From the Sector

Reset
45 results
Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles (c) ITA. Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles
30.03.2023

Composites made by ITA at JEC World 2023

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

Source:

ITA Institut für Textiltechnik of RWTH Aachen

Freudenberg´s 100% rTPE Base Content Interlining Medium Weight Foto: Freudenberg
29.03.2023

Freudenberg: First 100% rTPE base content interlining series for apparel

Freudenberg Performance Materials Apparel is expanding its Super Elastic Interlinings Range with the introduction of the apparel industry’s first 100% recycled thermoplastic elastomers (rTPE) base content interlining series. In recognition of the growing use of elastic interlinings in apparel and building on the principles of Freudenberg Performance Materials´ Apparel’s House of Sustainability, these new products speak for high-quality and sustainable solutions.

The new, 100% rTPE base content interlinings are offered in 40-90 g/m2 weights, with wide applicability – from lightweight knit fabrics with applications in leggings and sports bras to elastic woven fabrics that require medium-to-heavy weights, such as denim, maternity clothes, or casual wear. Sustainable without compromising on quality, the new interlinings offer exceptional elasticity and retain excellent recovery capabilities.

Freudenberg Performance Materials Apparel is expanding its Super Elastic Interlinings Range with the introduction of the apparel industry’s first 100% recycled thermoplastic elastomers (rTPE) base content interlining series. In recognition of the growing use of elastic interlinings in apparel and building on the principles of Freudenberg Performance Materials´ Apparel’s House of Sustainability, these new products speak for high-quality and sustainable solutions.

The new, 100% rTPE base content interlinings are offered in 40-90 g/m2 weights, with wide applicability – from lightweight knit fabrics with applications in leggings and sports bras to elastic woven fabrics that require medium-to-heavy weights, such as denim, maternity clothes, or casual wear. Sustainable without compromising on quality, the new interlinings offer exceptional elasticity and retain excellent recovery capabilities.

The 100% rTPE base content interlinings reduce the need for virgin materials in apparel while also reducing the demand for the extractive practices necessary to produce such materials. Furthermore, the use of recycled components reduces materials in landfills and oceans, in consideration of full-garment lifecycle management.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

(c) Hologenix, LLC
17.03.2023

Purecare launches CELLIANT® viscose bedding range

Purecare, a wellness-focused bedding essentials manufacturer, has launched sheets and pillowcases with CELLIANT® Viscose, the first time the fiber has used been in luxury bedding products in a new offering aptly named the “Recovery Collection.”

Developed by materials science innovator Hologenix®, creators of CELLIANT, and Kelheim Fibres, CELLIANT Viscose is the first in-fiber sustainable infrared viscose. It is lightweighted, soft, highly breathable and has an excellent moisture management. CELLIANT has been clinically demonstrated to promote faster recovery and restful sleep, as it improves local circulation and cell oxygenation, enhancing thermoregulation and comfort.

The collection is available in five colors: dove gray, ivory, clay, moss, and sage in Queen through Split California King sizing and Queen and King pillowcases. The Precision-Fit® corners on the fitted sheets have a one-inch elastic cuff to ensure that they stay securely on the bed. The sheets are also compatible with adjustable base mattresses. The Recovery Collection sheets and pillowcases are also treated with Antimicrobial Silver Product Protection (AgCI).

Purecare, a wellness-focused bedding essentials manufacturer, has launched sheets and pillowcases with CELLIANT® Viscose, the first time the fiber has used been in luxury bedding products in a new offering aptly named the “Recovery Collection.”

Developed by materials science innovator Hologenix®, creators of CELLIANT, and Kelheim Fibres, CELLIANT Viscose is the first in-fiber sustainable infrared viscose. It is lightweighted, soft, highly breathable and has an excellent moisture management. CELLIANT has been clinically demonstrated to promote faster recovery and restful sleep, as it improves local circulation and cell oxygenation, enhancing thermoregulation and comfort.

The collection is available in five colors: dove gray, ivory, clay, moss, and sage in Queen through Split California King sizing and Queen and King pillowcases. The Precision-Fit® corners on the fitted sheets have a one-inch elastic cuff to ensure that they stay securely on the bed. The sheets are also compatible with adjustable base mattresses. The Recovery Collection sheets and pillowcases are also treated with Antimicrobial Silver Product Protection (AgCI).

