From the Sector

Reset
275 results
24.02.2022

VDMA textile machinery webinar on sustainable dyeing involved Monforts, DyStar® and Goller

Over 600 delegates from 58 countries subscribed to the latest VDMA textile machinery webinar on sustainable dyeing held on February 3rd, 2022 – a record since the monthly online series started in June 2020. The webinar, entitled ‘Resource-saving in Textile Processing – Continuous Dyeing and Washing’, involved the three companies Monforts, DyStar® and Goller.

In outlining the capabilities of Monforts Thermex hotflue lines for the Econtrol® continuous dyeing process, the company’s Textile Technologies Engineer Jonas Beisel observed that the current industry focus is very much on cleaner processes and products in accordance with the Corporate Social Responsibility (CSR) commitments of the major fashion brands, and with further regulations to be expected.

Cellulosics
Econtrol® is a continuous process for the dyeing of woven cellulosic fabrics that has already been well proven on the market, with over 150 Monforts Thermex lines already in operation at mills worldwide.

Over 600 delegates from 58 countries subscribed to the latest VDMA textile machinery webinar on sustainable dyeing held on February 3rd, 2022 – a record since the monthly online series started in June 2020. The webinar, entitled ‘Resource-saving in Textile Processing – Continuous Dyeing and Washing’, involved the three companies Monforts, DyStar® and Goller.

In outlining the capabilities of Monforts Thermex hotflue lines for the Econtrol® continuous dyeing process, the company’s Textile Technologies Engineer Jonas Beisel observed that the current industry focus is very much on cleaner processes and products in accordance with the Corporate Social Responsibility (CSR) commitments of the major fashion brands, and with further regulations to be expected.

Cellulosics
Econtrol® is a continuous process for the dyeing of woven cellulosic fabrics that has already been well proven on the market, with over 150 Monforts Thermex lines already in operation at mills worldwide.

Reactive dyestuffs are fixed into the fabric in a one-step dyeing and drying process with a controlled combination of steam and air. The entire pad-dry process takes just two-to-three minutes at a temperature of between 120-130°C and a relative humidity volume of 25-30%.

Benefits
The Econtrol® pad-dry process has a number of immediate benefits. Compared to the common pad-dry-pad-steam process, no salt is used and no steamer is required for a separate fixation step.

Compared to the pad-dry-thermofix process, no urea is used and no smoke or deposits are generated, and unlike with the cold pad batch process, direct feedback of the dyeing results ensures no batching time is necessary and guarantees good reproducibility from the lab to bulk production.

Complementary services and systems
Complementing the Monforts presentation during the webinar, Bertram Seuthe, Global Business Development Manager at DyStar, outlined the importance of specific Levafix® /Remazol® reactive dyes and Dianix® disperse dyes for sustainable dyeing processes such as Econtrol®, Cadira® Continuous and CPB knit. In these processes Sera® auxiliaries are also employed for optimised wash-off results.

Guido Seiler, Area Sales Manager at Fong's Europe, also introduced the latest developments of the Goller brand for the washing process, which can reduce water consumption by between 10 to 20%, as well as reductions in both heating energy and waste generation, depending on the specific fabric construction and required shade.

Source:

Monforts  / DyStar Singapore Pte Ltd

(c) Flocus ™
22.02.2022

Flocus ™ kapok nonwovens and fabrics for the leather goods and footwear

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

Flocus ™, the trademark for kapok fibers, offers a range of kapok textile materials such as fibers, yarns, textiles and nonwovens. The company presents the most performing and zero carbon footprint solutions based on Flocus™ kapok available for the leather goods industry, a sector that is making an important transition to sustainability in terms of processing and raw materials.

As for nonwoven, some of their most used products in the world of leatherware are:

  • Maliwatt - 50% Kapok, 50% PLA (based on corn), a 100% biodegradable non-woven which can be used in the shoe sole. Maliwatt can be thermopressed/heat press and turned into a paper/cardboard type and lightweight structure. It is the perfect material for sneakers, casual and active shoes thanks to its quick dry, antibacterial, hydrophobic, hypoallergenic, Insulation properties. Other frequent applications are in the field of automotive, construction and car panels, sound absorption and acoustics panels and geo textiles.
  • HDE /Hydroentanglement - 50% Kapok, 50% Organic cotton. It is a 100% natural and biodegradable material that can be used in the shoe production as a sole, intersole or as a padding for shoes and bags. Thanks to its termoregulating, lightweight, hypoallergenic, thermoconductivity, insulation, soft touch, hydrophobic, anti-moth anti mite properties, it is used for a large range of applications. It is popular in the apparel world as a cruelty free filling for winter jackets, replacing duck down, and in the home industry ad a stuffing for mattresses, duvets, furniture, sleeping bags.

The offer for the leather goods industry includes also Flocus™ kapok-based fabrics in different blends and weights: linings, coatings, fabric inserts, accessories, components rich in performance and style. For example, kapok and organic cotton with GOTS certification, kapok with Tencel and recycled polyester (Repreve), kapok with linen, organic cotton and a small percentage of Spandex.

These materials were presented at the September 2021 edition of Lineapelle in the exhibition "A New point of materials", dedicated to eco-responsible innovations in terms of technologies, applications, materials and machines.

