From the Sector

Reset
247 results
Devan Chemicals Photo Devan Chemicals
27.11.2023

DEVAN REPEL: A new brand in the water repellency market

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

In a world where water-repellent textiles play an important role in various industries, Pulcra Chemicals has joined forces with its subsidiary, Devan Chemicals, to introduce DEVAN REPEL. The first product, DEVAN REPEL ONE, is a durable water repellent for Polyester and blends. The development of DEVAN REPEL ONE is a joint to Devan and Pulcra's dedication to innovation and sustainability.

The solution offers a range of benefits:

  • Superior Performance: The technology offers outstanding water repellency performance, ensuring that textiles remain dry. Whether it's rain and outdoor wear, outdoor furnishing, shower curtains or multiple technical textiles, the new solution can handle it, making it a strong choice for industries where water resistance is paramount.
  • Flexibility: The versatility of this technology can be applied to a wide range of materials, with especially good results on polyester and its blends, offering flexibility for various applications across industries.
  • Enhanced Sustainability: This technology is free from perfluorinated compounds (PFCs), and free from isocyanates.
  • Longevity: Products treated with this water repellency technology are protecting from the elements for a longer lifespan.

Performance, particularly on effect durability, can be boosted to meet different requirements with new DEVAN EXTENDER GEN3. This extender is free of Isocyanate, Butanone-oxime and 2-dimethylpyrazole.

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
14.11.2023

Successful SMCCreate 2023 Design Conference in Prague

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

Successful SMCCreate 2023 Design Conference in Prague

With over 60 participants from Europe and the USA the second edition of the SMCCreate Design Conference took place from November 7th to 8th in Prague. The conference was jointly organized by the AVK – Federation of Reinforced Plastics and the European Alliance for SMC BMC, promoting the use of SMC and providing design tools to designers for applying these versatile materials.

During the SMCCreate 2023 conference topics covered the wide spectrum of the design with fiber composite/composite components in SMC and BMC technology, from conceptual design, development, and scale-up, with a special emphasis on recycling and sustainability solutions. 18 speakers from various European countries showed how they address important market trends and changing customer needs, and which solutions their companies offered in terms of materials, performance and much more.

As an introduction, speakers - including CTC/Airbus and Teijin - presented different possible applications for SMC and BMC components, including aircraft interiors, bicycle boxes, and applications in e-mobility. The topic of sustainability was broadly covered, highlighting recycling solutions and experiences (Siemens, IDI, OC, AOC), the use of renewable raw materials, as well new LCA models developed by the SMC BMC Alliance (LCS),

Specifically for designers, the use of the SMC flow and curing modelling was presented (ESI, OC), SMC positioning vs. aluminium (Spartners). The second day concluded with contributions on process optimization options for component production, including speeches by Dieffenbacher, Netzsch and EBG.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

Decathlon launched Ski Socks with CELLIANT® infrared technology (c) Decathlon
08.11.2023

Decathlon launched Ski Socks with CELLIANT® infrared technology

Making outdoor sports accessible to as many people as possible since 1976 through quality, innovative gear, powerhouse sporting goods brand Decathlon has launched the first product of its long-term partnership with CELLIANT® infrared technology from Hologenix® – Adult Ski Socks. They are introduced in its Wedze range of ski and snowboarding socks (“wed’ze” means ‘“a small turn on the snow” in the Savoyard dialect in the Alps where this brand is headquartered).  

Making outdoor sports accessible to as many people as possible since 1976 through quality, innovative gear, powerhouse sporting goods brand Decathlon has launched the first product of its long-term partnership with CELLIANT® infrared technology from Hologenix® – Adult Ski Socks. They are introduced in its Wedze range of ski and snowboarding socks (“wed’ze” means ‘“a small turn on the snow” in the Savoyard dialect in the Alps where this brand is headquartered).  

Decathlon was attracted to CELLIANT’s ability to convert body heat into infrared energy, improving local circulation and cellular oxygenation to support stronger performance and faster recovery. Skiers who often suffer from muscle fatigue in the calf area will appreciate the infrared infusion and light compression attributes that were specifically chosen with this in mind. The sock was also thoughtfully designed for minimum thickness, allowing for a comfortable fit within the ski boot, without sacrificing warmth or durability. Anti-friction thread on the sole and toes helps limit irritation, and seams are intentionally positioned to eliminate discomfort. The socks are offered in a Asphalt Blue color in a variety of sizes, both online and in retail stores worldwide.

Source:

Hologenix, LLC

Baldwin at ITMA Asia 2023 with Precision Spray TexCoat™ System (c) Baldwin Technology Company Inc.
06.11.2023

Baldwin at ITMA Asia 2023 with Precision Spray TexCoat™ System

Baldwin Technology Company Inc. will showcase its TexCoat™ G4 precision spray finishing system at ITMA Asia 2023 (November 19-23, National Exhibition and Convention Center, Shanghai). ITMA Asia participants can stop by and see Baldwin’s wide array of TexCoat G4-applied fabric samples from textile mills around the world and experience what precision finishing feels like while learning how the technology eliminates chemistry waste on changeover, saves water, and achieves faster speeds through the stenter frame and relaxed dryer.
 
