From the Sector

Reset
83 results
28.06.2022

EREMA Gruppe and Borealis: K 2022 preview

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

On June 13, EREMA Group and Borealis invited representatives of the international plastics and recycling trade press to Upper Austria for a sneak preview of the technological developments and lighthouse projects that the companies will present at K 2022, the plastics industry's international meeting place. The venue for the pre-K event was EREMA Group headquarters in Ansfelden.

EREMA Group K 2022 preview
In Düsseldorf, the subsidiaries of the EREMA Group - which are EREMA, PURE LOOP, UMAC, 3S, KEYCYCLE and PLASMAC - will present their technological innovations, services and support together at a Group trade fair stand for the first time. Seven new recycling systems and components will be presented that enable large-scale plants with a production capacity of up to 6 t/h while setting a milestone in recyclate quality and process stability. This is made possible by technological innovations in the plasticizing unit that have been specially developed for high throughputs with low specific energy consumption, the new EREMA 406 laser filter with a 50 percent larger screening area, and new digital assistance systems that will be launched at K 2022 and made available on the BluPort® customer platform. These include, for example, the PredictOn app, which helps to anticipate and eliminate imminent malfunctions based on continuous measurement and evaluation of machine data.

New series of machines for new target groups
For customers looking for rapidly available recycling systems for simple applications, EREMA Group subsidiary UMAC has an innovation in store for K 2022. The company, which has so far specialised in refurbishing and trading in previously owned equipment, is expanding its business area and in Düsseldorf will launch READYMAC, a standardised, prefabricated recycling solution that can be produced from stock, based on proven EREMA TVE technology.

Finally, in the inhouse recycling segment, PURE LOOP and PLASMAC will round off the wide range of machines offered by the group of companies with their product portfolio.

Live recycling and lighthouse projects at the Circonomic Center
In the outdoor area of the K show, EREMA will bring plastics recycling to life with live demonstrations in conjunction with cooperation partners. Different waste streams are processed for this purpose. The wide variety of high-quality applications for recyclate will be showcased in the "products made of recyclate" exhibition, ranging from technical components to consumer goods and food packaging.

Borealis – accelerating the transition towards a more circular future
Borealis is committed to using their expertise and global reach to advance the circular economy of plastics. At the joint Pre-K 2022 kick-off on June 13, Borealis provided a preview of their integrated way of circular thinking and featured topics and activities at the K Fair 2022 in October. The preview covered new technologies and innovations including new packaging and infrastructure applications of the Bornewables™ portfolio of circular polyolefin products, manufactured with renewable feedstocks. New applications for Design for Recyclability, Re-Use, chemical recycling and advanced mechanical recycling were also on display.

Source:

EREMA Group GmbH

(c) Borealis
28.06.2022

Borealis introduces portfolio of circular base chemicals

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

The portfolio will initially comprise Borvida B, from non-food waste biomass, and Borvida C, from chemically-recycled waste. In the future, the range will evolve to include Borvida A, sourced from atmospheric carbon capture. Borvida is complementary and is the building block to Bornewables™, a portfolio of polyolefins based on renewably-sourced second generation feedstocks, and Borcycle™, which offers circular polyolefins produced from mechanically- and chemically-recycled plastic waste.

Borealis produces a wide range of base chemicals for use in numerous industries based on various feedstock, such as naphtha, butane, propane and ethane. Through its olefin units (steam cracker and propane dehydrogenation), it converts these into the building blocks of the chemical industry: ethylene, propylene and C4 hydrocarbons (butylenes, ethyl tertiary-butyl ether (ETBE) and butadiene), and C5-6 hydrocarbons (pygas, phenol) among others.

The basis of the Borvida portfolio is Mass Balance, a Chain of Custody model that enables sustainable content to be tracked, traced, and verified through the entire value chain, offering sustainability-assured products from feedstock to end product. Using this model, circular alternatives can be offered in a cost-effective and environmentally-conscious way, which can be scaled up quickly without compromising on quality or efficiency.

Borvida can be used for a wide range of different polymer and chemical applications, also beyond polyolefins (PO). Non-PO polymers, such as polycarbonates, acrylonitrile butadiene styrene (ABS), super absorbant polymer (SAP) and other chemicals, are utilised for various end applications including coatings, plasticizers, adhesives, automotive, electronics, lubricants, detergents, appliances and sports equipment.

Together with key strategic partners, including Neste and Covestro, Borealis strives to provide a long-term solution in order to allow value-chain partners to meet their sustainability goals. Borvida will enable our customers to increase the sustainability of their products, keeping them ahead of forthcoming legislative changes, and meeting their customers’ demands for climate-conscious products.

Introduced on a smaller scale in early 2020, early renewable base chemicals customers include Covestro. “The use of alternative sustainable raw materials is one important pillar of our strategic ambition to become fully circular”, comments Frank Dörner, Managing Director Covestro Procurement Services GmbH & Co. KG. “The new product line is a good example for joint solutions, another strategic pillar, in order to establish new and reliable supply chains creating benefits for our customers.”

Source:

Borealis

(c) Coperion GmbH
24.06.2022

Coperion: New Development for Plastic Fiber and Flake Recycling

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

With the goal of making recycling of lightweight, high-volume fiber and flake recyclate much more economical and, in some cases even possible, Coperion has developed a new version of its ZS-B side feeder. Using the innovative ZS-B MEGAfeed, plastic recyclate with a bulk density under 200 kg/m³, long considered intake-limited and thus not worth recycling, can be reliably fed in large quantities into Coperion’s ZSK twin screw extruder and be concurrently recycled and compounded.

The ZS-B side feeder’s novel design makes it possible to feed very high rates of fiber and flakes, such as PA, PE, PET, and PP. As a result, the ZSK twin screw extruder’s high capacity can be fully exploited when the ZS-B MEGAfeed is used. Very high throughputs in both mechanical and chemical recycling of post-industrial and post-consumer waste are achieved.

Increased Throughput in Numbers
With a ZSK 58 Mc18 twin screw extruder, the throughput increase and thus the potential of the new ZS-B MEGAfeed becomes very clear. When recycling PA fibers with a bulk density of ~40-50 kg/m3, throughputs of 70 kg/h were previously achieved using conventional equipment. When the PA fibers were fed into the ZSK extruder using the ZS-B MEGAfeed, throughputs increased about fourteenfold to 1,000 kg/h. Similar results were achieved recycling carbon fibers with a bulk density of ~50-70 kg/m3; in this case, throughputs increased from 50 kg/h to 2,500 kg/h using the ZS-B MEGAfeed. When recycling PCR (Post-Consumer Recycled) flakes, throughputs increased from 50 kg/h to 700 kg/h, and from 80 kg/h to 1,300 kg/h with multilayer film flakes.