Source:

Flocus

BRÜCKNER presents products for the nonwovens industry at IDEA (c) Brückner Textile Technologies GmbH & Co. KG
SUPRA-FLOW BX double belt thermofusion oven for Nonwovens
18.02.2022

BRÜCKNER presents products for the nonwovens industry at IDEA

For more than 70 years BRÜCKNER has been in the construction of drying and finishing lines for the textile and nonwovens industry. In the nonwovens sector, the company supplies worldwide thermofusion ovens, dryers, coating and heat-setting lines. On the IDEA 2022 trade fair in Miami, USA, BRÜCKNER presents together with its American representation FI-TECH new machine concepts and solutions for different applications in the mentioned fields.

The production of nonwovens always requires a bonding process after the nonwovens formation, where the loosely laid fibers are bonded to a resilient fiber composite. For this purpose, depending on the process, different ovens and dryers are used. BRÜCKNER supplies the necessary lines for all applications. The production program is completed by different impregnation and coating units as well as slitting and winding equipment. BRÜCKNER's customers produce geo nonwovens, filter media, hygiene and medical textiles or different fabrics for the automotive and transport industry

For more than 70 years BRÜCKNER has been in the construction of drying and finishing lines for the textile and nonwovens industry. In the nonwovens sector, the company supplies worldwide thermofusion ovens, dryers, coating and heat-setting lines. On the IDEA 2022 trade fair in Miami, USA, BRÜCKNER presents together with its American representation FI-TECH new machine concepts and solutions for different applications in the mentioned fields.

The production of nonwovens always requires a bonding process after the nonwovens formation, where the loosely laid fibers are bonded to a resilient fiber composite. For this purpose, depending on the process, different ovens and dryers are used. BRÜCKNER supplies the necessary lines for all applications. The production program is completed by different impregnation and coating units as well as slitting and winding equipment. BRÜCKNER's customers produce geo nonwovens, filter media, hygiene and medical textiles or different fabrics for the automotive and transport industry

For the production of highloft nonwovens the double-belt thermofusion oven SUPRA-FLOW BX is used. This oven system operates according to the air-through principle and can be perfectly adapted to the product requirements in terms of flow speed, flow direction and temperature on a field-by-field basis.  
The SUPRA-FLOW BX can produce nonwovens up to a thickness of 280 mm and a basis weight of max. 8 kg/m². The available working widths vary between 2400 and 5200 mm at production speeds of up to 100 m/min.  
For geotextile projects, the POWER-FRAME stenter is usually used, which impresses with its uniformity in terms of temperature distribution as well as productivity. In addition, the fabric can be stretched in a targeted manner by transporting it in the stenter chain. This has a controlled influence on fabric width, fiber orientation and fabric shrinkage. Working widths of up to over 7 meters are not uncommon with geotextile finishing systems.

More information:
Brückner IDEA nonwovens
Source:

Brückner Textile Technologies GmbH & Co. KG

(c) Composites Germany
Composites Index: current general business situation
04.02.2022

Composites Germany: Results of the 18th Composites Market Survey

  • Assessment of current business situation positive
  • Future expectations subdued
  • Investment climate friendly
  • Varied expectations for application industries
  • GRP is still a growth driver
  • Composites Index is now positive

This is the 18th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.
As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

You can read more about it in the attached document.

  • Assessment of current business situation positive
  • Future expectations subdued
  • Investment climate friendly
  • Varied expectations for application industries
  • GRP is still a growth driver
  • Composites Index is now positive

This is the 18th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.
As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

You can read more about it in the attached document.

Source:

Composites Germany / AVK-TV GmbH

24.01.2022

JEC World 2022 postponed

After thorough consultation with the exhibitors and partners of the event, JEC Group has decided to postpone the 2022 edition of JEC World. The world’s leading composites event will now take place from May 3rd to 5th, 2022, at the same venue Paris Nord Villepinte, as well as online via the JEC World Connect digital platform.

JEC World gathers the whole value chain of the composite materials industry in Paris, France every year and is “the place to be” for composites professionals from all over the world. The event brings together not only all major global companies, but also innovative startups in the field of composites and advanced materials, experts, academics, scientists, and R&D leaders. JEC World is also the “festival of composites”, offering a unique showcase of what composites can offer to various application sectors, from aerospace to marine, from construction to automotive, and an unlimited source of inspiration for participants from these industries.

After thorough consultation with the exhibitors and partners of the event, JEC Group has decided to postpone the 2022 edition of JEC World. The world’s leading composites event will now take place from May 3rd to 5th, 2022, at the same venue Paris Nord Villepinte, as well as online via the JEC World Connect digital platform.

JEC World gathers the whole value chain of the composite materials industry in Paris, France every year and is “the place to be” for composites professionals from all over the world. The event brings together not only all major global companies, but also innovative startups in the field of composites and advanced materials, experts, academics, scientists, and R&D leaders. JEC World is also the “festival of composites”, offering a unique showcase of what composites can offer to various application sectors, from aerospace to marine, from construction to automotive, and an unlimited source of inspiration for participants from these industries.

“We are fully dedicated to supporting the composites industry and to fostering its development via our events and media activities. Exhibitors and partners are strongly supporting JEC World, their leading event and want to meet in person in 2022 to activate business, share knowledge and highlight innovations. Postponing from March to May is a way to offer improved conditions to satisfy the industry requirements for such a trade fair as JEC World”, says Eric Pierrejean, CEO of JEC Group.