Source:

Hologenix, LLC

(c) Freudenberg Performance Materials Holding SE & Co. KG
13.02.2023

Freudenberg Performance Materials presents range of solutions for the composites industry at JEC 2023

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 

Freudenberg Performance Materials (Freudenberg) will present surfacing veils and core materials for lightweight fiber reinforced plastic (FRP) parts at JEC in Paris, France. Freudenberg will also be showcasing Enka® Solutions flow media and spacers for efficient vacuum infusion, resin transfer and foam injection molding processes for applications in the composites industry, etc. at the international composites show.
 
Freudenberg’s solutions for the FRP industry include a variety of glass, PAN and PET nonwovens, as well as core materials for the production of lightweight fiber reinforced plastic parts. These products are designed for anti-corrosion coatings in piping and tank construction, smooth UV resistant surfaces for facade panels, and other applications for a diverse range of end products. Products made from fiber reinforced plastics must be equipped with surfacing veils to provide abrasion resistance, corrosion resistance, smooth surfaces and mechanical strength. Freudenberg offers high-tech nonwovens that can meet these challenges.
 
Enka® Solutions products are characterized by their typical 3D entangled polymeric filament structures. Thanks to this structure, they are exceptionally suitable as flow media and spacers when producing composite materials.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

Photo VDMA
12.12.2022

Young Talent Award for AI supported production control of carbon fibres

  • Formula 1 cars will be cheaper in future

Carbon is the stuff Formula 1 cars are made of, at least the bodywork. But until now, carbon has been expensive. It can be produced more cheaply and efficiently if artificial intelligence monitors the production processes. A camera system combined with artificial intelligence automatically detects defects in the production of carbon fibres. This makes expensive manual inspection of the carbon fibres obsolete and the production price of the carbon fibre can be reduced in the long term.

For this idea, the young engineer Deniz Sinan Yesilyurt received the second prize of the "Digitalisation in Mechanical Engineering" Young Talent Award on 6 December.

  • Formula 1 cars will be cheaper in future

Carbon is the stuff Formula 1 cars are made of, at least the bodywork. But until now, carbon has been expensive. It can be produced more cheaply and efficiently if artificial intelligence monitors the production processes. A camera system combined with artificial intelligence automatically detects defects in the production of carbon fibres. This makes expensive manual inspection of the carbon fibres obsolete and the production price of the carbon fibre can be reduced in the long term.

For this idea, the young engineer Deniz Sinan Yesilyurt received the second prize of the "Digitalisation in Mechanical Engineering" Young Talent Award on 6 December.

Carbon fibres are sought after because of their good properties. They are very light - they weigh up to 50 percent less than aluminium. The combination of low weight and good mechanical properties offers many advantages. Especially in times of the energy transition, lightweight materials like carbon are more relevant than ever before. At the same time, carbon fibres are as resistant to external stresses as metals. However, achieving these good properties of carbon fibres is very complex.


Up to 300 individual fibre strands - bundles of individual fibres - have to be monitored simultaneously during production. If carbon fibres tear, it costs time and money to sort out the damaged fibres. This is just one example of various defects that can occur in the fibres during production.


Therefore, Deniz Sinan Yesilyurt attached a camera to the carbon fibre line that takes pictures of various fibre defects during production and collects them in a database. The artificial intelligence in the camera's information technology system evaluates the fibre defects by assigning the images to predefined reference defects. In doing so, it recognises various fibre defects with a classification accuracy of 99 per cent. The process can also be used in other areas that produce chemical fibres.

Deniz Sinan Yesilyurt received the prize from the German Engineering Federation (VDMA) in Frankfurt am Main, Germany. He is a Bachelor's graduate at the Institut für Textiltechnik (ITA) of RWTH Aachen University. The full title of his bachelor's thesis is: "Development of a Kl-supported process monitoring using machine learning to detect fibre damage in the stabilisation process". The VDMA awarded the prize to a total of four theses from different universities. The prize is awarded for outstanding theses and was offered in Germany, Austria and Switzerland.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen Universit

Graphic Hologenix
06.10.2022

CELLIANT® Viscose now as flock coating and flock fabric

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

Flocking is an application method in which tiny fibers are piled on to the surface of a textile, creating textures for both decorative and functional purposes. CELLIANT Viscose in a flocked material has many potential applications in the medical field for tapes, bandages, braces and orthopedic products, home textiles and decor, dog beds, clothing, and more.  CELLIANT features natural, ethically sourced minerals, which convert body heat into infrared energy for increased local circulation and cellular oxygenation.  These CELLIANT minerals are then embedded into viscose plant-based fibers. The Viscose fibers are then flocked onto a base material. CELLIANT Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as the fiber enhancements from CELLIANT infrared technology.