Baldwin’s team will be available to discuss how the company’s technology can meet the textile supply chain’s sustainability and carbon footprint goals while improving performance and saving money. In the context of a cost-sensitive global economy and an increased focus by brands, consumers and regulatory agencies on sustainability, customers are placing a premium on sustainability-advantage textile production.

Baldwin Technology Company Inc. will showcase its TexCoat™ G4 precision spray finishing system at ITMA Asia 2023 (November 19-23, National Exhibition and Convention Center, Shanghai). ITMA Asia participants can stop by and see Baldwin’s wide array of TexCoat G4-applied fabric samples from textile mills around the world and experience what precision finishing feels like while learning how the technology eliminates chemistry waste on changeover, saves water, and achieves faster speeds through the stenter frame and relaxed dryer.
 
Baldwin’s team will be available to discuss how the company’s technology can meet the textile supply chain’s sustainability and carbon footprint goals while improving performance and saving money. In the context of a cost-sensitive global economy and an increased focus by brands, consumers and regulatory agencies on sustainability, customers are placing a premium on sustainability-advantage textile production.

TexCoat G4’s non-contact spray technology offers numerous advantages compared to outdated finishing-chemistry application methods. TexCoat G4 processes a wide range of low-viscosity water-based chemicals, such as durable water-repellents –  including PFAS-free, softeners, anti-microbials, easy-care and flame retardants. The company's technology uses the same chemicals as found in traditional pad baths with no special auxiliaries required.

Testimonial videos from Pincroft Dyeing and Print Works and Graniteville Specialty Fabrics along with a video highlighting Baldwin’s partnership with North Carolina State University will also be screened at their stand.

Source:

Baldwin Technology Company Inc.

Trumpler and Archroma launch tanning process for leather production Photo: Archroma
06.11.2023

Trumpler and Archroma launch tanning process for leather production

Trumpler has teamed up with Archroma to offer a leather production process that can be used to produce high-performance leather in a more eco-friendly and cost-efficient way.

The new process DyTan®combines offers an alternative to existing metal-free and chrome-tanned leather. It enables the reliable production of leather with great shavability, color depth and migration and abrasion resistance. Free from metal salts and reactive aldehydes, DyTan® is suitable for a wide range of leather applications, from garment and footwear to automotive and furniture upholstery, for today’s eco-conscious leather producers and consumers.

At the core of the DyTan® process is Archroma’s patented AVICUERO® System, which is based on novel molecules that enable more sustainable leather tanning and dyeing, developed by Archroma in cooperation with leather technology consultant Dr Leather. It enables collagen fibers in the leather to be covalently cross-linked through a simplified process at low temperatures. As a result, the system shows strong potential to save energy and water, while also reducing process time and CO2 emissions by up to 23%.*

Trumpler has teamed up with Archroma to offer a leather production process that can be used to produce high-performance leather in a more eco-friendly and cost-efficient way.

The new process DyTan®combines offers an alternative to existing metal-free and chrome-tanned leather. It enables the reliable production of leather with great shavability, color depth and migration and abrasion resistance. Free from metal salts and reactive aldehydes, DyTan® is suitable for a wide range of leather applications, from garment and footwear to automotive and furniture upholstery, for today’s eco-conscious leather producers and consumers.

At the core of the DyTan® process is Archroma’s patented AVICUERO® System, which is based on novel molecules that enable more sustainable leather tanning and dyeing, developed by Archroma in cooperation with leather technology consultant Dr Leather. It enables collagen fibers in the leather to be covalently cross-linked through a simplified process at low temperatures. As a result, the system shows strong potential to save energy and water, while also reducing process time and CO2 emissions by up to 23%.*

The DyTan® process combines the AVICUERO® System with Trumpler’s bio-based fatliquors and retanning agents based on functional biopolymers produced from hydrolyzed shavings – resource-saving technology that Trumpler has been refining for 15 years.

As a global partner of Archroma, the Trumpler Group is responsible for the distribution of the AVICUERO® System worldwide. Delivering technical support and first-class customer care, Trumpler will help leather manufacturers and brands to implement sustainable tanning and draw on its comprehensive product portfolio and process knowledge of tanning, retanning and fatliquoring processes.
 

* Estimations carried out with the Archroma ONE WAY Impact Calculator show energy savings of up to 25% and reduced process time leading to a reduction in CO2 emissions of up to 23%, compared to traditional chrome tanning. They also show significant water savings compared to other metal-free tanning systems1. With the ONE WAY Impact Calculator, customers will be offered personalized calculations for their specific processes.