The JEC World team has decided to postpone the event after conducting a survey of its exhibitors and partners, confirming that a large majority is in favour of the new dates in May. As already planned, for three days, the event will offer for the first time a digital platform, JEC World Connect, in parallel to the in-person event in Paris for an augmented digital experience. Even after the show, via the JEC Web TV, unique content will be available to extend the reach of the event.

“Our main concern is to create the best possible conditions for our participants for successful networking, inspiration and business success. With a postponement of eight weeks we can enable this and offer to the industry the event it deserves. Taking the decision now, after consultation of all exhibitors, was necessary to give them planning and preparation visibility,” adds Thomas Lepretre, VP Events, Sales and Operations.

Source:

JEC Group

12.01.2022

Cellulose fibres strengthen networks: Industry meets in Cologne, Germany, and online

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Strict protective measures will make the industry meeting possible at the International Conference on Cellulose Fibres in Cologne on February 2 and 3, 2022. The latest innovations will be shocased: from hygiene and textiles to non-wovens and carbon fibre alternatives to lightweight construction applications. Online participation is also possible.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Live at the conference, host nova-Institute and sponsor GIG Karasek GmbH will grand the “Cellulose Fibre Innovation of the Year” award to one of six highly interesting products, ranging from cellulose made of orange and wood pulp to a novel technology for cellulose fibre production. The presentations, election of the winner by the conference audience and the award ceremony will take place on the first day of the conference.

The conference sessions reflect the current topics of industry and research. “Strategies and Market Trends” provides an overview of the rapid development of cellulose fibres and their technological progress across the fibre market. An analysis of the key cost components of these fibres to benchmark against current cost levels will highlight future opportunities and challenges for novel textile fibres. The session will conclude with an overview of the industry's recent strategies to defossilize the fibre market.

The session “New Opportunities for Cellulose Fibres in Replacing Plastics”, focusses on questions such as: “What impact does the ban on plastics in single-use products have on the industry?” and “What are the latest regulatory issues and policy opportunities for cellulose fibres?”. This part of the conference presents new opportunities for the replacement of fossil-based insulating materials with cellulose-based technologies suitable for use in a variety of applications, from aerospace to mobility and construction.
Institutefor Ecology and Innovation

“Sustainability and Circular Economy” highlights crucial issues with regard to the overall goal of keeping the environmental impact of cellulose fibres low. A core theme of the session is the responsible use of wood and forests. With this objective, the five speakers discuss the importance of circular concepts for cellulose feedstocks. Exciting insights into the important “Hot Button Report” are offered by Canopy. The “Hot Button” report enables the producers of cellulose fibres to better understand the impact their raw materials have on forests and the climate development worldwide.

The full conference programme is available at www.cellulose-fibres.eu/program.

Source:

nova-Institut GmbH

(c) Freudenberg. From left: Pietro Traini, Civil Engineer, Dr. Bruno Brandozzi, Manager HSE and Compliance, and Dr. Christian Cavaletti, Operations Manager Sant ́Omero site.
13.12.2021

Freudenberg: Construction of the competence center for apparel interlinings started

Freudenberg Performance Materials Apparel Europe started construction work on its competence center for finishing and coating base material for the apparel industry at its site in Sant´Omero (Italy) as scheduled in December. Further processing of base material is to begin in Italy in early 2023. The Weinheim site will then become the competence center for interlining base material.

In January 2021, Freudenberg Performance Materials Apparel Europe (Freudenberg) announced plans to set up two competence centers. In future, the company will concentrate on manufacturing base material for interlinings at the Weinheim location. Base material finishing and coating is to be bundled at Sant´Omero. For this purpose, production plant will be relocated from Weinheim to Sant´Omero and recommissioned in a newly-built production hall.

The traditional groundbreaking ceremony with senior representatives from local authorities and Freudenberg management was cancelled due to the high number of coronavirus cases in the area.

Freudenberg Performance Materials Apparel Europe started construction work on its competence center for finishing and coating base material for the apparel industry at its site in Sant´Omero (Italy) as scheduled in December. Further processing of base material is to begin in Italy in early 2023. The Weinheim site will then become the competence center for interlining base material.

In January 2021, Freudenberg Performance Materials Apparel Europe (Freudenberg) announced plans to set up two competence centers. In future, the company will concentrate on manufacturing base material for interlinings at the Weinheim location. Base material finishing and coating is to be bundled at Sant´Omero. For this purpose, production plant will be relocated from Weinheim to Sant´Omero and recommissioned in a newly-built production hall.

The traditional groundbreaking ceremony with senior representatives from local authorities and Freudenberg management was cancelled due to the high number of coronavirus cases in the area.

Source:

Freudenberg Performance Materials

ISKO™ creates a fully sustainable Fabric Collection (c) ISKO
13.12.2021

ISKO™ creates a fully sustainable Fabric Collection

ISKO’s 2023 Collection Vol. 1 is designed to meet the varied needs of today’s consumer by providing fashion, comfort, versatility and responsibility in each of its innovative fabrics. The entire collection is “engineered for nature” using ISKO’s recently launched R-TWO™50+ technology – a process which creates high-quality denim that is less harmful to the natural world.