CELLIANT Viscose is the first IR flocked material that Spectro is producing. CELLIANT Viscose also represents a further expansion into sustainable products for Spectro. In addition, Spectro products are made in the USA, as is CELLIANT’s mineral blend.

Source:

Hologenix

13.09.2022

Ionofibres a new track for smart and functional textiles

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Electronically conductive fibres are already in use in smart textiles, but in a recently published research article, ionically conductive fibres have proven to be of increasing interest. The so-called ionofibres achieve higher flexibility and durability and match the type of conduction our body uses. In the future, they may be used for such items as textile batteries, textile displays, and textile muscles.

The research project is being carried out by doctoral student Claude Huniade at the University of Borås and is a track within a larger project, Weafing, the goal of which is to develop novel, unprecedented garments for haptic stimulation comprising flexible and wearable textile actuators and sensors.

In Claude Huniade’s project, the goal is to produce conductive yarns without conductive metals.
"My research is about producing electrically conductive textile fibres, and ultimately yarns, by coating non-metals sustainably on commercial yarns. The biggest challenge is in the balance between keeping the textile properties and adding the conductive feature," said Claude Huniade.

Currenty, the uniqueness of his research leans towards the strategies employed when coating. These strategies expand to the processes and the materials used.

Uses ionic liquid
One of the tracks he investigates is about a new kind of material as textile coating, ionic liquids in combination with commercial textile fibres. Just like salt water, they conduct electricity but without water. Ionic liquid is a more stable electrolyte than salt water as nothing evaporates.

"The processable aspect is an important requirement since textile manufacturing can be harsh on textile fibres, especially when upscaling their use. The fibres can also be manufactured into woven or knitted without damaging them mechanically while retaining their conductivity. Surprisingly, they were even smoother to process into fabrics than the commercial yarns they are made from," explained Claude Huniade.

Ionofibres could be used as sensors since ionic liquids are sensitive to their environment. For example, humidity change can be sensed by the ionofibers, but also any stretch or pressure they are subjected to.

"Ionofibres could truly shine when they are combined with other materials or devices that require electrolytes. Ionofibres enable certain phenomena currently limited to happen in liquids to be feasible in air in a lightweight fashion. The applications are multiple and unique, for example for textile batteries, textile displays or textile muscles," said Claude Huniade.

Needs further research
Yet more research is needed to combine the ionofibres with other functional fibres and to produce the unique textile devices.

How do they stand out compared to common electronically conductive fibres?
"In comparison to electronically conductive fibres, ionofibers are different in how they conduct electricity. They are less conductive, but they bring other properties that electronically conductive fibers often lack. Ionofibres achieve higher flexibility and durability and match the type of conduction that our body uses. They actually match better than electronically conductive fibres with how electricity is present in nature," he concluded.

Source:

University of Borås - The Swedish School of Textiles

(c) AZL. Comparison of battery casing in modular design and “cell-to-pack” design
Comparison of battery casing in modular design and “cell-to-pack” design
02.09.2022

AZL: Plastic-based multi-material solutions for cell-to-pack battery enclosures

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The design of battery housings is crucial for safety, capacity, performance, and economics. The Cell-to-Pack project, which is starting now, will focus on developing concepts for structural components and for producing them based on a variety of materials and design approaches. The concepts will be compared in terms of performance, weight and production costs, creating new know-how for OEMs, producers and their suppliers throughout the battery vehicle value chain. Companies are now invited to participate in this new cross-industry project to develop battery enclosure concepts for the promising and trend-setting cell-to-pack technology.

The basis for the project is the lightweight engineering expertise of the AZL experts, which they have already demonstrated in previous projects for multi-material solutions for module-based battery housings. Together with 46 industry partners, including Audi, Asahi Kasei, Covestro, DSM, EconCore, Faurecia, Hutchinson, Johns Manville, Magna, Marelli and Teijin, 20 different multi-material concepts were optimized in terms of weight and cost and compared with a reference component made from aluminum. All production steps were modelled in detail to obtain reliable cost estimates for each variant. Result: depending on the concept, 20% weight or 36% cost savings potential could be identified by using multi-material composites compared to the established aluminum reference.