Key to Economical Recycling of A Wide Variety of Plastics
Plastics previously considered not recyclable are becoming a valuable raw material using the new Coperion ZS-B MEGAfeed. For example, PCR flakes or recyclate from carbon fiber-reinforced plastics can now be fed into the ZSK extruder at high feed rates and recycled economically.

In the case of mechanical upcycling, upstream processes necessary for compounding, such as compacting, melting and agglomeration, are completely eliminated using the ZS-B MEGAfeed technology. In this recycling process, flakes and fibers can be fed directly into the ZSK extruder, where they are melted, compounded, devolatilized, and filtered in a single step. In so doing, both investment costs and energy consumption drop. The production process becomes significantly more efficient. Moreover, the thermal product stress is reduced and recyclate quality increases.

Even when recycling PET, the feed rate is no longer a limiting factor. With the ZS-B MEGAfeed, PET flakes and fibers can be fed into the ZSK twin screw extruder in large quantities with no pre-drying or crystallizing, where they can be processed with the highest degree of profitability.

The ZS-B MEGAfeed can also feed large quantities of post-consumer waste, adding appreciable value to the chemical recycling process with the ZSKs. ZSK throughput rates are very high with the ZS-B MEGAfeed. Preheating of the recyclate via mechanical energy input of the twin screws thus becomes even more economical for further processing in the reactor.

Existing Coperion extruders can be retrofitted with ZS-B MEGAfeed technology to greatly expand their spectrum of applications and increase their throughput rates.

Source:

Coperion GmbH / Konsens Public Relations GmbH & Co. KG

Euratex
24.06.2022

EURATEX’s ReHubs initiative: Fiber-to-fiber recycling

The ReHubs initiative brings together key European and world players to solve the European textile waste problem by transforming “waste” into a resource, and to boost textile circular business model at large scale.

This collaboration is set to turn the societal textile waste issue into a business opportunity and to fulfil the EU ambitions of the Green Deal, of the mandatory texile waste collection by end 2024 and the transition into Circular Economy.

In 2020 EURATEX launched the ReHubs initiative to promote collaboration across the extended textile value chain and considering all perspectives on chemicals, fibers making, textiles making, garments production, retail and distribution, textiles waste collection, sorting and recycling.

In June 2022 ReHubs completes a Techno Economic master Study (TES) which researches critical information on the feedstock (textile waste) data, on technology, organizational and financial needs to recycle 2.5 million tons of textile waste by 2030 and to effectively launch the ReHubs.

The ReHubs initiative brings together key European and world players to solve the European textile waste problem by transforming “waste” into a resource, and to boost textile circular business model at large scale.

This collaboration is set to turn the societal textile waste issue into a business opportunity and to fulfil the EU ambitions of the Green Deal, of the mandatory texile waste collection by end 2024 and the transition into Circular Economy.

In 2020 EURATEX launched the ReHubs initiative to promote collaboration across the extended textile value chain and considering all perspectives on chemicals, fibers making, textiles making, garments production, retail and distribution, textiles waste collection, sorting and recycling.

In June 2022 ReHubs completes a Techno Economic master Study (TES) which researches critical information on the feedstock (textile waste) data, on technology, organizational and financial needs to recycle 2.5 million tons of textile waste by 2030 and to effectively launch the ReHubs.

EURATEX’s ReHubs initiative plans to pursue fiber-to-fiber recycling for 2.5 million tons of textile waste by 2030
According ReHubs Techno Economic Master Study (TES), the textile recycling industry could generate in Europe around 15,000 direct new jobs by 2030, and increase need for nearshoring and reshoring of textile manufacturing.

The textile recycling industry in Europe could reach economic, social and environmental benefits for €3.5 billion to €4.5 billion by 2030
“Transform Waste into Feedstock” announced as first project supported by the ReHubs, and aiming at building up a first 50,000 tons capacity facility by 2024.

Europe has a 7-7.5 million tons textile waste problem, of which only 30-35% is collected today.  

Based on the ambitious European Waste law, all EU Member States must separately collect the textile waste in 2 years and half. While some countries are designing schemes to face the waste collection challenge, currently no large-scale plan exist to process the waste.

The largest source of textile waste (85%) comes from private households and approximately 99% of the textile waste was made using virgin fibers.

Euratex  assesses that to reach a fiber-to-fiber recycling rate of around 18 to 26 percent by 2030, a capital expenditure investment in the range of 6 billion € to 7 billion € will be needed, particularly to scale up sufficient sorting and processing infrastructure. The economic, social, and environmental value which could be realized, potentially total an annual impact of €3.5-4.5 billion by 2030.

Once matured and scaled, the textile recycling industry could become a profitable industry with a total market size of 6-8 billion € and around 15,000 direct new jobs by 2030.

Next steps of the ReHubs initiative

  • A European textile recycling roadmap proposing Objectives and Key Results to recycle fiber-to-fiber 2.5 million of textile waste by 2030
  • A leading collaboration hub with large players and SMEs from across an extended European textile recycling value chain
  • A first concrete portfolio of 4 launching projects:
    - Transform textile waste into feedstock
    - Increase the adoption of mechanically recycled fibers in the value chain
    - Expand capacity by solving technical challenges for thermo-mechanical textiles recycling
    - Create capsule collection with post-consumer recycled products

The 1st project addresses current sorting technologies which have limits to identify materials with sufficient accuracy for the subsequent circular recycling processes. The “Transform Waste into Feedstock” project will focus on further developing and scaling such sorting technologies. The project group led by Texaid AG aims on building up a first 50,000 tons facility by the end 2024.

Source:

Euratex

(c) ISKO
10.06.2022

ISKO™ purchased new weaving machines by Itema

With the purchase of the latest technology, iSAVER® by Itema, in weaving machines, ISKO pushes the envelope of technological performance and sustainability, making further progress in product and process efficiency.

This decision is an additional, important asset in ISKO’s journey towards a genuine Responsible Innovation™. It is part of other crucial investments made by the company, aimed at further reducing its environmental impact, among which stand out R-TWO™50+ – a new denim generation made with a minimum of 50% pre- and post-consumer recycled blend – and the Green Machine – a pioneering technology providing a 100% post-consumer recycling solution that fully separates and recycles cotton and polyester blends at scale.

After an intensive process, a selection was made where ISKO focuses on the development of technical solutions that enable greater resource savings and more sustainable production methods, always with the protection of workers at heart.

With the purchase of the latest technology, iSAVER® by Itema, in weaving machines, ISKO pushes the envelope of technological performance and sustainability, making further progress in product and process efficiency.