R-TWO™50+ is the driving force behind ISKO’s efforts to reduce the industry’s impact on the planet. The fabrics are made with a minimum of 50% pre- and post-consumer recycled blend that is entirely Global Recycled Standard (GRS) certified. This results in less use of natural resources and a reduced carbon and water footprint of up to 45% and 65% respectively.

ISKO has also incorporated hemp into the collection as a sustainably viable alternative to cotton. Hemp requires much less water, no pesticides and grows quickly in almost any type of soil. New spinning techniques give the fiber a softer hand feel and make hemp a genuinely enticing option to cotton.

ISKO’s 2023 Collection Vol. 1 is designed to meet the varied needs of today’s consumer by providing fashion, comfort, versatility and responsibility in each of its innovative fabrics. The entire collection is “engineered for nature” using ISKO’s recently launched R-TWO™50+ technology – a process which creates high-quality denim that is less harmful to the natural world.

R-TWO™50+ is the driving force behind ISKO’s efforts to reduce the industry’s impact on the planet. The fabrics are made with a minimum of 50% pre- and post-consumer recycled blend that is entirely Global Recycled Standard (GRS) certified. This results in less use of natural resources and a reduced carbon and water footprint of up to 45% and 65% respectively.

ISKO has also incorporated hemp into the collection as a sustainably viable alternative to cotton. Hemp requires much less water, no pesticides and grows quickly in almost any type of soil. New spinning techniques give the fiber a softer hand feel and make hemp a genuinely enticing option to cotton.

2023 Collection Vol. 1 includes ISKO Blue Skin™, Jeggings™, ISKO™ Rigid, ISKO Rigidflex™, ISKO EFD™, Summer Colors, Catwalk, ISKO Reform™, ISKO™ Black, ISKO™ Comfort, ISKO Pop™ – and five macro trends (Denim Nation, New Origin, Isko Reborn, Isko Motion, Chill Zone). These trends incorporate some of ISKO’s key denim technologies to create a versatile collection that complements any style, vibe and mood.

ISKO Reform™, ISKO Blue Skin™ and Jeggings™ are the groups used to create fabrics that are trans-seasonal and one-size-fits-all – subscribing to a philosophy of inclusivity that is valued by Gen Z.

The collection also gives prominence to color groups. ISKO™ Black delivers various shades of black with different elasticity and aspect options. This part of the collection fulfils the perennial need for this timeless color. ISKO EFD™, or ‘Eco For Dye’, is a sustainable approach to producing ecru fabric. This technology shortens the production process and saves on water usage. The result is an ecru-colored base that can be used as is for a natural look or can also be dyed to any color.

New this season are the Summer Colors and Catwalk groups. Summer Colors is inspired by an eclectic mix of influences including natural earth tones, workwear looks or bright colors with authentic, open-end denim constructions. Catwalk is a bold and bright addition to the collection that offers on-trend styles in ISKO finishes including ISKO Urban Jeather™, Pearl Coat and Flashy Finish.

Source:

ISKO / Menabò Group

New Opportunities for Cellulose Fibres in Replacing Plastics (c) nova-Institut
Nicolas Hark - nova-Institut (DE)
08.12.2021

New Opportunities for Cellulose Fibres in Replacing Plastics

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

The second session of the conference: "New Opportunities for Cellulose Fibres in Replacing Plastics", will focus on questions such as: "What is the impact of the ban on plastics on single-use products?" and "What are the latest regulatory issues and policy opportunities for cellulose fibres?".  This section presents new opportunities for replacing fossil-based insulating materials with cellulose-based technologies that can be used for a variety of applications, from aerospace to mobility, as well as in construction. For the program just click here.

Speakers of the Session "New Opportunities for Cellulose Fibres in Replacing Plastics":

  • Nicolas Hark - nova-Institut (DE): Opportunities in Policy for Cellulose Fibres
  • Paula Martirez - Stora Enso (SE): Last years Winner Papira® – an Eco-revolution in Foam Packaging
  • Stefanie Schlager - Lenzing (AT): LENZING™ Fibres for Sustainable Single use Products
  • Sascha Schriever - Institut für Textiltechnik der RWTH Aachen University (DE): Cellulose Aerogel Non-wovens – Sustainable Insulators of Tomorrow
(c) Hexcel Corporation
02.12.2021

Hexcel Partners with METYX for High Performance Carbon Pultrusion Technology

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

Hexcel Corporation (NYSE: HXL) is collaborating with METYX to manufacture high-performance carbon pultruded profiles made from polyurethane (PU) resin and unidirectional carbon fiber for the wind energy market.

The two companies have joined forces to develop technology that builds on Hexcel expertise in polyurethanes for the ski industry combined with its strength in providing high-performance composites to wind energy customers and expanding to other markets for composite applications. METYX is a manufacturer of high-performance NCF and woven glass and carbon, consumables, core and fabric kitting, molds, prototypes, and components for industries including wind energy, marine, automotive, rail and construction.

More information:
Hexcel METYX pultrusion
Source:

Hexcel Corporation

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

© Digital Capability Center
17.11.2021

Competence Centre WIRKsam - Shaping Work with AI

  •  14 million for the Rhenish coal region

Shaping economic change in the Rhenish textile and coal region together with artificial intelligence (AI) - this is the goal of the WIRKsam competence centre launched at the beginning of November. The joint project, funded by the Federal Ministry of Education and Research, is researching innovative forms of work to secure employment, create attractive jobs and strengthen regional companies.
 