It is expected that the design concept of battery enclosures will develop in the direction of a more efficient layout. In this case, the cells are no longer combined in modules in additional production steps, but are integrated directly into the battery housing. The elimination of battery modules and the improved, weight-saving use of space will allow for higher packing density, reduced overall height and cost saving. In addition, various levels of structural integration of the battery housing into the body structure are expected. These new designs bring specific challenges, including ensuring protection of the battery cells from external damage and fire protection. In addition, different recyclability and repair requirements may significantly impact future designs. How the different material and structural options for future generations of battery enclosures for the cell-to-pack technology might look like and how they compare in terms of cost and environmental impact will be investigated in the new AZL project. In addition to the material and production concepts from the concept study for module-based battery enclosures, results from a currently ongoing benchmarking of different materials for the impact protection plate and a new method for determining mechanical properties during a fire test will also be incorporated.

The project will start on October 27, 2022 with a kick-off meeting of the consortium, interested companies can still apply for participation until then.

Beaulieu International Group
23.08.2022

BIG at EuroGeo7 with geotextile fibres & woven fabrics

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

Beaulieu International Group invites EuroGeo7 attendees to discover geotextile solutions promoting greater sustainability for future civil engineering projects. Specialists from Beaulieu Fibres International (BFI) and Beaulieu Technical Textiles (BTT) will present high-performance geosynthetics through high tenacity fibres for lightweight, nonwoven geotextiles, and a range of high durability woven geotextile solutions with an environmentally beneficial impact.

“We are delighted to sponsor EuroGeo7 and to be finally on-site, following a two-year postponement of the event. EuroGeo7 is bringing the geotextile community together to further promote and develop geosynthetics in a fast changing global economy striving for growth while reducing its carbon footprint along the supply chain, " comment from Jefrem Jennard, Sales Director Fibres, and Roy Kerckhove, Sales Director Technical Textiles. “Geotextiles provide highly versatile, durable and natural resource-saving alternatives in large infrastructure works, and offer durable protection in erosion control and waste/water management projects. We are continuously developing our fibres and finished engineering textiles with proven sustainability-enhancing benefits to progress product development and customer sustainability goals on fossil carbon reduction, while taking concrete steps to reduce our own environmental footprint.”
 
Sustainability improvement is key to the long-term strategy of Beaulieu International Group, and it is committed to supporting the geotextile industry by targeting and accelerating change and communicating the sustainable performance of its products. The UN Sustainable Development Goals are integrated into its business and are the foundations of the new Route 2030 Sustainability Roadmap.


For manufacturers of nonwoven geotextiles, BFI’s high-tenacity HT8 staple fibres enable customers to achieve nonwovens with high mechanical performance at reduced fibre weight. The HT8 high tenacity fibres are designed in a way that customers can meet the industry durability standards for a longer service lifetime, supporting more sustainable design and resource reduction over time. BTT’s woven geotextiles are amongst the most sustainable in the industry and provide a wide range of functions, including separation, filtration, reinforcement and erosion control.

BFI and BTT have conducted lifecycle assessments to calculate their activities' carbon footprint and solutions and have received external recognition for their ongoing sustainability efforts. For example, in 2022, BFI was awarded a Silver EcoVadis sustainability rating, and BFI and BTT are proud recipients of the Voka Charter for Sustainable Entrepreneurship 2022.

Source:

Beaulieu International Group

(c) Autoneum Management AG
27.06.2022

Autoneum: Sound-insulating technologies for electric drives

Catering to the acoustic requirements of electric vehicles, Autoneum has extended its concepts for noise-reducing engine encapsulations to new applications related to electric drives. Hybrid-Acoustics PET and the foam-based alternatives Hybrid-Acoustics FLEX and Fit FLEX ensure optimum noise protection in e-cars and thus improve driving comfort. All three technologies are characterized by a high acoustic performance tailored to specific customer needs and zero waste production.

