness. Field tests were consistently successful and confirmed the functionality and advantages of the new sinker.

Thanks to their adapted spring, the newly developed SNK F Relanit sinkers are securely guided while they are running through the cam track, resulting in a quieter operation. This increases process reliability and ensures an improved loop structure. In addition, wear on the swivel butts of the sinkers is reduced. This increases service life and makes the process more sustainable and cost-efficient.

Higher energy efficiency thanks to LCmax™
The objective second recent cooperation with Mayer & Cie. was to develop a cost-effective energy-saving needle. After considering various variants, the common choice of Mayer & Cie. and Groz-Beckert was the LCmax™ knitting machine needle with innovative, wave-shaped shank geometry. The first prototypes were extensively tested on laboratory machines at Groz-Beckert's TEZ.

The wave-shaped shank of the LCmax™ needle ensures a smaller contact area of the needle in the needle trick. This results in less friction, which reduces machine temperature and enables energy savings of up to 20 percent compared to a standard needle. This saves costs and at the same time allows operation of the machine at the maximum possible speed.

In both projects, the cooperation between Mayer & Cie. and Groz-Beckert went far beyond mere product development. In addition to Applications Engineering and Construction, the companies' Sales and Purchasing departments were also involved in a close exchange.

Source:

Groz-Beckert KG

03.11.2023

Solvay announces Board of Directors for standalone SYENSQO

Solvay announced the future Board of Directors of SYENSQO, effective upon completion of the planned separation of Solvay into two companies – SOLVAY and SYENSQO – which is on track to be completed in December 2023.

SYENSQO’s Board will be composed of 10 members, including 6 independent members, 3 members representing the reference shareholder, Solvac, and the company CEO. They have deep expertise in specialty industries, international business operations, risk management, corporate governance, finance and clean technology.

Solvay announced the future Board of Directors of SYENSQO, effective upon completion of the planned separation of Solvay into two companies – SOLVAY and SYENSQO – which is on track to be completed in December 2023.

SYENSQO’s Board will be composed of 10 members, including 6 independent members, 3 members representing the reference shareholder, Solvac, and the company CEO. They have deep expertise in specialty industries, international business operations, risk management, corporate governance, finance and clean technology.

The following individuals will serve on the SYENSQO Board of Directors:
Rosemary Thorne will serve as independent Director and Chair of the SYENSQO Board, as well as Chair of the Board’s Finance Committee. She is currently an Independent Director on the Solvay Board of Directors, appointed in 2014, and Chair of the Board’s Audit Committee. She is also an Independent Director on the Board of Merrill Lynch International (UK), a wholly-owned subsidiary of Bank of America, serving as Chair of the Audit Committee. Ms. Thorne has decades of financial leadership experience across a wide range of industries. She previously served as Chief Financial Officer at J. Sainsbury, the UK’s largest supermarket chain at the time; Bradford & Bingley; and Ladbrokes. Ms. Thorne previously sat as an Independent Director on the Boards of Royal Mail Group, Cadbury Schweppes, Santander UK, First Global Trust Bank and Smurfit Kappa Group.

Dr. Ilham Kadri will serve as Chief Executive Officer and member of the Board of Directors of SYENSQO. She is currently CEO and President of the Executive Committee at Solvay. Ms. Kadri has successfully led the turnaround of Solvay, delivering double-digit EBITDA growth and 18 consecutive quarters of positive free cash flow, deleveraging the balance sheet and promoting superior people engagement. She is an independent Board member at A.O. Smith and L’Oréal. She is active in non-profit organizations, as Chair of the World Business Council for Sustainable Development (WBCSD), member of the steering committee of the European Round Table of Industrialists (ERT) as well as a permanent member of the World Economic Forum’s International Business Council (WEF). Ms. Kadri has extensive leadership experience across a variety of industries in four continents and with leading industrial multinationals, including Shell, UCB, Huntsman, Dow, Sealed Air. Prior to Solvay, she was CEO and President of Diversey in the USA, led the company’s return to profitability and resulting spin off and divestiture to Bain Capital. She founded two non-Profit foundations: the Solvay Solidarity Fund in Belgium in 2020 which supported more than 7000 families affected by Covid-19 and natural disasters; and founded the ISSA Hygieia Network in 2015 in the USA, to help women in the cleaning industry. She received two Doctor Honoris Clausa from EWHA University in Korea and Université de Namur in Belgium.

Julian Waldron will serve as independent Director and Chair of the Audit Committee. He currently serves as Deputy Executive Chairman of privately-held Albea Group, a global beauty and personal care packaging company which operates 35 facilities in Europe, Asia and the Americas. Mr. Waldron has held senior leadership roles at several leading listed companies in the industrial, technology and services sectors and brings a wealth of expertise in finance and business operations. Prior to joining Albea in 2022, he was Chief Financial Officer of Suez for three years after serving as Chief Financial Officer and subsequently Chief Operating Officer of Technip. He started his career at UBS Warburg where he spent 14 years. Mr. Waldron also served as an independent Board member and Chairman of finance, risk and investments at Carbon Clean, a privately-owned carbon capture company dedicated to achieving net zero.