With a focus on the strengths of the Rhenish mining area, WIRKsam is to establish itself as a central point of contact and align various scientific institutions and their research specifically to the challenges of the regional working world. Funded by the BMBF with 14 million euros over five years, the project is fundamentally about transferring scientific findings into company practice and into the wider society. After the funding phase, the centre of excellence will continue to work independently.

  •  14 million for the Rhenish coal region

Shaping economic change in the Rhenish textile and coal region together with artificial intelligence (AI) - this is the goal of the WIRKsam competence centre launched at the beginning of November. The joint project, funded by the Federal Ministry of Education and Research, is researching innovative forms of work to secure employment, create attractive jobs and strengthen regional companies.
 

With a focus on the strengths of the Rhenish mining area, WIRKsam is to establish itself as a central point of contact and align various scientific institutions and their research specifically to the challenges of the regional working world. Funded by the BMBF with 14 million euros over five years, the project is fundamentally about transferring scientific findings into company practice and into the wider society. After the funding phase, the centre of excellence will continue to work independently.

Prospects: Attractive jobs in the lignite mining region
The region on the left bank of the Rhine is not only a lignite mining area, but also a historically grown textile region where technical textiles are produced today, for example for medical technology or plant and vehicle construction. This offers valuable future prospects for the employees affected by the lignite phase-out.

Against this background, the aim of the WIRKsam centre of excellence is to research the extensive possibilities of artificial intelligence for shaping the future world of work and to transfer them to companies. AI applications are used to develop innovative work and process flows to create attractive workplaces and increase the competitiveness of local companies.

Together: business and science
The special feature: research institutions and companies from the Rhenish textile industry and related sectors work together in the centre of excellence. Research partners are the Institut für Textiltechnik (ITA) of RWTH Aachen University and the Institute for Mobile Autonomous Systems and Cognitive Robotics (MASCOR) of FH Aachen University of Applied Sciences, headed by ifaa - Institut für angewandte Arbeitswissenschaft e.V. (Institute for Applied Work Science).

Nine regional companies are involved so far; more will join. AI applications are being developed and exemplarily implemented for their respective needs. In this way, the diverse potentials of AI for work design are being tested and qualification requirements derived. These results will not only increase the global competitiveness of the textile industry and other sectors; they will also secure jobs and make an important contribution to overcoming structural change in the Rhenish lignite mining area.

WIRKsam is funded by the Federal Ministry of Education and Research as part of the funding measure "Regional Competence Centres for Labour Research" and is supervised by the Karlsruhe Project Management Agency (PTKA) (funding code: 02L19C600). The WIRKsam competence centre will be based in Hürth, Germany, on the edge of the Rhenish mining area as soon as the conversion work on the former TV studios on the Euronova campus is completed.

More information:
AI
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

16.11.2021

RGE: Second Annual Update on Textile Fibre Innovation and Technology

Royal Golden Eagle (RGE) has released its 2021 progress report on its commitment to invest USD200 million in next-generation textile fibre innovation and technology over a ten-year period which started in 2019.

The annual report provides an update on the activities undertaken by RGE and its business groups (Sateri, APR, APRIL, Bracell) involved in the fashion value chain to advance its ambition towards closed-loop, circular and climate-positive cellulosic fibre.

In 2021, Sateri achieved full compliance with the emission limits set out in the European Union Best Available Techniques Reference Document (EU-BAT BREF) for all of its five viscose mills in China, two years ahead of schedule. Bracell completed construction of the world’s largest and greenest new generation pulp mill in São Paulo which uses cutting-edge technology for fossil fuel-free generation.

Royal Golden Eagle (RGE) has released its 2021 progress report on its commitment to invest USD200 million in next-generation textile fibre innovation and technology over a ten-year period which started in 2019.

The annual report provides an update on the activities undertaken by RGE and its business groups (Sateri, APR, APRIL, Bracell) involved in the fashion value chain to advance its ambition towards closed-loop, circular and climate-positive cellulosic fibre.

In 2021, Sateri achieved full compliance with the emission limits set out in the European Union Best Available Techniques Reference Document (EU-BAT BREF) for all of its five viscose mills in China, two years ahead of schedule. Bracell completed construction of the world’s largest and greenest new generation pulp mill in São Paulo which uses cutting-edge technology for fossil fuel-free generation.

Amid the COVID-19 pandemic continuing to restrict travel and collaboration, RGE persisted in building upon existing partnerships, while entering into new agreements. Sateri strengthened its strategic collaboration with Infinited Fiber Company, participating in the company’s EUR30 million funding round, which attracted new and existing investors such as H&M Group, Adidas, BESTSELLER and Zalando.

New partnerships formed by RGE included a five-year textile recycling research collaboration with Nanyang Technological University Singapore, and a three-year strategic partnership with the Textile and Fashion Federation Singapore which seeks, among others goals, to advance research and innovation in circular economy approaches to fashion waste in Asia.

RGE’s in-house R&D team has made good progress in advancing its textile-to-textile project, focusing on producing quality viscose using recycled cotton textiles as feedstock. To support plans to build a textile recycling facility in Indonesia, and as part of commercial feasibility analysis, studies examining the availability of textile waste and textile recycling landscapes in China, Indonesia, Sri Lanka and Bangladesh were completed.