Disturbing noises such as the high-frequency sounds of e-motors and other electric devices or the whining noise of the gearbox are posing new acoustic challenges for vehicle manufacturers worldwide. Anticipating the increasing demand for sound-reducing components in both the front and the rear of e-cars early on, Autoneum has expanded its technologies for noise protection in the engine bay to new tailor-made applications for electric vehicles.

Catering to the acoustic requirements of electric vehicles, Autoneum has extended its concepts for noise-reducing engine encapsulations to new applications related to electric drives. Hybrid-Acoustics PET and the foam-based alternatives Hybrid-Acoustics FLEX and Fit FLEX ensure optimum noise protection in e-cars and thus improve driving comfort. All three technologies are characterized by a high acoustic performance tailored to specific customer needs and zero waste production.

Disturbing noises such as the high-frequency sounds of e-motors and other electric devices or the whining noise of the gearbox are posing new acoustic challenges for vehicle manufacturers worldwide. Anticipating the increasing demand for sound-reducing components in both the front and the rear of e-cars early on, Autoneum has expanded its technologies for noise protection in the engine bay to new tailor-made applications for electric vehicles.

With the fibrous technology Hybrid-Acoustics PET and the two foam alternatives Hybrid-Acoustics FLEX and Fit FLEX, the Company offers three standardized technologies that reduce noise directly at the source, thereby improving driver comfort. All three technologies are produced waste-free and their adaptive capacity to different sizes and shapes allows for a broad spectrum of uses in electric vehicles: from e-motor encapsulations to the reduction of noise and vibration of inverters, gearbox, pumps and compressors. By offering both fibrous and foam-based variants, Autoneum is able to flexibly cater to individual customer needs and preferences with regard to material, acoustic concept, sustainability and costs.

In terms of sustainable noise protection in the engine bay, Autoneum’s patented innovation Hybrid-
Acoustics PET sets the tone: it is made of 100 percent PET with up to 50 percent recycled fibers; cut-offs in production are reclaimed, processed and reused and the material can be fully recycled at the end of product life. The unique textile technology, which is part of the Company’s sustainability label Autoneum Pure, is particularly suited to attenuating high-frequency sounds of the electric drive unit and offers the optimum balance of absorption and insulation. Moreover, components made of Hybrid-Acoustics PET are up to 40 percent lighter compared to standard insulators.

To accommodate the differing preferences of vehicle manufacturers, Autoneum has complemented its lightweight textile technology with two foam-based alternatives. Since the foam is injected in both technologies, no waste is generated during production either. Hybrid-Acoustics FLEX is based on the same acoustic concept as Hybrid-Acoustics PET, but the decoupler is made of foam instead of felt. Autoneum’s Fit FLEX, on the other hand, combines the foam decoupler with an injection molded heavy layer. Thanks to the high geometrical adaptability of foam to even complex shapes, both technologies offer outstanding acoustic performance in the insulation of e-motors and other noise sources in electric vehicles. Furthermore, the absorbing or insulating acoustic quality of the foam can be flexibly tuned to specific customer needs.

Source:

Autoneum Management AG

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG

07.06.2022

EPTA World Pultrusion Conference 2022 explores composites sustainability

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

‘Bio-pultrusion’:  
Composites based on natural fibres offer a number of benefits, including low density and high specific strength, vibration damping, and heat insulation. The German Institutes for Textile and Fiber Research Denkendorf (DITF) are developing pultrusion processes using bio-based resins and natural fibres. Projects include the BioMat Pavilion at the University of Stuttgart, a lightweight structure which combines ‘bamboo-like’ natural fibre-based pultruded profiles with a tensile membrane.

Applications for recycled carbon fibre (rCF):
The use of rCF in composite components has the potential to reduce their cost and carbon footprint. However, it is currently used to a limited extent since manufacturers are uncertain about the technical performance of available rCF products, how to process them, and the actual benefits achievable. Fraunhofer IGCV is partnering with the Institute for Textile Technology (ITA) in the MAI ÖkoCaP project to investigate the technical, ecological and economic benefits of using rCF in different industrial applications. The results will be made available in a web-based app.