Heike Van de Kerkhof will serve as independent Director and Chair of the Nomination Committee. She currently sits on the Board of OCI N.V.. Ms. Van de Kerkhof brings more than 30 years of experience in the chemicals, oil & gas and materials industries, having served in numerous leadership roles around the globe. From 2020 to 2023, she was Chief Executive Officer of Archroma Management, a global specialty chemicals company. During her tenure, she successfully completed the transformational acquisition of Huntsman’s Textile Effects business. Prior to her role at Archroma, Ms. Van de Kerkhof served as Vice President of Lubricants, Western Hemisphere at BP, and held positions at Castrol, The Chemours Company, and Neste Corporation. She also held many leading roles within DuPont over 18 years.

Matti Lievonen will serve as independent Director and Chair of the Compensation Committee. He is currently an independent director on the Solvay Board, appointed in 2017. Mr. Lievonen is a proven executive in the energy, forestry, power and automation industries with an extensive track record of leading businesses through climate transition. For over ten years until 2018, he served as Chairman and Chief Executive Officer of Neste Corporation, a global leader in next-generation renewable fuels and chemicals. During his time at Neste, Mr. Lievonen successfully promoted the development of clean fuels as well as Finland’s bioeconomy strategy in advancing renewable transportation fuels. He has also been involved with organizations such as Fortum Board, SSAB, Nynäs AB, Ilmarinen, and the HE Finnish Fair Foundation. Until 2021, Mr. Lievonen was also Chairman of the Board of Directors at Fortum. He has been recognized for his admirable leadership and expertise, and in 2016 was awarded an Honorary Doctorate of Technology by the Aalto University Schools of Technology.

Dr. Françoise de Viron will serve as non-independent Director, Chair of the ESG Committee and Vice-Chair of the Board. She is currently a director of the Solvay Board, appointed in 2013. Ms. de Viron is a regarded academic leader and has extensive experience in innovation, R&D and qualitative research. She is a Professor Emeritus at the Faculty of Psychology and Education Sciences and Louvain School of Management at UCLouvain in Belgium where she has been an Academic Member of various groups at UCLouvain. Ms. de Viron previously served as the president of AISBL EUCEN – the European Universities Continuing Education Network. Prior to her university position, from 1985 to 2000, she was in charge of developing Artificial Intelligence applications at Tractebel S.A. (now Tractebel-Engie).

Roeland Baan will serve as independent Director. He currently serves as President and Chief Executive Officer of Topsoe, a privately-held leading provider of clean energy and petrochemical technologies. He is also Chairman of the Supervisory Board of SBM Offshore NV. Roeland Baan has extensive experience in supply chain management, M&A, business development and operations management. Prior to joining Topsoe in 2020, he was President and CEO of Outokumpu and has held several executive roles at global organizations such as Aleris International, ArcelorMittal and SHV NV. He spent over 16 years in various roles across the globe at Shell, living in South America, in Africa and in the United Kingdom.

Edouard Janssen will serve as non-independent Director. He is currently a Director on the Solvay Board, appointed in 2021. Earlier this year, he was appointed Chief Financial Officer of D’Ieteren Group, a European leader in automotive distribution services. Mr. Janssen is also a Board member of privately-held Financière de Tubize and Union Financière Boël, as well as Co-Founder and Chair of Trusted Family. Mr. Janssen is active in academics, as Vice-Chair of the International Advisory Board of the Solvay Brussels School of Economics and Management and on the advisory board of the INSEAD HGIBS. He brings expertise in finance, strategy, entrepreneurship, business management, planning and marketing. He has served as Solvay’s Vice President in strategy and M&A between 2019 and 2021, and prior to that, he was the US-based General Manager for North- and Latin America at Solvay’s Aroma Performance Global Business Unit.
 
Dr. Mary Meaney will serve as non-independent Director. She is currently a member of the Board of Directors and of the Audit Committee of Groupe Bruxelles Lambert SA. She also sits on the Board of Directors and the Remuneration Committee of Beamery, the privately-held talent management company. She is a member of the Board of Directors and of the Finance Committee of Imperial College, London.Dr. Meaney will bring expertise in Strategy, M&A, and change management, which she acquired over a 24-year career at McKinsey. She was a Senior Partner, served on the McKinsey Shareholders Council and led McKinsey’s global Organization practice.