This decision is an additional, important asset in ISKO’s journey towards a genuine Responsible Innovation™. It is part of other crucial investments made by the company, aimed at further reducing its environmental impact, among which stand out R-TWO™50+ – a new denim generation made with a minimum of 50% pre- and post-consumer recycled blend – and the Green Machine – a pioneering technology providing a 100% post-consumer recycling solution that fully separates and recycles cotton and polyester blends at scale.

After an intensive process, a selection was made where ISKO focuses on the development of technical solutions that enable greater resource savings and more sustainable production methods, always with the protection of workers at heart.

As a result, ISKO’s Headquarters extend the company's long-term relationship with Itema,
strengthening the company’s position as the mill with one of the world’s largest denim capacities. The new rapier machines are enhanced by the iSAVER® technology, a breakthrough mechatronic innovation that eliminates the waste selvedge on the left side of the fabric, allowing for saving in energy and raw materials, cutting in half the cotton waste that typically results from the weft yarn. All types of ISKO’s innovative fabrics, with a multitude of different constructions and fiber mixtures, can now be produced using these advanced weaving technologies, with a special focus given to the R-TWO™ technology in terms of its sustainable credentials.

More information:
Isko Itema weaving machine
Source:

ISKO / Menabò Group srl

10.05.2022

BB Engineering shortlisted for Plastics Recycling Awards Europe

BB Engineering has been shortlisted for the Plastics Recycling Awards Europe 2022 for the category Recycling Machinery Innovation with its PET recycling line VacuFil® Visco+ for fiber-to-fiber inline recycling.

The process presented as part of the award is the combined VacuFil® Visco+ with VarioFil®. This machinery enables the textile industry to perform closed-loop inline recycling of post-consumer polyester (PET) textile waste. The given recycling technology is a thermo-mechanical recycling process optimized for the textile industry. Key component here is the liquid state polycondensation reactor, known as Visco+, to adjust the intrinsic viscosity. Compared to existing fiber recycling processes, which address rather less demanding textile applications and don’t include subsequent spinning, BBE’s solution is a whole-in-one process that enables the textile industry to perform closed-loop inline recycling of post-consumer PET fiber waste even into high-tech textile yarns with low dpf-values.

BB Engineering has been shortlisted for the Plastics Recycling Awards Europe 2022 for the category Recycling Machinery Innovation with its PET recycling line VacuFil® Visco+ for fiber-to-fiber inline recycling.

The process presented as part of the award is the combined VacuFil® Visco+ with VarioFil®. This machinery enables the textile industry to perform closed-loop inline recycling of post-consumer polyester (PET) textile waste. The given recycling technology is a thermo-mechanical recycling process optimized for the textile industry. Key component here is the liquid state polycondensation reactor, known as Visco+, to adjust the intrinsic viscosity. Compared to existing fiber recycling processes, which address rather less demanding textile applications and don’t include subsequent spinning, BBE’s solution is a whole-in-one process that enables the textile industry to perform closed-loop inline recycling of post-consumer PET fiber waste even into high-tech textile yarns with low dpf-values.

The Plastics Recycling Awards Europe 2022 winners will be announced on 23 June, during the second day of the Plastics Recycling Show Europe taking place at the RAI Amsterdam.

(c) ChemSec, report Not Quite 100%
28.04.2022

ChemSec' Study: Consumer brands demand clarity on recycled plastics

A new interview study from NGO ChemSec shows that there is a gap between supply and demand when it comes to recycled materials, causing confusion and bottlenecks. Among other things, suppliers go out of their way using elaborate trade schemes to reach the coveted ”100% recycled” tag, which – it turns out – is not that important to consumer product brands. Far more crucial aspects, according to several major B2C companies, are:

  • Honest communication towards customers
  • Comprehensive information from suppliers
  • Clear standards for recycled material

These are some of the conclusions from NGO ChemSec’s survey and interview study with 26 highly well-known consumer product brands. All brands responded to a survey concerning their current plastic use, as well as their needs, expectations and challenges regarding using more recycled material, to enable the shift to a circular economy for plastics.

Ten of the brands then participated in in-depth interviews on the same topics:, Essity, H&M, IKEA, Inditex , Lego, Mars,  SC Johnson, Tarkett, Unilever and Walgreens Boots Alliance.

A new interview study from NGO ChemSec shows that there is a gap between supply and demand when it comes to recycled materials, causing confusion and bottlenecks. Among other things, suppliers go out of their way using elaborate trade schemes to reach the coveted ”100% recycled” tag, which – it turns out – is not that important to consumer product brands. Far more crucial aspects, according to several major B2C companies, are:

  • Honest communication towards customers
  • Comprehensive information from suppliers
  • Clear standards for recycled material

These are some of the conclusions from NGO ChemSec’s survey and interview study with 26 highly well-known consumer product brands. All brands responded to a survey concerning their current plastic use, as well as their needs, expectations and challenges regarding using more recycled material, to enable the shift to a circular economy for plastics.

Ten of the brands then participated in in-depth interviews on the same topics:, Essity, H&M, IKEA, Inditex , Lego, Mars,  SC Johnson, Tarkett, Unilever and Walgreens Boots Alliance.

Is non-mechanical recycling the answer?
Only about ten percent of all discarded plastics is recycled today, which is of course not nearly enough to achieve a circular plastics economy. Despite ambitions and initiatives to reduce plastics use – replacing the materials with other, more sustainable ones – the “plastic tap” is not expected to be turned off anytime soon. Quite the opposite, which makes raising the recycling rates more important than ever.

Although commercially viable, traditional (mechanical) recycling is afflicted with severe flaws, such as legacy chemicals, quality and functionality issues, as well as the lack of clean and sorted waste streams. The brands cited quality and functionality issues as the main obstacles for using more recycled material in their products.

This opens up for non-mechanical recycling, sometimes referred to as chemical recycling, where the plastic is either dissolved or broken down into smaller building blocks. Harmful additives and other hazardous chemicals can be removed in the process, and a material comparable to virgin plastic can be achieved – at least in theory.

So far, however, non-mechanical recycling technologies are costly, energy-intensive, and often require the addition of a great deal of virgin plastic to work – the very material that needs to be phased out.

The chain of custody models needs to be detangled
Apart from these production issues, there is a wide range of chain of custody models surrounding non-mechanical recycling, including mass balance and book & claim, which enable trade of credits or certificates for recycled material.

This cuts the physical connection between input and output, making it possible for a supplier to sell a material as “100% recycled”, when the actual recycled content could be zero.

This is a major issue for the brands ChemSec has spoken to, who value honest and correct communication towards customers. It turns out, perhaps somewhat surprisingly, that being able to slap a “made from 100% recycled plastic” label on a product is not all that important to brands.

To the brands, a physical connection between input (the discarded plastic waste headed for recycling) and output (the product at least partially made from recycled plastics) is far more important.