Circularity and recycling:
The European Composites Industry Association (EuCIA) is drafting a circularity roadmap for the composites industry. It has collaborated with the European Cement Association (CEMBUREAU) on a position paper for the EU Commission’s Joint Research Centre (JRC) which outlines the benefits of co-processing end-of-life composites in cement manufacturing, a recycling solution that is compliant with the EU’s Waste Framework Directive and in commercial operation in Germany. Initial studies have indicated that co-processing with composites has the potential to reduce the global warming impact of cement manufacture by up to 16%. Technologies to allow recovery of fibre and/or resin from composites are in development but a better understanding of the life cycle assessment (LCA) impact of these processes is essential. EuCIA’s ‘circularity waterfall,’ a proposed priority system for composites circularity, highlights the continued need for co-processing.

Sustainability along the value chain:
Sustainability is essential for the long-term viability of businesses. Resin manufacturer AOC’s actions to improve sustainability include programmes to reduce energy, waste and greenhouse gas emissions from operations, the development of ‘greener’ and low VOC emission resins, ensuring compliance with chemicals legislation such as REACH, and involvement in EuCIA’s waste management initiatives. Its sustainable resins portfolio includes styrene-free and low-styrene formulations and products manufactured using bio-based raw materials and recycled PET.

Source:

European Pultrusion Technology Association EPTA

(c) Cobra International
26.04.2022

COBRA International: Highlights Diversification into New Market Sectors at JEC World 2022

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Cobra International, a leading manufacturer of advanced composite products for the watersports, automotive, marine, and industrial sectors, will highlight recent diversification into new composite markets at JEC World 2022, with exhibits ranging from VTOL drones to carbon fibre prosthetics.  Cobra will also demonstrate how it is working alongside automotive and water sports customers to further enhance the sustainability of products in these sectors.

High Volume Production Capacity for the UAV sector
Cobra will display a wing from the Swiftlet UAV. This compact tactical fixed wing UAV platform has a 5.5m wingspan and was developed by the Royal Thai Air Force and National Science and Technology Development Agency (NSTDA) for survey, monitoring and search and rescue operations. Cobra manufactured the 32kg Swiftlet composite airframe using a combination of CNC cut carbon sandwich internal structure and PVC foam sandwich skins using both high grade glass fibre and carbon fibre reinforcements.  

Sustainability Options for Automotive and Watersports
Sustainability has a been a key focus for the Cobra Waterports division and CAC, the Cobra automotive business unit. At JEC World 2022, Cobra will showcase the increasing material and process options it has developed with both bio-resin and natural fibre reinforcements variants presented alongside more traditional carbon fibre parts.

Visitors will be able to get up close to a new Bio SUP Wingfoil board featuring a basalt, flax, bamboo and GreenPoxy bio-epoxy construction created for partners NSP, as well as state-of-the-art compression moulded prepreg foils. Cobra’s first fully recyclable surfboard incorporating the Recyclamine® resin technology that Cobra was recognised for in the 2020 JEC Innovation Awards will also be on display alongside a new Audi e-tron foil by Aerofoils – the world’s safest electric hydrofoil board.

The CAC team (Automotive Business Unit of Cobra) will present a set of OEM mirror cap parts that showcase a range of carbon SMC, woven visual carbon, pure woven visual flax, hybrid flax-carbon and painted flax construction options for the same component.  Clear carbon aesthetic and structural parts including CAC made M-carbon components for the BMW S 1000 RR Motorcycle will furthermore underline the high quality and eye-for-detail for which CAC is renowned.

Carbon Prosthetics
An entirely new composite application for the company, Cobra will also show two composite prosthetic devices at JEC which were productionised by the in-house design and development team. Working alongside a leading Thai university and a medical device OEM, Cobra created a rapid and cost effective series production process for a lightweight carbon fibre prosthetic foot. In another example of lightweight composites creating major quality of life improvements, Cobra has also designed and manufactured a carbon and glass fibre prepreg foot support for Elysium Industries.

More information:
COBRA Composites UAV
Source:

Cobra International

Hypetex at JEC World 2022 (c) Hypetex
Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
20.04.2022

Hypetex at JEC World 2022

  • Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
  • Hypetex, London, April 20 2022, Booth R52, Hall 6

Hypetex, the market leaders in colouring carbon and natural fibre materials, will demonstrate both the processing and sustainability benefits of its patented colourisation technology when it exhibits for the first time at JEC World 2022.

  • Hypetex® to Showcase Coloured Carbon and Flax Fibre Solutions
  • Hypetex, London, April 20 2022, Booth R52, Hall 6

Hypetex, the market leaders in colouring carbon and natural fibre materials, will demonstrate both the processing and sustainability benefits of its patented colourisation technology when it exhibits for the first time at JEC World 2022.