Nadine Leslie will serve as independent Director and is based in the United States of America. She is currently a member of the Board of Directors of Provident Financial Services , as well as a Non-Executive Director of Seven Seas Water Corporation, a water and wastewater treatment multinational company. She also sits on the Board of Trustees of Hackensack Meridian Health Network and is active as strategic consultant for civil engineering firm T&M Associates. Over a 22-year career at Suez, Ms. Leslie held several leadership positions, the last one being Chief Executive Officer of Suez North America, until 2022. Previously she served as Executive Vice President Health & Safety.

More information:
Solvay Board of Directors
Source:

Solvay

ITMA Asia + CITME Photo: Swissmem
01.11.2023

15 member companies of Swiss Textile Machinery Association at upcoming ITMA Asia + CITME

In China, the textile industry is forward-looking and resilient – with a healthy appetite for new technologies and a determination to keep its leading position. Sustainability is increasingly coming into focus, so there is a growing demand for recycling technologies, as well as automated solutions and digitalization. Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association, is clear: “China is the main market for a large number of our association members.” On top of growing consumer demand and technological capabilities, the latest ambitious five-year plan will drive further development of the Chinese textile industry in world markets, and Swiss companies will work with all stakeholders to enable its success.

In China, the textile industry is forward-looking and resilient – with a healthy appetite for new technologies and a determination to keep its leading position. Sustainability is increasingly coming into focus, so there is a growing demand for recycling technologies, as well as automated solutions and digitalization. Cornelia Buchwalder, Secretary General of the Swiss Textile Machinery Association, is clear: “China is the main market for a large number of our association members.” On top of growing consumer demand and technological capabilities, the latest ambitious five-year plan will drive further development of the Chinese textile industry in world markets, and Swiss companies will work with all stakeholders to enable its success.

Market proximity
Swiss companies realized many years ago that geographical proximity is the key to success. Stäubli has started to set up offices in Chinese cities since 1998 and counts 12 locations today, to serve the whole country. In 2002, Itema established a centralized local branch which today has 160 employees in various functions. Loepfe has expanded its presence by creating an independent local business unit to overcome the 9,000 km distance by air, while Uster Technologies has had a Chinese subsidiary since 1982, with offices and service stations in different provinces. Luwa set up its offices and workshop in Shanghai in 1997. Rieter established a presence in mainland China in 2005, driven by a strong commitment to expanding the country’s know-how and expertise – and ten years later opened an advanced research center. All Swiss companies with serious business goals in China have made similar commitments to connect with customers and maintain strong relationships.

Understanding Chinese customers
Swiss companies also understand that Chinese customers require dedicated attention, and that speed is more essential than ever in delivering both machines and services.
Manufacturers in China are seeking cost-effective solutions to remain competitive, while consumers are looking for value in their purchases. Companies need to develop solutions that provide tangible economic benefits to their clients. Furthermore, energy savings have become paramount in China, due to the government's commitment to environmental sustainability and reduced carbon emissions. “Businesses are adopting more energy-efficient processes and technologies to meet stringent energy conservation and emission reduction targets,” says Peter Schnickmann, Managing Director at Luwa Air Engineering (Shanghai). He notes an investment trend for solutions helping Chinese companies cut operational costs and minimize their carbon footprint.

To enhance the reputation of both companies and products – and boost the image of the entire industry – the environmental impact needs to decrease. Priorities are saving water and waste, as well as reducing, replacing or completely eliminating the use of harmful substances. China has a strong demand for environmental-friendly solutions and sustainable technologies.

Customer-oriented in weaving
The huge number of Chinese fabric producers calls for an immense volume of weaving machinery to be supplied by international and local providers. Swiss machinery manufacturers hold an impressive share of this business.
Chinese weavers require advanced technology, with increasingly higher standards of efficiency. In weaving preparation, latest solutions match the speed, quality and reliability now wanted. Weaving machines too offer the eco-efficiency, performance, and ease of use needed, with innovations that extend the scope of sustainable weaving, and open-platform systems configurable to weavers’ specific operations. A huge increase in demand for technical textiles in recent years has been driven by applications such as carbon fiber, aramid and glass fiber.

Profitable in spinning
China’s competitive advantages come from its large-scale and integrated manufacturing capabilities, along with the use of advanced automation and digitization technologies. Spinners aim to capitalize on extended market opportunities, with more economical production. The latest air-jet spinning machines serve these goals, allowing exceptionally low production costs per kilogram of yarn, coupled with high flexibility and reliability. Sustainable yarns are in great demand.

The automation trend in spinning mills focuses on connecting production processes. Data is used to ensure the highest quality standards, most efficient raw material usage, reduction of waste, and energy savings. To make spinning mills more competitive, latest solutions combine cutting-edge hardware, data-enabled software and renowned textile expertise.