1 Trials made at Trumpler GmbH application lab.

Source:

Archroma

Dyneema® SB301 to Enable Weight Savings of up to 20% in Protective Body Armor Image Avient
10.10.2023

Dyneema®: Weight Savings of up to 20% in Protective Body Armor

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

Dyneema® announced the launch of a next-generation unidirectional (UD) material innovation based on its third-generation fiber at the polymer level: a development poised to enhance the safety and mobility of law enforcement officers and military forces through molecular engineering.

This evolution enables a higher-tenacity fiber – resulting in increased ballistic stopping power when used in the new UD material, Dyneema® SB301, for protective armor applications. The seismic shift in performance enables body armor manufacturers to design soft armor vests 10–20% lighter than previous protective solutions.

Beyond strength, Dyneema® SB301 has the advantage of being made from bio-based Dyneema® fiber, which enables a carbon footprint up to 90% lower than generic high modulus polyethylene (HMPE) fiber.

Now available for use in law enforcement vests for the US market, Dyneema® SB301 material is manufactured in Greenville, North Carolina, in compliance with the Berry Amendment, with additional markets to follow.

“In every situation, weight is now considered to be the top priority after ballistic stopping power,” said Marcelo van de Kamp, global business director for personal protection at Avient. “That’s because survivability is directly tied to weight savings when speed and agility determine outcomes. We’ve long been known as the ‘world’s strongest fiber™,’ but that won’t stop us from finding new opportunities to get stronger. This new product is the latest demonstration of our commitment to both innovation and protection.”

Source:

Avient Corporation

Polartec PS Photo Polartec
09.10.2023

Polartec: Plant-based nylon resulting in a 50% lower carbon footprint vs. virgin nylon

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Ramesh Kesh, Senior Vice President – Government & Defense and Polartec at Milliken & Company said, “For a long time, many thought that sustainable options meant a loss in performance, like durability, Polartec has proved that this is not the case. Challenging a technology already considered to be at the pinnacle of performance was a big ask yet the team at Polartec rose to that challenge and we believe we have created a new standard in sustainability for performance fabrics.” 

More information:
Polartec Biolon nylon
Source:

Abi Youcha (Akimbo Communication)

Bac Mono Photo Hypetex
22.09.2023

Hypetex: Coloured carbon fibre replacing paint coating

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

•    First production supercar created with Hypetex coloured carbon fibre
•    Paint-replacement technology reduces weight to enhance performance

British car manufacturer Briggs Automotive Company (BAC) has created a unique Hypetex coloured carbon fibre version of its Mono R, reducing the weight by removing the need for paint.  

The original BAC Mono R was created to be lighter and more powerful than the standard model, with 343bhp and 555kg total weight, equating to a power-to-weight ratio of 618bhp-per-tonne. By removing the need for paint coatings in this version, the net weight of the exterior is reduced compared to a painted shell, resulting in a further improved overall performance.

The car’s body was created using Hypetex’s titanium carbon fibre twill, and finished with a crystalized lacquer, offering a unique aesthetic finish. The ultra-lightweight supercar can accelerate from zero to 60mph in less than 2.5 seconds.  

Hypetex’s paint-replacement technology retains the visible weave, allowing for a bold design and a choice of colours without technical compromises, perfectly aligning with BAC’s initiatives to maximise performance whilst creating bespoke supercars. Paint generally adds 138 grams per metre squared, whereas Hypetex adds just 17 grams for the same area, offering an 8x weight saving.
This bespoke version of BAC’s single-seater Mono R was subject to BAC’s renowned BAC Bespoke programme, which ensures that no two Monos are the same. The client, a US-based collector, worked with BAC’s design team to design the car to their personal taste.   

Born out of Formula 1 technology, Hypetex offers manufacturers sustainable aesthetic materials with technical and efficiency benefits. This collaboration is an all-British success story, with the Hypetex carbon fibre body built by Formaplex, a leading UK-based manufacturing company who manufacture lightweight engineered solutions for top tier customers in Automotive, Aerospace and Defence markets. BAC’s supply chain is 95% UK-based.  

Hypetex continues to expand its growing portfolio of the use of coloured carbon fibre to add personalisation to the automotive field, with its material recently featured on the 2024 Ford Mustang Dark Horse.  

 

More information:
HYPETEX® carbon fibers
Source:

Hypetex

22.09.2023

INDA Partners & Waterloo Filtration Institute: Partnering for the FiltXPO™ 2023 Technical Program

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

INDA, the Association of the Nonwoven Fabrics Industry, is partnering with the Waterloo Filtration Institute to deliver the FiltXPO™ technical program on October 10-11, 2023 in Chicago, Illinois. The Waterloo Filtration Institute was instrumental in recommending program topics and world-class presenters.