A physical connection, along with correct and adequate information from suppliers, as well as clearer standards and guidelines than what is available today, is what brands require to increase the use of recycled material and move us closer to a circular economy for plastics.

More information:
ChemSec plastics Recycling
Source:

ChemSec

27.04.2022

Calzedonia chooses Green Label smart nets by Iluna Group

CALZEDONIA chooses products belonging to the GREEN LABEL line by ILUNA GROUP for its new Eco Collection of tights. They are GRS (Global Recycled Standard) and OEKO-TEX® Standard 100 certified and made with recycled yarns.

The ingredients used in the collection are:

CALZEDONIA chooses products belonging to the GREEN LABEL line by ILUNA GROUP for its new Eco Collection of tights. They are GRS (Global Recycled Standard) and OEKO-TEX® Standard 100 certified and made with recycled yarns.

The ingredients used in the collection are:

  • Q-NOVA® by Fulgar, an eco-sustainable nylon 6.6 fiber obtained from regenerated raw materials through a mechanical process that does not involve the use of chemical materials. It has been certified with the Global Recycled Standard (GRS) and for some time now has been part of the HIGG INDEX, the index developed by SAC (Sustainable Apparel Coalition) evaluating the environmental impact of the entire life cycle of a garment;
  • ROICA™ EF by Asahi Kasei, one of the first recycled stretch yarns certified with Global Recycled Standard (GRS).

This collaboration confirms Iluna's commitment to creating products with a environmental responsibility thanks to a technological and corporate system that covers the entire perimeter of production, from materials to processing, dyeing and finishing. An industrial reality that increasingly integrates the value of responsibility, as demonstrated by the fact that the percentage of sustainable production has risen from 3% in 2018 to 52% in 2021.

Source:

Iluna Group / C.L.A.S.S.

(c) SITIP
25.04.2022

Sitip at Performance Days

  • Focus on the embossing technique applied to the recycled fabrics collection of the NATIVE Sustainable Textiles line

Performance Days, the leading trade fair on the latest trends in the development of fabrics for the functional textile industry, has as main focus the PERFORMANCE FORUM, where the most recent innovations and developments are presented with a prize awarded to the winner of the category chosen for the current year, which for 2022 will be “The Journey to Carbon Neutrality - CO2 Reducing Technologies and Measuring Tools”.

Protagonists are therefore all those materials that contain carbon in reduced form and the strategies/technologies that companies implement to ensure the reduction of CO2 emissions during production and how these reductions are actually measured (through energy saving, careful use of resources, use of more sustainable materials, local production and other technological and production measures).

  • Focus on the embossing technique applied to the recycled fabrics collection of the NATIVE Sustainable Textiles line

Performance Days, the leading trade fair on the latest trends in the development of fabrics for the functional textile industry, has as main focus the PERFORMANCE FORUM, where the most recent innovations and developments are presented with a prize awarded to the winner of the category chosen for the current year, which for 2022 will be “The Journey to Carbon Neutrality - CO2 Reducing Technologies and Measuring Tools”.

Protagonists are therefore all those materials that contain carbon in reduced form and the strategies/technologies that companies implement to ensure the reduction of CO2 emissions during production and how these reductions are actually measured (through energy saving, careful use of resources, use of more sustainable materials, local production and other technological and production measures).

In this sense, Sitip’s strategy for reducing CO2 emissions and maximizing the use of resources is based on consolidating and optimizing the layout and logistics of the production plants, installing a cogeneration plant and a new generation smoke smoke abatement system and the transition to an energy-saving lighting system.

Regarding products, at Performance Days Sitip brings its latest innovations with an absolute focus on the embossing technique, a particular system of mechanical processes that can also be used on the recycled items from the NATIVE Sustainable Textiles line, a technology that is applied to fabrics produced with recycled yarns and chemicals with low environmental impact, implementing the GRS standard (Global Recycle Standard), result of the journey towards sustainability implemented by the company.

The collection of embossed designs combines performance, style and sustainability: thanks to special mechanical processes that combine heat and pressure, the fabric is embossed with geometric and design motifs for a more structured and palpable texture.

Source:

SITIP

22.04.2022

Cone Denim launches U.S. Grown Hemp denim collection with BastCore

Cone Denim®, a leader in denim authenticity and sustainable innovation, launches a new U.S. grown hemp denim collection in collaboration with expert hemp processing innovator, BastCore. Cone is excited to expand its sustainable denim offerings and increase its support of the American agriculture industry, featuring denim made with Alabama hemp and U.S. cotton and dyed with natural indigo grown in Tennessee.

Cone Denim is honored to partner with BastCore, a team that aligns with Cone’s values and its commitment to innovation, quality, sustainability, and traceability. The pioneers at BastCore have created patent-pending technology and a proprietary process that produces clean, mechanically processed, OEKO-TEX® STANDARD 100 certified and USDA bio-preferred hemp fiber out of its operation in Montgomery, Alabama.

Cone Denim®, a leader in denim authenticity and sustainable innovation, launches a new U.S. grown hemp denim collection in collaboration with expert hemp processing innovator, BastCore. Cone is excited to expand its sustainable denim offerings and increase its support of the American agriculture industry, featuring denim made with Alabama hemp and U.S. cotton and dyed with natural indigo grown in Tennessee.

Cone Denim is honored to partner with BastCore, a team that aligns with Cone’s values and its commitment to innovation, quality, sustainability, and traceability. The pioneers at BastCore have created patent-pending technology and a proprietary process that produces clean, mechanically processed, OEKO-TEX® STANDARD 100 certified and USDA bio-preferred hemp fiber out of its operation in Montgomery, Alabama.

Cone’s U.S. Hemp Collection includes a range of fabrics featuring classic 3×1 and comfort stretch to modern workwear constructions. The collection further expands upon Cone’s sustainability and traceability practices, driving the future of the industry. The proximity of the hemp, indigo, and cotton crops in the U.S. to the company’s mills in Mexico is also key in creating the smallest environmental impact and footprint possible.

Hemp offers many key benefits in creating the next level of sustainable denim:

  • More than 50% water savings occur, compared to cotton
  • No chemicals, wet processing, pesticides, or herbicides are used
  • Hemp grows in a variety of soils with excellent biodegradability, is antimicrobial, has high tensile strength, moisture regain content, and tenacity
  • Hemp and natural indigo crops have high rates of carbon sequestration, which ultimately benefits the environment and improves the soil’s health for other crops (climate positive)
Source:

Cone Denim

(c) Sicomin
22.04.2022

Sicomin: Upcycled Carbon Fibre from Airbus with GreenPoxy to create Surfboards

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

The new NOTOX technology gives a second life to Airbus carbon fabrics that are declared unusable for aerospace applications due to short roll lengths, an inability to be pre-formed, or other defects. The upcycled materials are combined with Sicomin GreenPoxy 56 and Surf Clear hardener, producing an extremely clear, high gloss laminate with high mechanical properties. NOTOX use a precisely controlled wet lamination process with vacuum bag consolidation to wet out the upcycled woven carbon fabrics and minimise resin consumption in the manufacturing process.