More information:
ITMA Asia + CITME Swissmem
Source:

Swissmem

DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

Winners of AVK Innovation Award 2023 (c) AVK
Winners of AVK Innovation Award 2023
25.10.2023

Winners of AVK Innovation Award 2023

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

The winners of the prestigious Innovation Award for Fibre-Reinforced Plastics of the AVK, the German Federation of Reinforced Plastics, were presented in Salzburg this year. This award always goes to businesses, institutions and their partners for outstanding innovations in composites the three categories Products & Applications, Processes & Methods and Research & Science. Projects are submitted in all three categories and are evaluated by a jury of experts in engineering and science as well as trade journalists, who look at each project in terms of their levels of innovation, implementation and sustainability.

Products & Applications category
First place: “Insulating Coupling Shaft for Rail Vehicles” – Leichtbauzentrum Sachsen GmbH, partner: KWD Kupplungswerk Dresden GmbH

Second place: “Electric Car Battery Housing Components Based on Innovative Continuous Fibre-Reinforced Phenolic Resin Composites” – SGL Carbon

Third place: “High Performance Recycled Carbon Fibre Materials (HiPeR)” – Composites Technology Center GmbH (CTC GmbH), partners: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; partners Japan: Faserinstitut Bremen e.V., Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Innovative Processes & Methods category
First place: “Chopped Fibre Direct Processing (CFP)” – KraussMaffei Technologies GmbH, partner: Wirthwein SE

Second place: “CIRC - Complete Inhouse Recycling of Thermoplastic Compounds” – Fraunhofer Institute for Production Engineering and Automation (IPA), partners: Schindler Handhabetechnik GmbH, Vision & Control GmbH

Third place: “CarboScreen – Sensor-Based Monitoring of Carbon-Fibre Production” – CarboScreen GmbH, partner: Institute of Textile Technology at RWTH Aachen University

Research & Science category
First place: “Development of a Stereocomplex PLA Blend on a Pilot Plant Scale” – Faserinstitut Bremen e. V.

Second place: “Fibre-Reinforced Salt as a Robust Lost Core Material” – Technical University of Munich, Chair of Carbon Composites, partners: Apppex GmbH, Haas Metallguss GmbH

Third place: “VliesSMC – Recycled Carbon Fibres with a Second Life in the SMC Process” – Sächsisches Textilforschungsinstitut e.V. (STFI), partner: Fraunhofer Institute for Chemical Technology (ICT)

 

Entries for the next Innovation Award 2024 can be submitted from January 2024 onwards.

Source:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Adient presented seating innovations at IAA (c) Adient
11.10.2023

Adient presented seating innovations at IAA

Adient, a leader in automotive seating, has presented its latest innovations at the IAA 2023.
 
The current automotive business landscape is marked by shifting industry dynamics, showcasing a strong desire for mobility, with an emphasis on digitalization, cost, and sustainable products. In line with this, Adient’s overall approach is characterized by responding to the need for more sustainable material use, while taking advantage of the potential that sustainable practices hold for streamlining processes.

Adient, a leader in automotive seating, has presented its latest innovations at the IAA 2023.
 
The current automotive business landscape is marked by shifting industry dynamics, showcasing a strong desire for mobility, with an emphasis on digitalization, cost, and sustainable products. In line with this, Adient’s overall approach is characterized by responding to the need for more sustainable material use, while taking advantage of the potential that sustainable practices hold for streamlining processes.

Responding to the need for overall cost and complexity reduction in manufacturing, the Pure Essential seat is especially lightweight. Environmentally-conscious practices such as material separation and recycling, and design for disassembly are embedded into the manufacturing process from the development stage. The visionary seat consists of two materials only – green steel and recyclable polyester (PET).
 
New customer needs in terms of premium comfort are met with the Autonomous Elegance seat, specifically developed to fit Advanced Driver Assistance Systems (ADAS). State-of-the-art findings on ergonomics and human body kinematics have been incorporated following extensive occupant research. They are complemented by advanced comfort assets such as noise cancellation and advanced climate functions. “Our seat demonstrators provide solutions to our customers’ main concerns, and we are looking forward to continuing the strategic product dialogue with them, based on our new demonstrators” highlights David Herberg, Vice President Engineering Adient EMEA. Most features of the seat can already be offered for sourcing, such as the metal structure and seat kinematics (adjustment functions and mechanisms).

Considering optimized use of space as well as sustainability aspects, the automotive supplier has also given its Smart Efficiency seat an update: the seat features a slimmer appearance than its predecessor without compromising on comfort. This design does not only help save space, but also paves the way for new mobility concepts based on battery packaging in electric vehicles.
 
The showcased products will be available for demonstration in customer roadshows as of December 2023.