Engineers, scientists, and industry professionals will gain the latest insights into the filtration and separation topics affecting the industry today and into the future. The program features presentations include: filter media technologies, advancements and opportunities in filtration machinery and equipment, innovations in clean air for homes and urban areas, standards and testing, industry trends and new developments, and filtration challenges and opportunities.

The keynote for this year’s event is “IAQ Is the New Black” presented by Suzanne Shelton, President & CEO, Shelton Group. Shelton will share the latest data around consumer views on health, safety, people, and the planet. Participants will gain an understanding of the filtration opportunities and the challenges manufacturers face in communicating the value of their products.

A preview of the subject matter experts includes:

  • AAF Flanders – “Air Filter Standards Activity and What It Means for Innovation”
  • Ahlstrom – “Expanding Wetlaid Filtration Media Performance Through Innovation”
  • Air Techniques International – “Application of Automated Filter Tester in Quality Control Testing: Importance of Consistent Aerosol Particle Size Distribution”
  • American Truetzschler, Inc. – “How Really Good Filter Media Is Made”
  • CEREX Advanced Fabrics – “The Antimicrobial Nylon Advantage”
  • Elsner Engineering Works, Inc. – “When Does Automation Make Sense”
  • Hollingsworth & Vose – “Accelerating Membrane Adoption with ROI”
  • INDA – “Beyond Porter’s Five Forces – When Regulation Reshapes Markets”
  • MANN+HUMMEL GmbH – “Filtration for Cleaner Urban Mobility – Introducing Horizon Europe Innovation Action Aersolfd”
  • NatureWorks – “Optimizing Biopolymers to Improve Filter Performance – A Spectrum of Approaches and Opportunities”
  • Palas GmbH – “Influence of Temperature and Humidity to Filter Efficiency and Dust Holding Capacity”
  • Ptak Consulting – “Residential Filtration – Performance Against Infectious Aerosols”
  • The University of Georgia – “Recent Advances in Melt Blown Nonwovens and Filter Media Research”

New this year to FiltXPO are Lightning Talks. Lightning Talks are an opportunity to connect with new trends, products, innovations, and ideas with speakers rotating every eight minutes. Presenting companies include Ahlstrom, Elsner Engineering Works, Inc., Gottlieb Binder GmbH, TSI, and the Waterloo Filtration Institute.

The FiltXPO exhibition takes place October 10-12 and will run concurrently with the technical program.

More information:
INDA Filtxpo Conference
Source:

INDA, the Association of the Nonwoven Fabrics Industry

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours Photo: AGU
Jumbo-Visma team winning at Vuelta a España with AGU’s HeiQ Smart Temp cycling kits
22.09.2023

AGU’s HeiQ Smart Temp cycling kits at three Grand Tours

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Team Jumbo-Visma’s triumphant victories in Europe’s three Grand Tours of cycling, including the recent Vuelta a España, were supported by AGU’s cycling kits that are powered by the HeiQ Smart Temp thermoregulation technology.

HeiQ celebrates its collaboration with AGU, a high-performance sports gear manufacturer. Together, the companies integrated HeiQ Smart Temp technology into the jerseys of Jumbo-Visma, the triumphant team whose outstanding cyclists Jonas Vingegaard, Primoz Roglic, and Sepp Kuss won Europe’s three Grand Tours; the Tour de France, Giro d’Italia, and Vuelta a España.

HeiQ Smart Temp, an innovative thermoregulation solution, dynamically responds to body heat and moisture, providing cyclists with a cooling effect when they need it most. This technology enhances comfort and performance, making it ideal for next-to-skin apparel, sportswear, and activewear.

AGU's product developers harnessed the power of HeiQ Smart Temp to create jerseys with cooling properties. The Jumbo-Visma team's lightest-weight jersey, weighing 25% less than their regular aero shirt, keeps athletes up to 2.5°C cooler than other performance fabrics.

Source:

HeiQ Materials AG

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

14.09.2023

Rudolf commissions Baldwin’s TexCoat™ G4 lab-scale precision spray unit

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

Rudolf GmbH, a provider of chemicals to the textile industry, can now offer side-by-side performance tests of the age-old “dip and squeeze” pad versus precision spray finishing with the delivery of Baldwin Technology Inc.’s TexCoat ™ G4 lab-scale unit.

The new TexCoat lab-scale unit at Rudolf’s Geretsried, Germany-based Customer Solution Center, tests the sprayability of chemicals on fabrics as an additional tool to help the market transition to precision spray with confidence in the performance and sustainability of the end result.
 
With Baldwin’s innovative system, the chemistry is precisely distributed across the textile surface and is applied only where it is required, on one or both sides of the fabric. The non-contact technology eliminates chemistry dilution in wet-on-wet processes, allowing full control of maintaining consistent chemistry coverage rates.
 