Exhibiting as part of the Composites UK stand (Booth R52), Hypetex will display its portfolio of uniquely coloured carbon fibre materials including 3K woven styles, ultra-lightweight spread tow fabrics, UD, and 3D materials. Hypetex will also present details of its latest eco-friendly coloured flax materials  which combine sustainably grown natural flax with sustainable colouring technologies. Hypetex patented colouring technology, available in an extensive palette of standard and bespoke colours and shades, can be applied to traditional woven fabric constructions, non-woven UDs, spread tow and bespoke fabric designs. The technology replaces a traditional coloured painted finish, providing an exceptional depth of colour to any composite part, improving thermal conductivity and reducing heat absorption ,whilst reducing the overall weight and processing time with no compromise to the mechanical performance of the composite structure.

By removing the need for painting, and the associated preparation steps, Hypetex technology provides manufacturers with a repeatable straight out of the mould coloured finish, that is not only easy to integrate into all composite processes, but also takes additional materials, consumables, and process time out of the component cost. As part of its continued commitment to leading the drive for more sustainable composite solutions, and its focus on improvements based on the ESG framework. Hypetex will also display its new range of coloured flax fibre textiles. The advanced colouring technology used protects the natural flax fibres throughout the high temperature processes required for composite production, avoiding burning or any discolouration issues common to natural fibres. In addition, Hypetex colouring solution is an ecofriendly sustainable alternative to traditional dyeing processes which are a significant cause of global water pollution.

The Hypetex team will be on hand throughout the show to provide additional details on Hypetex materials and their integration into the manufacturing process. Visitors to the Hypetex stand will be able see Hypetex carbon and flax products in raw fabric, and how its unique colour palette translates into the most distinctive finished moulded components. Hypetex partners SHD Composites, Textreme, Sigmatex and Angeloni will also have materials and components on display at JEC World 2022, including sporting equipment such as racquets, sticks, and skateboards, which highlight the massive range of processing options and potential applications for this novel technology. One such application, the adidas Kromaskin field hockey stick, with a unique Hypetex coloured Textreme spread tow carbon finish, will also be part of the JEC Innovation Planets feature.

Source:

100% Marketing

(c) nova-Institut GmbH
25.02.2022

Winner of the Cellulose Fibre Innovation of the Year

The annual highlight of the industry is the International Conference on Cellulose Fibres in Cologne, where the latest innovations were showcased: new cellulose fibre technologies for various feedstocks and a wide range of hygiene and textile products as well as alternatives to plastics and carbon fibre for lightweight constructions.

This year, for the first time, there were 230 participants from 27 countries. About 60 were able to attend on site – with strict Corona safety measures – while the others were able to attend online and participate in questions and discussions.

The conference gave deep insights into the promising future of cellulose fibres, which fit perfectly into the current trends of circular economy, recycling and sustainable carbon cycles.

The annual highlight of the industry is the International Conference on Cellulose Fibres in Cologne, where the latest innovations were showcased: new cellulose fibre technologies for various feedstocks and a wide range of hygiene and textile products as well as alternatives to plastics and carbon fibre for lightweight constructions.

This year, for the first time, there were 230 participants from 27 countries. About 60 were able to attend on site – with strict Corona safety measures – while the others were able to attend online and participate in questions and discussions.

The conference gave deep insights into the promising future of cellulose fibres, which fit perfectly into the current trends of circular economy, recycling and sustainable carbon cycles.

An important focus at the conference was alternative sources of cellulose. The increasing demand for cellulose fibres cannot be met in the long run with wood and used textiles alone. At the conference, a variety of agricultural by-products and biogenic waste were presented in presentations and panel discussions, such as orange and banana peels, grain and hemp straw. Much of this is high-volume and has not been put to high-value use so far. Exciting opportunities for the future cellulose fibre industry.

Innovation Award
Live at the conference, host nova-Institute and award sponsor GIG Karasek GmbH granted the “Cellulose Fibre Innovation of the Year” award to one of six highly interesting products.