In addition to selecting a high bio-content resin – GreenPoxy 56 derives 56% of its carbon content from plant sources – NOTOX has also sourced the most sustainable carbon fibre fabrics. Full life cycle analysis by NOTOX has shown that using waste carbon fabrics from Airbus is significantly more energy efficient than using other recycled short fibre carbon, confirming the importance of upcycling this key raw material.

More information:
Sicomin carbon fibers Upcycling NOTOX
Source:

Sicomin / 100% Marketing

Photo: Erema
07.04.2022

EREMA: New R&D centre for innovative recycling technologies

Construction machinery rolls into action again. The ground-breaking ceremony at the EREMA site in Ansfelden on April, 6 signals the start of work on a new R&D centre. Two halls with a total area of 1,550 square metres and a new office building with 50 workplaces will be built. The R&D centre will offer cross-departmental and cross-company test machines and laboratory for research and development of plastics recycling technologies to further advance the circular economy. Completion is scheduled for February 2023.

Plastics recycling is currently evolving very rapidly from a niche to a trend. This is driven by the legislative targets for plastics recycling that the European Union and many countries around the world have enacted, as well as by the European Green Deal, which aims to make Europe the first climate-neutral continent and in which the circular economy plays a very central role.

Construction machinery rolls into action again. The ground-breaking ceremony at the EREMA site in Ansfelden on April, 6 signals the start of work on a new R&D centre. Two halls with a total area of 1,550 square metres and a new office building with 50 workplaces will be built. The R&D centre will offer cross-departmental and cross-company test machines and laboratory for research and development of plastics recycling technologies to further advance the circular economy. Completion is scheduled for February 2023.

Plastics recycling is currently evolving very rapidly from a niche to a trend. This is driven by the legislative targets for plastics recycling that the European Union and many countries around the world have enacted, as well as by the European Green Deal, which aims to make Europe the first climate-neutral continent and in which the circular economy plays a very central role.

However, there is not just one recycling solution for all types of plastic waste, but rather different solutions depending on the type of plastic, the product and the application intended for the recycled plastic. While some plastics processing loops, such as for PET bottles, have already been closed, many other plastic waste streams still require a great deal of R&D in cooperation with everyone involved in the value chain to produce recycled pellets that meet the very highest standards for the production of new products. More space will be available for this in the new centre.

R&D is decentralised at EREMA. In recent years, approximately 5 percent of turnover was reinvested annually in research and development. Employees from different departments handle process engineering challenges, innovations in mechanical engineering and automation technology, and special technologies with a view to further improving the quality of recycled pellets. They also focus on new recycling technologies for waste plastic materials for which there is currently no satisfactory circular economy solution. The decisive factor here is also to exploit the potential of digitalisation. By collecting and analysing machine data, not only can recycling processes and product quality be further improved, but we can also develop our digital service offering for our customers. Such offerings include customer-specific information tools that feature plant and process data, predictive maintenance and online support as well as commissioning via remote access.

For material tests, which are necessary for research and development work, an expanded machine park will be available following completion of the new R&D centre. Here, the recycling process can be evaluated end-to-end, including upstream and downstream processes such as shredding and further processing of the recycled pellets. The material tests are supported by detailed analysis in the professionally equipped laboratory, which will be relocated to the new premises and upgraded where necessary with the very latest lab equipment.

More information:
EREMA plastics recycling
Source:

EREMA Engineering Recycling Maschinen und Anlagen GmbH

Photo: Pixabay
10.03.2022

Carbios: White PET fiber from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste

  • Carbios has succeeded in producing a 100% enzymatically recycled white PET fiber from colored textile waste
  • At the same time, the company has produced the first 100% recycled PET bottles, that have successfully passed the food contact validation tests, from the same textile waste.
  • Carbios received €827,200 for the validation of this final technical stage of the project co-funded by ADEME

Carbios announced the validation of the 3rd and final technical step of the CE-PET research project, co-funded by ADEME3 (France’s Environment and Energy Management Agency), for which Carbios is the lead partner alongside its academic partner TWB. This achievement confirms, once again, the full potential and breadth of Carbios’ enzymatic recycling process, C-ZYME™. This breakthrough innovation makes it possible to produce a wide variety of products of equivalent quality to those of petro-sourced origin from any PET waste, including textiles.
 
The first white PET fiber recycled enzymatically from colored textile waste
Worldwide, around 90 million tons of PET are produced each year, more than 2/3 of which are used to manufacture fibers. However, only 13% of textile waste is currently recycled, mainly for downcycling, i.e. for lower quality applications (such as padding, insulators or rags). By successfully manufacturing at pilot scale a white PET fiber that is 100% enzymatically recycled from colored textile waste, Carbios is paving the way for the circular economy in the textile industry.  C-ZYME™ is now on the doorstep of industrialization and will soon enable the biggest brands to move closer to their sustainability goals.
 
Emmanuel Ladent, Chief Executive Officer of Carbios: « Thanks to our breakthrough process, it will soon be possible to manufacture, on a large scale, t-shirts or bottles using polyester textile waste as raw material. This is a major breakthrough that gives value to waste that currently has little or no value. It is a concrete solution that opens up a global market of 60 million tons per year of potential raw materials and will help to reduce the use of fossil resources. »
 
Separate collection of textile waste soon to be mandatory in Europe
From 1 January 2025 the separate collection of textile waste, which is already in place in some countries, will be mandatory for all EU Member States (European Directive 2018/851 on waste).  Carbios’ process will enable this waste to be sustainably recovered and included in a true circular economy model.
 
These technological validations were carried out as part of the CE-PET research project, co-funded by ADEME3. In particular, the project aimed to develop Carbios’ enzymatic PET recycling process on textile waste. The C-ZYME™ technology is complementary to thermomechanical recycling and will make it possible to process plastic and textile waste deposits that are currently not or poorly recovered. For the validation of this stage of the project, Carbios received €827,200 (€206,800 in grants and €620,400 in repayable advances).

More information:
Carbios PET textile waste
Source:

Carbios

(c) ZAMG/Niedermoser
Scientists ascending to the research station in the Hohe Tauern National Park
01.02.2022

Plastic snowfall in the Alps - New Empa Study about nanoplastic in the environment

In a new study, Empa researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere. According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers

The study is uncharted scientific territory because the spread of nanoplastics through the air is still largely unexplored.