Sateri remains on track in developing a product with 50 per cent recycled content by 2023, and to reach 100 per cent by 2030. It also aims for 20 per cent of its feedstock to contain alternative or recycled materials by 2025. In this similar vein, APR will source 20 per cent of its feedstock from alternative or recycled materials by 2030.

Source:

RGE / Omnicom Public Relations Group

(c) Abu Dhabi Government Media Office
15.11.2021

Partnership between ADNOC and Borealis to expand Borouge Facility

  • ADNOC and Borealis confirm final investment agreement to build Borouge 4 in Ruwais, United Arab Emirates (UAE), which will produce 1.4 million tons of polyethylene per annum
  • Expansion project includes construction of a 1.5 million tonnes ethane cracker, two state-of-the-art Borstar® polyethylene plants and a cross-linked polyethylene plant
  • Borouge 4 will meet growing customer demand across the Middle East, Africa and Asia with differentiated polyolefin solutions in energy, infrastructure, and advanced packaging
  • New facility will benefit from industry-leading technologies to significantly improve energy efficiency and lower emissions, with carbon capture study underway
  • Upon expansion, Borouge will be the world's largest single-site polyolefin complex and will supply feedstock to TA'ZIZ Industrial Chemicals Zone Body

ADNOC and Borealis AG signed an USD 6.2 billion investment agreement to build the fourth Borouge facility – Borouge 4 – at the polyolefin manufacturing complex in Ruwais, United Arab Emirates (UAE).

  • ADNOC and Borealis confirm final investment agreement to build Borouge 4 in Ruwais, United Arab Emirates (UAE), which will produce 1.4 million tons of polyethylene per annum
  • Expansion project includes construction of a 1.5 million tonnes ethane cracker, two state-of-the-art Borstar® polyethylene plants and a cross-linked polyethylene plant
  • Borouge 4 will meet growing customer demand across the Middle East, Africa and Asia with differentiated polyolefin solutions in energy, infrastructure, and advanced packaging
  • New facility will benefit from industry-leading technologies to significantly improve energy efficiency and lower emissions, with carbon capture study underway
  • Upon expansion, Borouge will be the world's largest single-site polyolefin complex and will supply feedstock to TA'ZIZ Industrial Chemicals Zone Body

ADNOC and Borealis AG signed an USD 6.2 billion investment agreement to build the fourth Borouge facility – Borouge 4 – at the polyolefin manufacturing complex in Ruwais, United Arab Emirates (UAE).

The world-scale expansion confirms both partners’ commitment to the growth of Borouge and to support chemical production, and advanced manufacturing and industry in Ruwais, a key pillar of Abu Dhabi and the UAE’s technology, innovation and industrial development strategy. Borouge produces crucial industrial raw materials, which are exported to customers globally and used by local companies, boosting local industrial supply chains and enhancing In-Country Value.

Borouge 4 will capitalize on the projected growth in customer demand for polyolefins, driven by their use in manufactured products in the Middle East, Africa and Asia. The facility will also enable the next phase of growth at the Ruwais Industrial Complex by supplying feedstock to the TA’ZIZ Industrial Chemicals Zone.

Borouge 4 will have an industry-leading focus on sustainability leveraging the capabilities of both shareholders. The facility will utilize Borealis’ proprietary Borstar technology, to produce a product portfolio focused on durable applications for energy, infrastructure, advanced packaging, and agriculture sectors. This unique technology, in combination with hexene co-monomer, will enable the production of advanced packaging grades with up to 50% recycled polyethylene content.

Subject to an in-depth study, a Carbon Capture unit that would reduce CO2 emissions by 80% could also be operational in time for Borouge 4’s start-up. The facility is also designed to capitalize on ADNOC’s recent initiatives on clean energy, decarbonizing its power supply through access to Abu Dhabi’s clean power sources. These initiatives are aligned with the UAE Net Zero by 2050 Strategic Initiative.

The first Borouge facility, producing 450,000 tons of polyethylene per annum was commissioned in 2001. Borouge 2 and Borouge 3 took capacity to 2 million tons and 4.5 million tons of polyethylene and polypropylene per annum in 2010 and 2014 respectively.  Borouge 4 will boost the company’s annual polyolefin production to 6.4 million tons, making Borouge one of the world’s largest single-site polyolefin facilities.

The new Borouge 4 facility will comprise:

  • An ethane cracker, with 1.5 million tons ethylene output per annum, which will be the fourth cracker in Borouge’s integrated petrochemical complex in Ruwais
  • Two additional Borstar® polyethylene (PE) plants, each with 700 thousand tons per annum capacity, using state-of-the-art Borealis Borstar third generation (3G) technology
  • A cross-linked PE (XLPE) plant of 100 thousand tons per annum capacity.
  • A hexene-1 unit, which will produce co-monomers for certain grades of polyethylene.
Source:

Borealis

VDMA: Top young talent with cutting-edge topics  (c) VDMA
The 2021 winners (from top left to right): Dr Martin Hengstermann, Irina Kuznik, Kai-Chieh Kuo.
10.11.2021

VDMA: Top young talent with cutting-edge topics

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

Mr Kai-Chieh Kuo was awarded the diploma/master's thesis promotion prize of 3,500 euros. With his master's thesis, which was written at RWTH Aachen University, Mr Kuo contributes to the production of vital components used in medicine. The stents made of ultra-fine yarns are made possible by an innovative modification of the classic tube weaving process.