Source:

Adient

Dyneema® SB301 to Enable Weight Savings of up to 20% in Protective Body Armor Image Avient
10.10.2023

Dyneema®: Weight Savings of up to 20% in Protective Body Armor

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

“In every situation, weight is now considered to be the top priority after ballistic stopping power,” said Marcelo van de Kamp, global business director for personal protection at Avient. “That’s because survivability is directly tied to weight savings when speed and agility determine outcomes. We’ve long been known as the ‘world’s strongest fiber™,’ but that won’t stop us from finding new opportunities to get stronger. This new product is the latest demonstration of our commitment to both innovation and protection.”

Source:

Avient Corporation

22.09.2023

INDA Partners & Waterloo Filtration Institute: Partnering for the FiltXPO™ 2023 Technical Program

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

A preview of the subject matter experts includes:

  • AAF Flanders – “Air Filter Standards Activity and What It Means for Innovation”
  • Ahlstrom – “Expanding Wetlaid Filtration Media Performance Through Innovation”
  • Air Techniques International – “Application of Automated Filter Tester in Quality Control Testing: Importance of Consistent Aerosol Particle Size Distribution”
  • American Truetzschler, Inc. – “How Really Good Filter Media Is Made”
  • CEREX Advanced Fabrics – “The Antimicrobial Nylon Advantage”
  • Elsner Engineering Works, Inc. – “When Does Automation Make Sense”
  • Hollingsworth & Vose – “Accelerating Membrane Adoption with ROI”
  • INDA – “Beyond Porter’s Five Forces – When Regulation Reshapes Markets”
  • MANN+HUMMEL GmbH – “Filtration for Cleaner Urban Mobility – Introducing Horizon Europe Innovation Action Aersolfd”
  • NatureWorks – “Optimizing Biopolymers to Improve Filter Performance – A Spectrum of Approaches and Opportunities”
  • Palas GmbH – “Influence of Temperature and Humidity to Filter Efficiency and Dust Holding Capacity”
  • Ptak Consulting – “Residential Filtration – Performance Against Infectious Aerosols”
  • The University of Georgia – “Recent Advances in Melt Blown Nonwovens and Filter Media Research”

New this year to FiltXPO are Lightning Talks. Lightning Talks are an opportunity to connect with new trends, products, innovations, and ideas with speakers rotating every eight minutes. Presenting companies include Ahlstrom, Elsner Engineering Works, Inc., Gottlieb Binder GmbH, TSI, and the Waterloo Filtration Institute.

The FiltXPO exhibition takes place October 10-12 and will run concurrently with the technical program.

More information:
INDA Filtxpo Conference
Source:

INDA, the Association of the Nonwoven Fabrics Industry

Cinte Techtextil China 2023 with different zones (c) Messe Frankfurt (HK) Ltd
14.09.2023

Cinte Techtextil China 2023 with different zones

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Technological progress often results from close collaboration, and industries that rely on continual improvement stand to benefit from the return to in-person business. Cinte Techtextil China’s first edition since eased pandemic measures is set to reflect a 27.9% increase in exhibitor numbers, with a rejuvenated international contingent further supplemented by the return of the European Zone. Taking place from 19 – 21 September across 40,000 sqm at the Shanghai New International Expo Centre, the platform is expected to welcome buyers from across Asia, Europe, and beyond. Pre-registrations have doubled compared to the previous edition, and international buyers account for over 20% of the total.

The new zone, Marine Textile Zone, will be comprised of multiple Chinese green marine and nautical rope netting exhibitors, while also hosting the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry. Prominent exhibitors in this zone include Ropenet Group, Hunan Xinhai, and Zhejiang Four Brothers Rope.

Other domestic exhibitors, such as Shanghai Shenda Kebao New Materials, SIJIA New Material (Shanghai), Zhejiang Hailide New Material, and Zhejiang Jinda New Materials, will showcase products for applications in outdoor advertising, tents, boats, vehicles, environmental engineering, and much more.

Supplementing the fairground’s wide variety of domestic suppliers will be a much-increased showing of international exhibitors, with many to be found within hall E1’s European Zone. Several global industry leaders are featured in their categories below:

Nonwovens equipment

  • Autefa Solutions, Germany: solutions provider for nonwovens lines and machines for carded-crosslapped needlepunching lines, spunlace lines and thermobonding lines.
  • Dilo, Germany: in addition to offering general services, Dilo supplies opening and blending equipment, carding and airlay machines, and crosslapping and needling machines.
  • Groz-Beckert, Germany: provider of industrial machine needles, precision parts and fine tools, as well as systems and services for the production and joining of textile fabrics.
  • Reifenhäuser Reicofil, Germany: provider of innovative technologies and components for plastics extrusion, producing blown films, cast films, sheets as well as nonwovens.

Weaving equipment

  • Itema, Italy: provider of advanced weaving machines, spare parts, and integrated services, specifically for rapier, air jet and projectile weft insertion technologies.
  • Lindauer DORNIER, Germany: the company manufactures weaving machines, film stretching lines, and composite systems, also offering technical support and spare parts supply.
  • Picanol, Belgium: producer and servicer of high-tech air jet and rapier weaving machines, with around 2,600 weaving mills utilising their systems worldwide.