In a new study, Empa researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere. According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers

The study is uncharted scientific territory because the spread of nanoplastics through the air is still largely unexplored.

The scientists studied a small area at an altitude of 3106 meters at the top of the mountain "Hoher Sonnenblick" in the "Hohe Tauern" National Park in Austria.
Every day, and in all weather conditions, scientists removed a part of the top layer of snow around a marker at 8 AM and carefully stored it. Contamination of the samples by nanoplastics in the air or on the scientists' clothes was a particular challenge. In the laboratory, the researchers sometimes had to remain motionless when a colleague handled an open sample.

The origin of the tiny particles was traced with the help of European wind and weather data. The researchers could show that the greatest emission of nanoplastics into the atmosphere occurs in densely populated, urban areas. About 30% of the nanoplastic particles measured on the mountain top originate from a radius of 200 kilometers, mainly from cities. However, plastics from the world's oceans apparently also get into the air via the spray of the waves. Around 10% of the particles measured in the study were blown onto the mountain by wind and weather over 2000 kilometers – some of them from the Atlantic.

It is estimated that more than 8300 million tonnes of plastic have been produced worldwide to date, about 60% of which is now waste. This waste erodes through weathering effects and mechanical abrasion from macro- to micro- and nanoparticles. But discarded plastic is far from the only source. Everyday use of plastic products such as packaging and clothing releases nanoplastics. Particles in this size range are so light that their movement in the air can best be compared to gases.

Besides plastics, there are all kinds of other tiny particles. From Sahara sand to brake pads, the world is buzzing through the air as abrasion. It is as yet unclear whether this kind of air pollution poses a potential health threat to humans. Nanoparticles, unlike microparticles, do not just end up in the stomach. They are sucked deep into the lungs through respiration, where their size may allow them to cross the cell-blood barrier and enter the human bloodstream. Whether this is harmful or even dangerous, however, remains to be researched.

Source:

Empa, Noé Waldmann

Photo: RadiciGroup
31.01.2022

RadiciGroup: New ski suit featuring total end-of-life recyclability

  • Sustainability at Milano Unica:  Ecodesign for an environmentally friendly fashion industry.

A ski suit made of yarn obtained from recycled materials and fully recyclable at end-of-life, without giving up on style, design and technical performance: this is RadiciGroup’s business card at the 34th Milano Unica, the international high-end textiles trade show taking place at the Milan Rho Fairground on 1-2 February.

In the Innovation Area of TexCubTec, Sistema Moda Italia’s technical and functional textile section, visitors can see and touch the new uniform of the RadiciGroup Ski Club designed by RadiciGroup in collaboration with the DKB sportswear brand.

  • Sustainability at Milano Unica:  Ecodesign for an environmentally friendly fashion industry.

A ski suit made of yarn obtained from recycled materials and fully recyclable at end-of-life, without giving up on style, design and technical performance: this is RadiciGroup’s business card at the 34th Milano Unica, the international high-end textiles trade show taking place at the Milan Rho Fairground on 1-2 February.

In the Innovation Area of TexCubTec, Sistema Moda Italia’s technical and functional textile section, visitors can see and touch the new uniform of the RadiciGroup Ski Club designed by RadiciGroup in collaboration with the DKB sportswear brand.

“The ski suit, consisting of jacket and trousers, is fashioned with fabric made of RENYCLE®, a RadiciGroup yarn obtained from mechanically recycled nylon,” pointed out Marco De Silvestri, sales & marketing manager – Apparel and Technical of RadiciGroup Advanced Textile Solutions business area. “In addition, the suit’s padding and numerous accessories, such as zippers, Velcro, buttons and thread, are also made of polyamide. It was an ambitious project and we reached a definitive goal: circularity in sportswear without compromising on performance. A goal achieved through continuous close collaboration with other companies in the chain to develop chemically compatible materials that guarantee the high technical performance required by this kind of application.”

At Milano Unica, besides RENYCLE®, RadiciGroup is showcasing garments made of   REPETABLE®, a polyester yarn obtained from post-consumer recycled plastic bottles, and articles made of BIOFEEL®, a brand identifying both nylon and polyester yarn made from renewable source materials.

More information:
Radici RadiciGroup
Source:

RadiciGroup

Political Tailwind for Alternative Carbon Sources (c) Renewable Carbon Initiative
European Policy under the new green deal
22.12.2021

Political Tailwind for Alternative Carbon Sources

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

The goal is to create sustainable carbon cycles. This requires comprehensive carbon management of renewable sources, which includes carbon from biomass, carbon from Carbon Capture and Utilisation (CCU) – the industrial use of CO2 as an integral part – as well as mechanical and chemical recycling. And only the use of all alternative carbon streams enables a true decoupling of the chemical and materials sector from additional fossil carbon from the ground. Only in this way can the chemical industry stay the backbone of modern society and transform into a sustainable sector that enables the achievement of global climate goals. The Renewable Carbon Initiative’s (RCI) major aim is to support the smart transition from fossil to renewable carbon: utilising carbon from biomass, CO2 and recycling instead of additional fossil carbon from the ground. This is crucial because 72% of the human-made greenhouse gas emissions are directly linked to additional fossil carbon. The RCI supports all renewable carbon sources available, but the political support is fragmented and differs between carbon from biomass, recycling or carbon capture and utilisation (CCU). Especially CCU has so far not been a strategic objective in the Green Deal and Fit-for-55.

This will change fundamentally with the European Commission's communication paper on “Sustainable Carbon Cycles” published on 15 December. The position in the paper represents an essential step forward that shows embedded carbon has reached the political mainstream – supported by recent opinions from members of the European parliament and also, apparently, by the upcoming IPCC assessment report 6. Now, CCU becomes a recognised and credible solution for sustainable carbon cycles and a potentially sustainable option for the chemical and  material industries. Also, in the political discussions in Brussels, the term “defossilation” is appearing more and more often, complementing or replacing the term decarbonisation in those areas where carbon is indispensable. MEP Maria da Graça Carvahlo is among a number of politicians in Brussels who perceive CCU as an important future industry, putting it on the political map and creating momentum for CCU. This includes the integration of CCU into the new Carbon Removal Regime and the Emission Trading System (ETS).

As the new policy documents are fully in line with the strategy of the RCI, the more than 30 member companies of the initiative are highly supportive of this new development and are ready to support policy-maker with data and detailed suggestions for active support and the realisation of sustainable carbon cycles and a sound carbon management. The recent political papers of relevance are highlighted in the following.