The Walter Reiners Foundation rewarded the doctoral thesis of Dr. Martin Hengstermann with the promotional prize in the dissertation category, endowed with 5,000 euros. The thesis deals with the production of recycled carbon fibres. These can be used to produce lightweight components for motor vehicle and aircraft construction or the wind energy sector.

New Prize Sustainability / Circular Economy
The environmental conditions of the textile industry and machine construction are changing. Topics such as climate protection and the circular economy are becoming central. From this perspective, the board of the Walter Reiners Foundation has decided to further develop the foundation's prize system.

In 2022, the foundation will for the first time offer a prize with a focus on design / sustainability. Peter D. Dornier, Chairman of the Foundation, explained: "Already in the design phase, one can set the parameters so that a textile product can be reintroduced after use into the economic cycle for a high-quality application. For example, through the appropriate use of materials and finishing. We are looking for solutions for resource-saving design, technology and manufacturing processes."   

(c) RadiciGroup
25.10.2021

RadiciGroup: Sustainable Personal Protective Equipment at A+A

RadiciGroup is exhibiting at the A+A trade fair, an international event focusing on safety solutions for the workplace, to be held in Dusseldorf, Germany, from 26 to 29 October. This international show gives RadiciGroup the opportunity to present its latest developments in personal protective equipment (PPE) for industrial use, including coveralls, gowns, caps, full hoods, shoe covers and boots.

This international show gives RadiciGroup the opportunity to present its latest developments in  personal protective equipment (PPE) for industrial use, including coveralls, gowns, caps, full hoods, shoe covers and boots. These products are part of a new line, Radipeople, a trade name identifying the new protective workwear sold by RadiciGroup: end products of a traceable supply chain, in which special attention is paid to the choice of raw materials and the quality of the final products offered the market.

RadiciGroup is exhibiting at the A+A trade fair, an international event focusing on safety solutions for the workplace, to be held in Dusseldorf, Germany, from 26 to 29 October. This international show gives RadiciGroup the opportunity to present its latest developments in personal protective equipment (PPE) for industrial use, including coveralls, gowns, caps, full hoods, shoe covers and boots.

This international show gives RadiciGroup the opportunity to present its latest developments in  personal protective equipment (PPE) for industrial use, including coveralls, gowns, caps, full hoods, shoe covers and boots. These products are part of a new line, Radipeople, a trade name identifying the new protective workwear sold by RadiciGroup: end products of a traceable supply chain, in which special attention is paid to the choice of raw materials and the quality of the final products offered the market.

At RadiciGroup, care for the health and safety of people is one of the pillars of the Group's sustainability strategy, combined with a strong commitment to safeguarding the environment. Radipeople Eco, the first protective coverall with 100% end-of-life recyclability is proof of such commitment. All parts of Radipeople Eco: the fabric, lamination, zipper and thread are made of the same material, 100% polypropylene. Furthermore, the Group’s offering includes garments made with Respunsible®, a spundbond obtained from recycled polypropylene or materials certified under the ISCC Plus scheme.

Thanks to their versatility and technical characteristics, the nonwoven solutions proposed by RadiciGroup are suitable for many industrial sectors, including oil and gas, utilities, construction, food, automotive painting and shipbuilding, maintenance, agriculture, laboratories, microprocessor manufacturing and the pharmaceutical and chemical industries.

Radipeople personal protective equipment delivers excellent protection against external agents (liquids, splashes, jets, particles and sprays), high protection against biological hazards and infectious agents, and high robustness and lightness to optimize protection, on the one hand, and comfort, on the other. All Radipeople protective equipment is made of fully traceable materials, manufactured by a totally Italian production chain involving hundreds of workers, and sold in packaging designed with an ecodesign approach, that is, fully recyclable minimized packaging.

Source:

RadiciGroup

19.10.2021

Teijin to boost Heat-Resistant Carbon Fiber Prepreg Production

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Teijin Limited announced today that its carbon fiber subsidiary Renegade Materials Corporation, a leading U.S.-based supplier of highly heat-resistant thermoset prepregs, resins and adhesives for the aerospace industry, will expand its prepreg production by 2.5 times approximately. The increased capacity, which aligns with Renegade’s capacity expansion strategy at the Miamisburg, Ohio location, is the result of a USD 4 million investment made in December 2019 and the construction was started in March 2020. Operation of the new production lines will commence January 2022.

Renegade Materials' heat-resistant thermoset prepregs, resins and adhesives are well trusted by U.S. and European aircraft manufacturers and aircraft engine suppliers.

Renegade Materials will showcase its high heat-resistant thermoset prepreg at the Composites and Advanced Materials Expo (CAMX), one of the largest, most comprehensive composites and advanced materials event in North America, at the Dallas Convention Center in Dallas, Texas, from October 19 to 21.