Coating and lamination

  • BRÜCKNER Textile Technologies, Germany: manufacturer of machines and lines for the coating and finishing of apparel fabric, technical textiles, nonwovens, glass fabrics and floor coverings.
  • ROWA Lack, Germany: developer of high-quality materials and product solutions for the polymer industry, with applications including automotive, electrical engineering, construction, technical textiles, and medical technology.
  • Stahl, the Netherlands: the Dutch company provides high quality coatings, dyes and process chemicals for leather, flexible coated substrates, textiles, films and foils, paper, and related products.

Fibre

  • Monosuisse, Switzerland: with production sites in Switzerland, Poland, Romania, Mexico, and Germany, Monosuisse manufactures various precise, high-quality polymer monofilaments from 19µm to 3.00 mm in diameter.
  • Perlon, Germany: specialised in the manufacture of synthetic filaments in diverse application areas, including paper machine clothing, dental care, and advanced technical textiles for agriculture, 3D printing, sports and leisure, home, and more.

Meanwhile, first-time exhibitors include Rökona (Germany), showcasing RE:SPACE, their range of recycled technical textiles; Testex AG (Switzerland), the official OEKO-TEX® representative in multiple countries including China; Hohenstein (Germany), the renowned testing laboratory and research institute; and zwissTEX (Germany), the knitted fabrics and lamination specialists. In addition, the returning Taiwan Pavilion is set to feature the debut of Shinih Enterprise Co Ltd (Taiwan China).

Beyond the innovation displayed at the booths, the fair’s programme is set to welcome global experts from various technical textile and nonwoven sub-sectors to offer specific insights and unveil innovations. Highlighted events include:

The 11th China International Nonwovens Conference
14 sessions cover topics such as the quality control of medical supplies; green development in technology and applications in the nonwovens industry; and the development and application of flashspun nonwovens in China.

Marine textiles and rope netting events
Events specific to this zone include the Top 10 Suppliers in the China Rope Net Industry; Conference on Textile Applications for Marine Engineering and Fisheries; and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting

"Nonwovens, Creating a Better Life” Innovation Showcase
Product display area showcasing around 100 nonwovens products with applications in five areas: medical and health, quality of life, human habitat, sustainable development, and innovative design.

Advanced Technical Textiles Industry Chain Synergistic Innovation Development Forum
Includes presentations from multiple key players in the technical textile industry, including Mr Steven Liu, Commercial Manager of Polymer Additives Business of Sanitized (China) Ltd.

Source:

Messe Frankfurt (HK) Ltd

11.09.2023

Project and technology study: Trends and Design Factors for Hydrogen Pressure Vessels

Die AZL Aachen GmbH, bekannter Innovationspartner für Industriekooperationen auf dem Gebiet der Leichtbautechnologieforschung, startet eines neuen Projekts mit dem Titel "Trends und Designfaktoren für Wasserstoffdruckbehälter". Das Projekt wird Fragestellungen der Industrie in Bezug auf die Wasserstoffspeicherung adressieren.


AZL Aachen GmbH, a recognized innovator in lightweight technologies research and industry collaboration, announces the initiation of a new project titled "Trends and Design Factors for Hydrogen Pressure Vessels". The project aims to address industry needs surrounding hydrogen storage.

Hydrogen has gained significant attention as a key technological solution for decarbonization, with high pressure storage and transportation emerging as vital components. Its applications extend from stationary storage solutions to mobile pressure vessels employed in sectors such as transportation and energy systems.

Die AZL Aachen GmbH, bekannter Innovationspartner für Industriekooperationen auf dem Gebiet der Leichtbautechnologieforschung, startet eines neuen Projekts mit dem Titel "Trends und Designfaktoren für Wasserstoffdruckbehälter". Das Projekt wird Fragestellungen der Industrie in Bezug auf die Wasserstoffspeicherung adressieren.


AZL Aachen GmbH, a recognized innovator in lightweight technologies research and industry collaboration, announces the initiation of a new project titled "Trends and Design Factors for Hydrogen Pressure Vessels". The project aims to address industry needs surrounding hydrogen storage.

Hydrogen has gained significant attention as a key technological solution for decarbonization, with high pressure storage and transportation emerging as vital components. Its applications extend from stationary storage solutions to mobile pressure vessels employed in sectors such as transportation and energy systems.

The AZL team, renowned for its high reputation in providing market and technology insights as well as developing component and production concepts in the format of Joint Partner Projects seeks for companies along the whole composite value chain interested in further developing their application know how in this economically highly relevant field.

The project will provide an in depth exploration of market insights, regulatory standards, and intellectual property landscapes. Beyond this, there is a dedicated focus on staying updated with state of the art and advancements in design, materials, and man ufacturing techniques.