Brussels: Communication paper on “Sustainable Carbon Cycles”
On 15 December, the European Commission has published the communication paper “Sustainable Carbon Cycles” . For the first time, the importance of carbon in different industrial sectors is clearly stated. One of the key statements in the paper is the full recognition of CCU for the first time as a solution for the circular economy, which includes CCU-based fuels as well. The communication paper distinguishes between bio-based CO2, fossil CO2 and CO2 from direct air capture when addressing carbon removal and it also announces detailed monitoring of the different CO2 streams. Not only CCU, but also carbon from the bioeconomy is registered as an important pillar for the future. Here, the term carbon farming has been newly introduced, which refers to improved land management practices that result in an increase of carbon sequestration in living biomass, dead organic matter or soils by enhancing carbon capture or reducing the release of carbon. Even though the list of nature-based carbon storage technologies is non-exhaustive in our view, we strongly support the paper’s idea to deem sustainable land and forest management as a basis for the bioeconomy more important than solely considering land use as a carbon sink. Surprisingly, chemical recycling, which is also an alternative carbon source that substitutes additional fossil carbon from the ground (i.e. carbon from crude oil, natural gas or from coal), is completely absent from the communication paper.

Berlin: Coalition paper of the new German Government: “Dare more progress – alliance for freedom, justice and sustainability”
The whole of Europe is waiting to see how the new German government of Social Democrats, Greens and Liberals will shape the German climate policy. The new reform agenda focuses in particular on solar and wind energy as well as especially hydrogen. Solar energy is to be expanded to 200 GW by 2030 and two percent of the country's land is to be designated for onshore wind energy. A hydrogen grid infrastructure is to be created for green hydrogen, which will form the backbone of the energy system of the future – and is also needed for e-fuels and sustainable chemical industry, a clear commitment to CCU. There is a further focus on the topic of circular economy and recycling. A higher recycling quota and a product-specific minimum quota for the use of recyclates and secondary raw materials should be established at European level. In the coalition paper, there is also a clear commitment to chemical recycling to be found. A significant change for the industry is planned to occur in regards to the so-called “plastic tax” of 80 cents per kilogram of non-recycled plastic packaging. This tax has been implemented by the EU, but most countries are not passing on this tax to the manufacturers and distributors, or only to a limited extent. The new German government now plans to fully transfer this tax over to the industry.

Düsseldorf: Carbon can protect the climate – Carbon Management Strategy North Rhine-Westphalia (NRW)
Lastly, the RCI highly welcomes North Rhine-Westphalia (NRW, Germany) as the first region worldwide to adopt a comprehensive carbon management strategy, a foundation for the transformation from using additional fossil carbon from the ground to the utilisation of renewable carbon from biomass, CO2 and recycling. For all three alternative carbon streams, separate detailed strategies are being developed to achieve the defossilisation of the industry. This is all the more remarkable as North Rhine-Westphalia is the federal state with the strongest industry in Germany, in particular the chemical industry. And it is here, of all places, that a first master plan for the conversion of industry from fossil carbon to biomass, CO2 and recycling is implemented. If successful, NRW could become a global leader in sustainable carbon
management and the region could become a blueprint for many industrial regions.

DNFI: Microplastic pollution is a global challenge Photo: pixabay
10.12.2021

DNFI: Microplastic pollution is a global challenge

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

  • more reliant on non-renewable resources,
  • less biodegradable, and
  • increasingly prone to releasing microplastics.

The increased consumption is also discretionary, driven by consumer desire and remains unchecked. Thus, the long-term trend in the textile industry parallels the intentional addition of microplastics to products such as cosmetics. The contrast is that the European Chemicals Agency (ECHA) has recommended such intentional additions be restricted, whereas the over-consumption of synthetic fibres continues unchecked. One way for the EU to account for and mitigate microplastic pollution is through an EU-backed methodology measuring and reporting microplastic emissions, so that consumers and procurement officers have the information needed to minimise microplastic pollution resulting from their purchasing decisions.

There is a critical opportunity to address microplastic pollution in the fashion textile industry through the EU Product Environmental Footprint (PEF) methodology. To meet the environmental objectives of the Circular Economy Action Plan, the EU is proposing that companies substantiate their products’ environmental credentials using this harmonised methodology. However, microplastic pollution is not accounted for in the PEF methodology. This omission has the effect of assigning a zero score to microplastic pollution and would undermine the efforts of the European Green Deal, which aim “to address the unintentional release of microplastics in the environment.”

The incorporation of microplastic pollution as an indicator would increase the legitimacy of the PEF method as well as better inform consumer purchasing decisions, especially as the European Green Deal seeks to “further develop and harmonise methods for measuring unintentionally released microplastics, especially from tyres and textiles, and delivering harmonised data on microplastics concentrations in seawater.”

Whilst we continue to learn about the damage of microplastics and there is new knowledge emerging on the toxic impacts along the food chain, there is sufficient information on the rate of microplastic leakage into the environment to implement a basic, inventory level indicator in the PEF now. This is consistent with the recommendations of a review of microplastic pollution originating from the life cycle of apparel and home textiles. There are precedents in PEF for basic level (e.g., ‘resource use, fossils’) and largely untested (e.g. land occupation and toxicity indicators) indicators, and therefore an opportunity for the EU to promote research and development in the measurement and modelling of microplastic pollution by including such emissions in the PEF methodology. For such an indicator, the long and complex supply chains of the apparel and footwear industry would be a test case with high-impact and a global reach.

Source:

DNFI / IWTO – 2021

 Radici: Mehr Nachhaltigkeit auf der Piste (c) RadiciGroup
Die RadiciGroup und DKB präsentieren den ersten „zirkulären“ Skianzug
01.12.2021

Radici: The sustainability our mountains deserve

  • RadiciGroup and DKB introduce the first “circular” ski suit
  • A garment made of yarn obtained from recycled materials and designed with end-of-life recyclability in mind, without compromising style, design and technical performance.
  • RadiciGroup Ski Club athletes will be the first ambassadors of this sustainability project

The first truly sustainable ski suit, featuring Italian style and design and a zero-kilometre supply chain, is finally here. Two Bergamo companies of excellence played the leading roles in the conception and realization of this highly innovative fashion-sport garment: RadiciGroup, a world leading producer of chemical intermediates, polyamide polymers, high-performance engineering polymers and advanced textile solutions, and DKB, a company specializing in technical sportswear with the same brand name.

  • RadiciGroup and DKB introduce the first “circular” ski suit
  • A garment made of yarn obtained from recycled materials and designed with end-of-life recyclability in mind, without compromising style, design and technical performance.
  • RadiciGroup Ski Club athletes will be the first ambassadors of this sustainability project

The first truly sustainable ski suit, featuring Italian style and design and a zero-kilometre supply chain, is finally here. Two Bergamo companies of excellence played the leading roles in the conception and realization of this highly innovative fashion-sport garment: RadiciGroup, a world leading producer of chemical intermediates, polyamide polymers, high-performance engineering polymers and advanced textile solutions, and DKB, a company specializing in technical sportswear with the same brand name.