Source:

Teijin Carbon Europe GmbH

Visionary building – with composite textiles by vombaur (c)vombaur
From the H-profile to the chamber structure – vombaur offers individually developed composite textiles with complex shapes
13.10.2021

Visionary building – with composite textiles by vombaur

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

Safe and durable solutions for challenging applications
The potential applications for lightweight components in the construction industry are as numerous as the project ideas of the planning and construction teams.
•    Ropes and tensioning elements made of carbon fibre reinforced plastic (CFRP)
•    Reinforcement of building structures made of concrete, steel, wood or other materials
•    Sustainable restructuring of constructions and urban districts for bridges and buildings
•    CFC slats as reinforcements in case of repairs
•    (Filled) GRP pipes made of seamless round woven tubes by vombaur as columns/pillars
•    CFRP sections as steel girder substitutes
•    Hollow profiles with individually designed cross-sections
•    Glass fibre reinforced connecting elements for glazing to minimise expansion differences between the connecting element and the glass
•    Individual light wells

Implementing visions – with composite textiles by vombaur
As your development partner, vombaur facilitates innovative composites projects for challenging applications. In innovative and safety-sensitive industries such as automotive and aviation, chemical and plant engineering.  The composites experts at vombaur develop, create samples of and manufacture woven tapes and seamless round or shaped woven textiles by vombaur – in collaboration with the customer's enterprise development teams and individually for the respective projects. This is how novel and unique lightweight components made of high-performance textiles are created for visionary lightweight construction projects.

"Fibre-reinforced composites are the ideal material for future-oriented construction projects," explains Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "Their outstanding technical properties and design possibilities open up new and fascinating perspectives for construction projects. From building construction to civil engineering, from bridge construction to interior design. As an experienced development partner for sophisticated lightweight components, we at vombaur contribute our seamless solutions to these kinds of future-oriented projects."

More information:
vombaur Composites carbon fibers
Source:

vombaur GmbH & Co. KG

Composite textiles by vombaur for innovations in architecture and the construction industry (c) vombaur
Low effort, low weight: Maintenance with fibre-reinforce materials
13.10.2021

Composite textiles by vombaur for innovations in architecture and the construction industry

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

  • Composites in the construction industry - The lightweight construction material of the future

Building with fibre-reinforced materials opens up completely new possibilities. In terms of engineering, design, and organisation. This is due, on the one hand, to the excellent properties of fibre-reinforced materials (FRM) and, on the other hand, to the fact that the material – unlike wood or brick, for example – is not machined or processed for its use, but custom-produced.

Excellent properties – in terms of engineering, design, and organisation
Fibre-composite materials offer a whole range of technical properties for innovative and sustainable building:
•    High mechanical rigidity
•    Low weight
•    High corrosion resistance
•    Low material fatigue
•    Low heat transfer coefficient of the plastic matrix
•    Resistance to frost and de-icing salt
•    Good draping capability

In addition, fibre composites offer numerous design options for novel and exceptional new building and maintenance projects:
•    Unique variety of shapes
•    Different structures of the textiles
•    Large spectrum of colours and colour combinations
•    Translucency of the plastic matrix
Thanks to these properties, composites can be used to produce coloured, phosphorescent, thermochromic or – through the use of LEDs or light-conducting fibres permanently integrated into the matrix – luminescent components.

In addition, there are organisational benefits for planning, construction and maintenance work with fibre-reinforced materials:
•    Easier handling and assembly of the far lighter and more flexible components – compared with steel, concrete or wood
•    Faster installation
•    Shorter construction site times in road and bridge maintenance
•    Shorter delivery times
•    Ability to integrate electronic monitoring systems

Individual composite textiles – for every lightweight engineering project
The composites experts at vombaur develop and manufacture woven tapes and seamless round or shaped woven textiles from carbon, glass, flax or other high-performance fibres on special weaving lines for individually specified round and shaped woven textiles – and can therefore offer you the best possible fibre base for every lightweight construction project.

"Regardless of whether it's a new construction or a renovation project, a façade design, a bridge or a staircase – as your development partner for composite textiles, we have plenty of experience with composites for demanding tasks," emphasises Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "We develop, create samples and manufacture woven tapes and seamless round or shaped woven textiles – in collaboration with the customer enterprise development teams and individually for the respective projects." This is how novel and unique lightweight components made of high-performance textiles are created for visionary projects.

12.10.2021

DSM to showcase armor solutions made with Dyneema® at Milipol Paris 2021

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

DSM, the inventor and manufacturer of Dyneema®, will be exhibiting at one of the leading events for homeland security and safety, Milipol Paris 2021, from October 19-22.

The performance characteristics of Dyneema® make it ideal for a variety of applications, including soft and hard armor ballistics to protect against today’s advanced and emerging threats. In addition, Dyneema® combines next-generation fiber technology and unidirectional engineering to deliver armor solutions with unmatched ballistic stopping power in a lightweight and flexible composite.

By implementing Dyneema®, body armor manufacturers are able to use less material in the development of their ballistic vests, plates and helmets. This leads to weight savings upwards of 30 percent when compared to competitive materials, without impacting ballistic performance. The lightweight construction of armor made with Dyneema® also mitigates injuries associated with the cumulative effects of daily armor use – while improving situational awareness, as well as cognitive and tactical performance.

While decreasing the load on the wearer, Dyneema® is simultaneously able to reduce the impact of material manufacturing on our planet. In line with DSM’s commitment to protect people and the environment they live in, we have developed the first-ever bio-based ultra-high molecular weight polyethylene fiber and unidirectional (UD) material. Bio-based Dyneema® boasts the same exact performance as conventional Dyneema® with a carbon footprint that is 90 percent lower than generic HMPE.

Source:

DSM Protective Materials / EMG