An integral component of the project involves the creation of reference designs by AZL´s engineering team. The reference designs will encompass a variety of pressure vessel configurations and will consider a diverse range of materials and production concep ts.

With the scheduled project start in October 2023, and a project timeline of approximately nine months, AZL encourages companies active across the composite value chain to participate. Companies interested in participating or seeking further information should reach out directly to the AZL expert team.

Source:

Aachener Zentrum für integrativen Leichtbau

05.09.2023

Beaulieu International Group at International Conference on Geosynthetics

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu Technical Textiles' (BTT) woven geotextiles provide a wide range of functions, including separation, filtration, reinforcement and erosion control, and are among the most sustainable in the industry. Depending on weight, the carbon footprint of its woven geotextiles (m²) ranges between 0.37 and 1.40 kg CO2 eq./m². They also minimize the use of natural resources for more sustainable infrastructure development. Case studies such as at the Ostend-Bruges airport highlight significant CO2 reduction on the jobsite by replacing the transport of 960 trucks of gravel with 3 trucks of woven geotextiles, and by extending the runway’s life span.

The ICG launch of its new line Terralys MF woven filtration geotextiles with monofilament boosts the performance of a common solution in building layers that require high water flow rates. High-tenacity extruded polypropylene tapes and monofilaments are interwoven to form dimensionally stable and highly permeable geotextiles. These new filtration geotextiles provide greater resistance to dirt and biological clogging. They allow water to travel freely while reducing soil erosion when employed as a separation and stabilizing layer.

As of September 2023, all PP staple fibres and woven geotextiles will have Environmental Product Declarations (EPD) based on LCAs. Each EPD is an essential tool for communicating and reporting on the sustainability performance and helps carbon-conscious customers in their purchasing and decision making. Registered EPDs are globally recognized, publicly available and free to download through EPD Libraries.

Source:

Beaulieu International Group

TCO 21XL (c) Trützschler Group SE
31.08.2023

TCO 21XL: 12 heads boost production

TRÜTZSCHLER Spinning presents an innovation for the textile machinery market: the high-performance comber TCO 21XL with 12 combing heads. For many decades, eight combing heads has been considered state-of-the-art in the spinning industry. Now, Trützschler’s advanced technology and engineering proves that it is possible to build a heavy-duty comber that maximizes productivity by 50 % and saves space without compromising on quality.

They say two heads are better than one, so just imagine what 12 heads can do! That’s the simple but effective idea behind the TCO 21XL. Increasing the number of combing heads by 50 % makes it possible to increase productivity by 50 %, enabling rates of up to 150 kg/h. As a result, two TCO 21XL combers offer the same production capacity as three conventional combers. And that means companies that buy and operate two machines instead of three can achieve significant benefits in terms of their price-performance-ratio (cost/kg). The costs of running the machines are broken down into 12 instead of eight heads, making the machine more cost-effective over its entire operating life.

TRÜTZSCHLER Spinning presents an innovation for the textile machinery market: the high-performance comber TCO 21XL with 12 combing heads. For many decades, eight combing heads has been considered state-of-the-art in the spinning industry. Now, Trützschler’s advanced technology and engineering proves that it is possible to build a heavy-duty comber that maximizes productivity by 50 % and saves space without compromising on quality.

They say two heads are better than one, so just imagine what 12 heads can do! That’s the simple but effective idea behind the TCO 21XL. Increasing the number of combing heads by 50 % makes it possible to increase productivity by 50 %, enabling rates of up to 150 kg/h. As a result, two TCO 21XL combers offer the same production capacity as three conventional combers. And that means companies that buy and operate two machines instead of three can achieve significant benefits in terms of their price-performance-ratio (cost/kg). The costs of running the machines are broken down into 12 instead of eight heads, making the machine more cost-effective over its entire operating life.

50 % higher productivity is great – and it can be even greater if the machine is operated with JUMBO cans. The can changer needs to keep up with the extra performance, and JUMBO cans can easily collect the additional output of the TCO 21XL because they feature a 1200 mm diameter. This makes it possible to minimize non-productive time when changing cans. Anybody who is planning a new spinning mill knows that every square meter of space adds to the overall costs. The new TCO 21XL comber offers huge benefits in this regard because 25 % less floor space is required to operate same number of combing heads. This reduces the initial building costs, while also decreasing operating costs related to lighting, air conditioning and other overheads.

Source:

Trützschler Group SE

ropes Photo Cinte Techtextil
29.08.2023

Cinte Techtextil China 2023 to launch new Marine Textile Zone

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

In the green marine and rope netting category, exhibitors will showcase the latest innovations along the marine textile industry chain, anchored by application areas such as marine engineering, marine economy, marine fencing, marine rescue, deep-sea fishing, deep-sea aquaculture, and many more.