Plus, pad bath contamination is eliminated, and changeovers are only required when there is a change of finish chemistry. On wet-on-dry processes, the finish is applied with 50% of the amount of water required for pad finishing. Dryer fabric entering the stenter means less water to evaporate resulting in less energy and higher production speeds.
 
More specifically, with Baldwin’s TexCoat G4, textile finishers can track and control the finishing process. Changeovers are quickly performed thanks to recipe management, including automated chemistry and coverage selection. Furthermore, the system takes speed information from the drying process to insure exact coverage regardless of any change in speed. TexCoat G4 measures every drop of chemical usage ensuring that the amount of chemical add-on is precise.
 
In addition, the TexCoat G4 system can process a wide range of low-viscosity water-based chemicals, such as durable water-repellants including PFAS-free, softeners, anti-microbials, easy care resins, flame retardants and more. Baldwin’s technology utilizes the same chemicals used in the traditional pad bath, with no special auxiliaries required.

Source:

Baldwin Technology Company Inc.

OCSiAl: New Graphene nanotube facility in Europe (c) OCSiAl Group
13.09.2023

OCSiAl: New Graphene nanotube facility in Europe

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 

OCSiAl, a leader in graphene nanotube technologies, has been granted a construction permit for a nanotube production facility near Belgrade, Serbia. The new nanotube synthesis plant will be launched in 2024 and will have an initial annual capacity of 60 tonnes of graphene nanotubes. Over the next two years, the capacity of this plant will be increased to 120 tonnes per year. “The project will facilitate logistics and lower supply chain costs. European-produced nanotubes and nanotube derivatives will be primarily supplied to our customers in central and western Europe, North America, and Asia,” said OCSiAl Group Senior Vice President Gregory Gurevich.
 
In addition to synthesizing nanotubes, the facility will manufacture nanotube suspensions for lithium-ion battery manufacturers in Europe, the US, and Asia – enough to enhance the performance of more than 1 mln electric cars with an average battery capacity of 75 kWh per car. OCSiAl nanotubes create long and robust electrical networks between active material particles, improving key battery characteristics, including cycle life, lower DCR, C-rate performance, and cohesion between active battery material particles, making the battery electrodes more durable. Graphene nanotubes unlock new battery technologies, including high-silicon content anodes, thick LFP cathodes, fast-charging graphite anodes, and more. They can be applied in both conventional and emerging battery tech, such as a dry battery electrode coating process, and solid-state batteries.
 
As well as synthesizing nanotubes and producing suspensions, OCSiAl project includes manufacturing of nanotube concentrates for high-performance polymers. The project has passed environmental impact assessment and it is 100% powered by green energy. It enjoys support from Serbian municipal and national governments. The plant is planned to be certified in accordance with ISO 9001, ISO 14001, and ISO 45001, and to be compliant with the IATF 16949 automotive industry standard. The project will create more than 200 job opportunities for engineers, scientists, managers, operators, and administrative staff.
 
Currently, OCSiAl has an extensive manufacturing system of nanotube-based products in the regions of highest market demand, such as China, Japan, Sri Lanka, Brazil, Malaysia, and other countries. The Serbia nanotube hub will operate in conjunction with the company’s operational R&D center and planned graphene nanotube synthesis facility in Luxembourg.

Source:

OCSiAl Group

Brembo SGL Carbon Ceramic Brakes expands production capacity (c) SGL CARBON SE
13.09.2023

Brembo SGL Carbon Ceramic Brakes expands production capacity

SGL Carbon and Brembo agreed to expand production capacities for the joint venture Brembo SGL Carbon Ceramic Brakes (BSCCB). Both companies have been working together with BSCCB on the conditions and implementation plans for this in the preceding months. BSCCB will invest around €150 million until 2027 to expand by more than 70% production capacities at the sites in Meitingen (Germany) and Stezzano (Italy).

The capacity enlargement includes the construction of two new production facilities at the SGL Carbon Meitingen site with a total area of around 8,500 m² and the installation of new production machinery. The groundbreaking in Meitingen will take place this fall.

At the Stezzano site, production areas will be extended by around 4.000 m² to existing buildings and investments will be made in new production machinery.

SGL Carbon and Brembo agreed to expand production capacities for the joint venture Brembo SGL Carbon Ceramic Brakes (BSCCB). Both companies have been working together with BSCCB on the conditions and implementation plans for this in the preceding months. BSCCB will invest around €150 million until 2027 to expand by more than 70% production capacities at the sites in Meitingen (Germany) and Stezzano (Italy).

The capacity enlargement includes the construction of two new production facilities at the SGL Carbon Meitingen site with a total area of around 8,500 m² and the installation of new production machinery. The groundbreaking in Meitingen will take place this fall.

At the Stezzano site, production areas will be extended by around 4.000 m² to existing buildings and investments will be made in new production machinery.