  • First Winner: Carbon Fibres from Wood – German Institutes of Textile and Fiber Research Denkendorf (Germany)
  • Second Winner: Fibers365, Truly Carbon-Negative Virgin Fibres from Straw - Fibers365 (Germany)
  • Third Winner: Sustainable Menstruation Panties: Application-driven Fibre Functionalisation – Kelheim Fibres (Germany)
(c) Flocus ™
22.02.2022

Flocus ™ kapok nonwovens and fabrics for the leather goods and footwear

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

  • Maliwatt - 50% Kapok, 50% PLA (based on corn), a 100% biodegradable non-woven which can be used in the shoe sole. Maliwatt can be thermopressed/heat press and turned into a paper/cardboard type and lightweight structure. It is the perfect material for sneakers, casual and active shoes thanks to its quick dry, antibacterial, hydrophobic, hypoallergenic, Insulation properties. Other frequent applications are in the field of automotive, construction and car panels, sound absorption and acoustics panels and geo textiles.
  • HDE /Hydroentanglement - 50% Kapok, 50% Organic cotton. It is a 100% natural and biodegradable material that can be used in the shoe production as a sole, intersole or as a padding for shoes and bags. Thanks to its termoregulating, lightweight, hypoallergenic, thermoconductivity, insulation, soft touch, hydrophobic, anti-moth anti mite properties, it is used for a large range of applications. It is popular in the apparel world as a cruelty free filling for winter jackets, replacing duck down, and in the home industry ad a stuffing for mattresses, duvets, furniture, sleeping bags.

The offer for the leather goods industry includes also Flocus™ kapok-based fabrics in different blends and weights: linings, coatings, fabric inserts, accessories, components rich in performance and style. For example, kapok and organic cotton with GOTS certification, kapok with Tencel and recycled polyester (Repreve), kapok with linen, organic cotton and a small percentage of Spandex.

These materials were presented at the September 2021 edition of Lineapelle in the exhibition "A New point of materials", dedicated to eco-responsible innovations in terms of technologies, applications, materials and machines.

Source:

Flocus

(c) Composites Germany
Composites Index: current general business situation
04.02.2022

Composites Germany: Results of the 18th Composites Market Survey

  • Assessment of current business situation positive
  • Future expectations subdued
  • Investment climate friendly
  • Varied expectations for application industries
  • GRP is still a growth driver
  • Composites Index is now positive

This is the 18th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.
As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

You can read more about it in the attached document.

  • Assessment of current business situation positive
  • Future expectations subdued
  • Investment climate friendly
  • Varied expectations for application industries
  • GRP is still a growth driver
  • Composites Index is now positive

This is the 18th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.
As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

You can read more about it in the attached document.

Source:

Composites Germany / AVK-TV GmbH

12.01.2022

Cellulose fibres strengthen networks: Industry meets in Cologne, Germany, and online

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Live at the conference, host nova-Institute and sponsor GIG Karasek GmbH will grand the “Cellulose Fibre Innovation of the Year” award to one of six highly interesting products, ranging from cellulose made of orange and wood pulp to a novel technology for cellulose fibre production. The presentations, election of the winner by the conference audience and the award ceremony will take place on the first day of the conference.

The conference sessions reflect the current topics of industry and research. “Strategies and Market Trends” provides an overview of the rapid development of cellulose fibres and their technological progress across the fibre market. An analysis of the key cost components of these fibres to benchmark against current cost levels will highlight future opportunities and challenges for novel textile fibres. The session will conclude with an overview of the industry's recent strategies to defossilize the fibre market.

The session “New Opportunities for Cellulose Fibres in Replacing Plastics”, focusses on questions such as: “What impact does the ban on plastics in single-use products have on the industry?” and “What are the latest regulatory issues and policy opportunities for cellulose fibres?”. This part of the conference presents new opportunities for the replacement of fossil-based insulating materials with cellulose-based technologies suitable for use in a variety of applications, from aerospace to mobility and construction.
Institutefor Ecology and Innovation

“Sustainability and Circular Economy” highlights crucial issues with regard to the overall goal of keeping the environmental impact of cellulose fibres low. A core theme of the session is the responsible use of wood and forests. With this objective, the five speakers discuss the importance of circular concepts for cellulose feedstocks. Exciting insights into the important “Hot Button Report” are offered by Canopy. The “Hot Button” report enables the producers of cellulose fibres to better understand the impact their raw materials have on forests and the climate development worldwide.

The full conference programme is available at www.cellulose-fibres.eu/program.

Source:

nova-Institut GmbH

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.