Featured exhibitors include:

  • Ropenet Group: covering 36 application areas, such as aerospace, marine fisheries, safety protection, and emergency rescue, the Shandong-based company has exported to over 110 countries and regions. Products include ropes, nets, threads, and belts, with new materials and high-performance synthetic fibre spinning ropes forming the core of its business.
  • Hunan Xinhai: with its Hunan factory covering 200,000 sqm, its industry-leading rope net production scale ensures it can service multiple sectors such as fisheries, sports, military industry, marine engineering, life-saving protection, and many more. Its extensive network spans Asia, Africa, Europe, and beyond.
  • Zhejiang Four Brothers Rope: located in Zhejiang Toumen Port Economic Development Zone, the special chemical fibre rope manufacturer integrates R&D, manufacturing, sales, and after-sales service. After nearly 60 years of operation, the company now has a yearly production capacity of over 15,000 tons.

Other notable exhibitors in this zone include Xuzhou Henghui Braiding Machine; Shandong Jinguan Netting; Jiuli Rope; and Zhejiang Hailun Rope Net.

Meanwhile, the Technology Exchange Forum will focus on policies and regulations, strategic development opportunities, market analysis, product and process innovation, and the promotion and application of marine textiles. A range of well-known international and domestic experts have been invited to deliver comprehensive industry analysis, and unveil oceanic green textile initiatives onsite.

Designed to expand the influence of the rope net industry, the Top 10 Suppliers in the China Rope Net Industry awards will highlight enterprises currently making key contributions. Other fringe events related to this textile sub-sector include the Conference on Textile Applications for Marine Engineering and Fisheries, and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting.

Lastly, the Marine Textile Zone will also encompass a business negotiation area to facilitate negotiations between key players onsite, set against the backdrop of the innovation display area’s award-winning and patented rope net products. As a whole, the zone is expected to encourage independent innovation in marine science and technology, coordinate the protection and development of marine resources, and help build a modern maritime industrial system.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd

ElasTool in a lifting unit, e.g. for logistics, transport or mining Grafik JUMBO-Textil
ElasTool in a lifting unit, e.g. for logistics, transport or mining
22.08.2023

JUMBO-Textil: Lubricant-free tensioning and clamping system

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

From mechanical engineering to the construction industry, from logistics to rescue technology – tensioning and clamping systems fulfil important tasks in a number of industries. The possible uses of technical textiles for industrial applications of this kind are manifold.

Patented and precisely configured
The ElasTool system from the elastics expert consists of a connection tool and a rubber rope connected to this tool via integrated locking elements. The stainless steel, aluminium or plastic connection tool and the rubber rope – with a thickness of between 12 and 38 mm – are each configured to fit precisely. The highlight of the patented connection solution: the more tensile force is exerted, the more the rope is jammed. Thanks to the locking system, ElasTool still provides a secure hold even when the diameter of the rubber rope narrows to up to 60 percent due to the tensile load. A crucial advantage over conventional end connections by pressing.

Economical and low maintenance
The system has further advantages: the textile solution runs quietly. Unlike clamping systems with steel cable springs, there is no creaking here. In addition, textiles, plastic and aluminium are particularly lightweight materials. ElasTool therefore saves energy. Another benefit: the connection system works without lubricating oil. While conventional tensioning and clamping solutions in industrial plants and products have to be oiled regularly, the JUMBO textile system works completely maintenance-free.

Versatile and easily interchangeable
Depending on the area of application of the ElasTool, the interchangeable head can be exchanged: Plastic hook instead of aluminium eyelet, stainless steel flange instead of aluminium hook – for example. The interchangeable head can be replaced effortlessly and without special tools.

"A lifting system in a high-bay warehouse, a trolley in a crane, damping for compressors or crash systems – these are just three of the many possible applications. We adapt the dimensions, material, force-stretch behaviour, flame retardancy – like all properties – specifically to the respective project," emphasises Carl Mrusek, Chief Sales Officer of JUMBO-Textil. "Thus, with ElasTool, we offer a safe load connection for a wide variety of applications in industry."

ElasTool from JUMBO-Textil

  • Lightweight and flexible alternative to conventional tensioning and clamping systems
  • Suitable even in small installation spaces
  • With individual specifications and infinitely customisable dimensions
  • Connection tool optionally made of plastic, aluminium or stainless steel
  • Rubber rope in a thickness of 12 to 38 mm
  • Rubber rope made of polyamide, polyester, recycled PES, polypropylene, aramid, Dyneema, monofilament, natural fibres
  • Different interchangeable head shapes possible
  • As an end connection or for coupling with other machine elements
  • Tensile load up to 600 N, in individual cases more than this
  • Individually configurable e.g. with hook, eyelet or flange
Source:

JUMBO-Textil