The extensive expansion of production capacities will enable Brembo SGL Carbon Ceramic Brakes (BSCCB) to meet the high market demand and to cover the increasing customer requests in the future. The need for carbon ceramic brake discs from BSCCB increased worldwide. This is mainly due to the high product quality and performance of carbon ceramic brake discs, which meet the specific requirements of automotive manufacturers, especially in the premium and luxury segments, where high braking performance is needed.

Source:

SGL CARBON SE

seat belts Photo Oerlikon Textile GmbH & Co. KG
07.09.2023

Oerlikon Polymer Processing Solutions at the Techtextil India 2023

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

At this year’s Techtextil India, the Polymer Processing Solutions Division of the Swiss Oerlikon group will be presenting the trade audience with new applications, special processes and sustainable solutions focusing on the production of industrial textiles. Between September 9 and 12, the discussions at Jio World Convention Centre (JWCC), Mumbai, will be concentrating on airbags, seat belts, tire cord, geotextiles, filter nonwovens and their diverse applications.

More polyester for airbags
The yarns used in airbags are made predominantly from polyamide. As a result of increasingly diverse airbag applications and also the increasing size of the systems used, polyester is today used as well, depending on the application requirements and cost-benefit considerations. Against this background, the Oerlikon Barmag technol-ogies make an invaluable contribution. In addition to high productivity and low energy consumption, they particularly excel in terms of their stable production processes. Furthermore, they comply with every high quality standard for airbags, which – as in the case of virtually all other textile products used in vehicle construction – must provide the highest level of safety for vehicle occupants - without any loss of function in any climate and for the lifetime of the vehicle

Buckle up!
Seat belts have to withstand tensile forces in excess of three tons and simultaneously stretch in a controlled manner in emergencies in order to reduce the load in the event of impact. A seat belt comprises approximately 300 filament yarns, whose individual, high-tenacity yarn threads are spun from around 100 individual filaments. “With our unique, patented Single Filament Layer Technology, we offer a sophisticated and simultaneously gentle high-tenacity (HT) yarn process for manufacturing these lifesavers and other applications made from industrial yarn”, explains André Wissenberg, Head of Marketing.

Road reinforcement using geotextiles
Low stretch, ultra-high tenacity, high rigidity – industrial yarns offer outstanding properties for the demand-ing tasks carried out by geotextiles; for instance, as geogrids in the base course system under asphalt. Normally, geotextiles have extremely high yarn titers of up to 24,000 denier. Oerlikon Barmag system concepts simultaneously manufacture three filament yarns of 6,000 denier each. Due to the high spinning titers, fewer yarns can be plied together to the required geo-yarn titer in a more cost- and energy-efficient manner.

hycuTEC –  quantum leap for filter media
In the case of its hycuTEC hydro-charging solution, Oerlikon Neumag offers a new technology for charging nonwovens that increases filter efficiency to more than 99.99%. For meltblown producers, this means material savings of 30% with significantly superior filter performance. For end users, the consequence is noticeably improved comfort resulting from significantly reduced breathing resistance. With its considerably lower water and energy consumption, this new development is also a future-proof, sustainable technology.

Source:

Oerlikon Textile GmbH & Co. KG

05.09.2023

Beaulieu International Group at International Conference on Geosynthetics

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu International Group will turn the spotlight on geotextile products with sustainability benefits to support progress in resilient civil engineering projects at the 12th ICG Rome from 18th -21st September 2023, presenting options to target fossil carbon reduction by choosing PP-based staple fibres or woven geotextiles that are among the lowest in carbon footprint for geosynthetics.

For manufacturers of nonwoven geotextiles, Beaulieu Fibres International (BFI) offers PP fibres with > 25% carbon footprint reduction compared to the European standard PP fibres, generating 1.48 kg CO2/kg PP fibres. A step further is to accelerate the replacement of fossil carbon in engineered fibre applications by choosing its ISCC Plus certified bio-attributed MONO-PP with a negative carbon footprint.

For construction projects, nonwoven geotextiles made with high-tenacity HT8 fibres are proven to secure a longer service lifetime and reduce the environmental impact, as they offer high mechanical performance at a reduced weight.

Beaulieu Technical Textiles' (BTT) woven geotextiles provide a wide range of functions, including separation, filtration, reinforcement and erosion control, and are among the most sustainable in the industry. Depending on weight, the carbon footprint of its woven geotextiles (m²) ranges between 0.37 and 1.40 kg CO2 eq./m². They also minimize the use of natural resources for more sustainable infrastructure development. Case studies such as at the Ostend-Bruges airport highlight significant CO2 reduction on the jobsite by replacing the transport of 960 trucks of gravel with 3 trucks of woven geotextiles, and by extending the runway’s life span.