The ski suit, consisting of jacket and trousers, is fashioned with a fabric made of RENYCLE, a RadiciGroup yarn obtained from mechanically recycled polyamide (nylon), which affords notable savings in energy and water consumption, as well as lower CO2 emissions. In addition, the suit’s padding and numerous accessories, such as zippers, Velcro, buttons and thread, are also made of polyamide.

This achievement was made possible by the great teamwork of RadiciGroup and DKB on the research and development of chemically compatible materials that can be used in special applications requiring high technical performance. The end result is an almost mono-material garment that significantly facilitates end-of-life recycling. It can be more easily converted into polymers for use in the manufacture of ski boot components and bindings, in addition to applications in the automotive and furnishing industries, or in any other sector requiring the characteristics of high performance polyamides.

The ski suit by RadiciGroup is thus an all-round application of ecodesign and circular economy principles to fashion and garment making, which justifies the claim “Una sostenibilità all’altezza delle nostre montagne” [Sustainability worthy of our mountains] written in a logo patch on the inside of the jacket.

“I am particularly proud of this achievement, a synthesis of my passion and effort,” said Angelo Radici, president of RadiciGroup. “I’ve always loved mountaineering and skiing, and, together with my collaborators, I work hard at our company day in and day out to find innovative solutions that improve the sustainability of our industry. This ski suit is concrete proof of the fact that textiles and apparel can be made sustainable without compromising on comfort, design, looks or performance. I will never get tired of repeating that collaboration among the firms along the production chain is crucial to manufacturing goods with an ecodesign approach, considering their end-of-life recyclability and, thus, potentially giving them unlimited durability. Upstream producers, like us, gladly share our know-how in materials chemistry and experience in recycling with our downstream partners, so that, together, we can find sustainable and viable solutions in the various sectors where we operate.”

Source:

RadiciGroup

04.11.2021

adidas awarded high ESG rating by S&P for sustainability performance

Following a thorough assessment by rating agency S&P adidas’ sustainability performance has received an outstanding evaluation. Assessed across Environmental, Social and Governance (ESG) dimensions, adidas was awarded with an ESG Profile Score of 79 out of 100. Combined with a strong Preparedness Score (+6), the company’s overall ESG Evaluation Score amounts to 85, placing adidas sixth in the entire S&P Global Rating Universe.

In its assessment, S&P emphasizes adidas’ industry-leading approach to innovation, supply chain management and consumer engagement. In particular, credit is given to adidas’ ambitions to scale the use of sustainable materials, to expand circular services and to deliver against ambitious net-zero emission targets. In addition to adidas’ strong control mechanisms over its supply chain ensuring fair and safe labor practices, the analysis also calls out the integration of a sustainability target into the compensation system of the Executive Board. The close interaction between the Supervisory Board and the Executive Board is seen as exemplary and supportive of the overall strategy execution.

Following a thorough assessment by rating agency S&P adidas’ sustainability performance has received an outstanding evaluation. Assessed across Environmental, Social and Governance (ESG) dimensions, adidas was awarded with an ESG Profile Score of 79 out of 100. Combined with a strong Preparedness Score (+6), the company’s overall ESG Evaluation Score amounts to 85, placing adidas sixth in the entire S&P Global Rating Universe.

In its assessment, S&P emphasizes adidas’ industry-leading approach to innovation, supply chain management and consumer engagement. In particular, credit is given to adidas’ ambitions to scale the use of sustainable materials, to expand circular services and to deliver against ambitious net-zero emission targets. In addition to adidas’ strong control mechanisms over its supply chain ensuring fair and safe labor practices, the analysis also calls out the integration of a sustainability target into the compensation system of the Executive Board. The close interaction between the Supervisory Board and the Executive Board is seen as exemplary and supportive of the overall strategy execution.

More information:
adidas Sustainability S&P
Source:

adidas AG

Visionary building – with composite textiles by vombaur (c)vombaur
From the H-profile to the chamber structure – vombaur offers individually developed composite textiles with complex shapes
13.10.2021

Visionary building – with composite textiles by vombaur

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

  • Hightech textiles for future-oriented construction projects

Building shells, bridges, staircases, façades ... construction projects are exposed to enormous mechanical loads. Often there are also considerable climatic or environmental influences. This has prompted the increasing use of fibre-reinforced materials in construction projects. After all, besides many other exciting properties, they offer high mechanical rigidity, low weight and excellent corrosion resistance.

Tapes, tubulars, sections and 3D woven textiles by vombaur form the perfect basis for these innovative building materials. The seamless round or shaped woven narrow textiles made of high-performance fibres are extremely loadable because they have neither seams nor welds – and therefore no undesirable breaking points. Their surface properties are identical over the entire length. In challenging tasks, composite textiles by vombaur offer a lightweight solution that is as reliable as it is durable.

Safe and durable solutions for challenging applications
The potential applications for lightweight components in the construction industry are as numerous as the project ideas of the planning and construction teams.
•    Ropes and tensioning elements made of carbon fibre reinforced plastic (CFRP)
•    Reinforcement of building structures made of concrete, steel, wood or other materials
•    Sustainable restructuring of constructions and urban districts for bridges and buildings
•    CFC slats as reinforcements in case of repairs
•    (Filled) GRP pipes made of seamless round woven tubes by vombaur as columns/pillars
•    CFRP sections as steel girder substitutes
•    Hollow profiles with individually designed cross-sections
•    Glass fibre reinforced connecting elements for glazing to minimise expansion differences between the connecting element and the glass
•    Individual light wells

Implementing visions – with composite textiles by vombaur
As your development partner, vombaur facilitates innovative composites projects for challenging applications. In innovative and safety-sensitive industries such as automotive and aviation, chemical and plant engineering.  The composites experts at vombaur develop, create samples of and manufacture woven tapes and seamless round or shaped woven textiles by vombaur – in collaboration with the customer's enterprise development teams and individually for the respective projects. This is how novel and unique lightweight components made of high-performance textiles are created for visionary lightweight construction projects.

"Fibre-reinforced composites are the ideal material for future-oriented construction projects," explains Dr.-Ing. Sven Schöfer, Head of Development and Innovation at vombaur. "Their outstanding technical properties and design possibilities open up new and fascinating perspectives for construction projects. From building construction to civil engineering, from bridge construction to interior design. As an experienced development partner for sophisticated lightweight components, we at vombaur contribute our seamless solutions to these kinds of future-oriented projects."

More information:
vombaur Composites carbon fibers
Source:

vombaur GmbH & Co. KG