The ICG launch of its new line Terralys MF woven filtration geotextiles with monofilament boosts the performance of a common solution in building layers that require high water flow rates. High-tenacity extruded polypropylene tapes and monofilaments are interwoven to form dimensionally stable and highly permeable geotextiles. These new filtration geotextiles provide greater resistance to dirt and biological clogging. They allow water to travel freely while reducing soil erosion when employed as a separation and stabilizing layer.

As of September 2023, all PP staple fibres and woven geotextiles will have Environmental Product Declarations (EPD) based on LCAs. Each EPD is an essential tool for communicating and reporting on the sustainability performance and helps carbon-conscious customers in their purchasing and decision making. Registered EPDs are globally recognized, publicly available and free to download through EPD Libraries.

Source:

Beaulieu International Group

Toray Composite Materials America: Boeing Supplier of the Year Photo Toray
04.09.2023

Toray Composite Materials America: Boeing Supplier of the Year

Toray Composite Materials America, Inc. headquartered in Tacoma, Washington, has been awarded the "Boeing Supplier of the Year" award, a leadership-nominated award given to supplier companies that support and propel Boeing's strategic objectives through risk-sharing and enduring partnerships. This year, 12 companies were selected from among 11,000 Boeing suppliers worldwide, and CMA was selected as one of them for the Alliance Award. This is Toray's second award from Boeing, receiving the Supplier of the Year Excellence Award in 2019.

Toray began supplying Boeing in 1975 when it first qualified TORAYCA™ T300 carbon fiber for commercial application on the Boeing 737. Since then, Toray has provided high-performance carbon fiber and highly toughened, primary structure carbon fiber composite prepreg on various programs.

The trophy was presented by William A. Ampofo II, Vice President of Parts & Distribution Services and Supply Chain for Boeing Global Services and Chair of the Supply Chain Operations Council to CMA.

Toray Composite Materials America, Inc. headquartered in Tacoma, Washington, has been awarded the "Boeing Supplier of the Year" award, a leadership-nominated award given to supplier companies that support and propel Boeing's strategic objectives through risk-sharing and enduring partnerships. This year, 12 companies were selected from among 11,000 Boeing suppliers worldwide, and CMA was selected as one of them for the Alliance Award. This is Toray's second award from Boeing, receiving the Supplier of the Year Excellence Award in 2019.

Toray began supplying Boeing in 1975 when it first qualified TORAYCA™ T300 carbon fiber for commercial application on the Boeing 737. Since then, Toray has provided high-performance carbon fiber and highly toughened, primary structure carbon fiber composite prepreg on various programs.

The trophy was presented by William A. Ampofo II, Vice President of Parts & Distribution Services and Supply Chain for Boeing Global Services and Chair of the Supply Chain Operations Council to CMA.

Source:

Toray

ropes Photo Cinte Techtextil
29.08.2023

Cinte Techtextil China 2023 to launch new Marine Textile Zone

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

At the crosswinds of China’s 14th Five-Year Plan for the Development of the Marine Economy and its 14th Five-Year Guidance for the Development of the Technical Textiles Industry lies the marine textile sub-sector. Following the government’s directive, the Marine Textile Zone will be unfurled at this year’s fair, taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre. Multiple exhibitors from across China have confirmed their participation within the zone, which will be comprised of three main parts: green marine science and nautical rope netting innovation display area, the Technology Exchange Forum, and the awards ceremony of the Top 10 Suppliers in the China Rope Net Industry.
 
The global rope market is predicted to experience a CAGR of 5.6% and grow by over USD 4 billion between 2022 - 2027[1], and suppliers are eager for the chance to meet buyers face to face. In fact, many will use the new zone at Asia’s leading technical textiles and nonwovens fair to do so.

In the green marine and rope netting category, exhibitors will showcase the latest innovations along the marine textile industry chain, anchored by application areas such as marine engineering, marine economy, marine fencing, marine rescue, deep-sea fishing, deep-sea aquaculture, and many more.

Featured exhibitors include:

  • Ropenet Group: covering 36 application areas, such as aerospace, marine fisheries, safety protection, and emergency rescue, the Shandong-based company has exported to over 110 countries and regions. Products include ropes, nets, threads, and belts, with new materials and high-performance synthetic fibre spinning ropes forming the core of its business.
  • Hunan Xinhai: with its Hunan factory covering 200,000 sqm, its industry-leading rope net production scale ensures it can service multiple sectors such as fisheries, sports, military industry, marine engineering, life-saving protection, and many more. Its extensive network spans Asia, Africa, Europe, and beyond.
  • Zhejiang Four Brothers Rope: located in Zhejiang Toumen Port Economic Development Zone, the special chemical fibre rope manufacturer integrates R&D, manufacturing, sales, and after-sales service. After nearly 60 years of operation, the company now has a yearly production capacity of over 15,000 tons.

Other notable exhibitors in this zone include Xuzhou Henghui Braiding Machine; Shandong Jinguan Netting; Jiuli Rope; and Zhejiang Hailun Rope Net.

Meanwhile, the Technology Exchange Forum will focus on policies and regulations, strategic development opportunities, market analysis, product and process innovation, and the promotion and application of marine textiles. A range of well-known international and domestic experts have been invited to deliver comprehensive industry analysis, and unveil oceanic green textile initiatives onsite.

Designed to expand the influence of the rope net industry, the Top 10 Suppliers in the China Rope Net Industry awards will highlight enterprises currently making key contributions. Other fringe events related to this textile sub-sector include the Conference on Textile Applications for Marine Engineering and Fisheries, and the China Nonwovens & Industrial Textiles Association (CNITA) Rope Net Branch Council Meeting.

Lastly, the Marine Textile Zone will also encompass a business negotiation area to facilitate negotiations between key players onsite, set against the backdrop of the innovation display area’s award-winning and patented rope net products. As a whole, the zone is expected to encourage independent innovation in marine science and technology, coordinate the protection and development of marine resources, and help build a modern maritime industrial system.

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd

25.08.2023

Exist research transfer project FoxCore successfully launched

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

The FoxCore founding team and the ITM at TU Dresden aim to usher in a new era for fastening solutions in lightweight construction with the start of the Exist research transfer project FoxCore. The project started on June 1, 2023, and will run until November 30, 2024, with support from the German Federal Ministry of Economics and Climate Protection (BMWK) and the European Social Fund (ESF).

The innovative company is to develop and offer new and customer-oriented fastening solutions for lightweight construction applications. Safety and performance of lightweight solutions in various industries are to be increased. FoxCore's objective is to take a leading role in fastening technology.

Daniel Weise, Philipp Schegner, Michael Vorhof and Cornelia Sennewald form the FoxCore team; they will work closely with the Institute of Textile Machinery and Textile High Performance Materials (ITM) at TU Dresden. Together, they will develop optimal manufacturing technologies and establish a widespread network of customers and suppliers.

Source:

Institute of Textile Machinery and High Performance Material Technology (ITM)
TU Dresden

RISE® Innovation Award INDA Association of the Nonwoven Fabrics Industry
25.08.2023

RISE® Innovation Award 2023: Four Finalists

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

INDA, the Association of the Nonwoven Fabrics Industry, announced the finalists that will compete for the RISE® Innovation Award. RISE®, the Research, Innovation & Science for Engineered Fabrics Conference, will take place September 26-27 at Talley Student Union, North Carolina State University, Raleigh, NC.

The finalists who will present their product innovations on Tuesday, September 26th, include:

ESC-8 – The JOA® Electronic Size Change Unit by Curt G. Joa, Inc.
The JOA® ESC-8™ unit allows unprecedented Adult Pant design flexibility with the ability to process nearly limitless combinations of insert and chassis sizes at industry best speeds. Additionally, this technology enables the production of a greener, more sustainable product by eliminating up to 250 tons of material, 5 tons of glue, and 500 tons of greenhouse gas emissions every year.

BicoBio Fiber by Fiberpartner ApS
The BicoBio Fiber is a bicomponent fiber core sheath construction, developed from materials with a low carbon footprint. This fiber is designed to biodegrade in the environments where most plastics are found: landfills and the ocean. The fiber’s BioBased PE is produced from sugar cane and has a negative carbon footprint. The fiber’s recycled PET is GRS certified. PrimaLoft® Bio™, a technology that enables polyester fibers to biodegrade, is utilized in the production of BicoBio Fibers. These fibers can be processed with a variety of nonwoven technologies.

Reifenhäuser Reicofil RF5 XHL by Reifenhäuser REICOFIL GmbH & Co. KG
Reicofil XHL (Extra High Loft) is the game changer for a super soft and drapeable nonwoven offering an incomparable feel the nonwoven market has never seen before. The outstanding soft touch is unique and intended for use in the hygiene sector. XHL focuses on low basis weight and high thickness with the best visual appearance. The high performance and efficient use of raw materials and energy ensure cost-effectiveness and environmentally-friendly production.

SAPMonit by TiHiVE
TiHive’s game-changing innovation, SAPMonit – a visionary French technology breakthrough – inspects millions of diapers weekly. SAPMonit delivers lightning-speed inline inspection of Super Absorbents weight and distribution, optimizes resources, detects flaws, and accelerates R&D. SAPMonit utilizes advanced see-through cameras, high-speed vision algorithms, and secure cloud integration, revolutionizing industry norms. SAPMonit has great potential for sustainability, cost reduction, and enhanced customer satisfaction.

The RISE Innovation Award winner will be announced Wednesday afternoon, September 27th.

More information:
INDA RISE®
Source:

INDA Association of the Nonwoven Fabrics Industry