From the Sector

Reset
3 results
Winder manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy Photo: ITA – Institut für Textiltechnik of RWTH Aachen University
Winder manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy
06.03.2024

ITA: Unique Winder for Elastic Filament Yarn Development

Since March 1st 2024, the technical centre of Institut für Textiltechnik of RWTH Aachen University (ITA) has been equipped with an additional winder.

This globally unique winder has been manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy, and enables the development of elastic yarns for numerous and innovative areas of application. Monofilament and multifilament yarns can be spun within a speed range of 100 to 3,200 m/min on bobbins with an industrial standard size of 73.6 mm x 83.8 mm x 115.5 mm.

The use of these bobbins enables immediate further processing along the textile process chain, for example in production of elastic combination yarns or knitting. Due to the high flexibility of this winder in combination with the available spinning plants at ITA, testing is possible with material amounts starting from a few hundred grams up to hundreds of kilograms.

Since March 1st 2024, the technical centre of Institut für Textiltechnik of RWTH Aachen University (ITA) has been equipped with an additional winder.

This globally unique winder has been manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy, and enables the development of elastic yarns for numerous and innovative areas of application. Monofilament and multifilament yarns can be spun within a speed range of 100 to 3,200 m/min on bobbins with an industrial standard size of 73.6 mm x 83.8 mm x 115.5 mm.

The use of these bobbins enables immediate further processing along the textile process chain, for example in production of elastic combination yarns or knitting. Due to the high flexibility of this winder in combination with the available spinning plants at ITA, testing is possible with material amounts starting from a few hundred grams up to hundreds of kilograms.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Oerlikon Barmag celebrates its 100th anniversary (c) Oerlikon Barmag
A look at the state-of-the-art assembly of a WINGS winder
30.03.2022

Oerlikon Barmag celebrates its 100th anniversary

  • Innovation begins with creativity
  • A pioneer of the manmade fiber industry

When the manmade fiber age began a century ago, a German company was responsible for the pioneering work involved. Barmag, established in 1922, was one of the world’s first companies to construct machines for the large-scale production of synthetic staple fibers. To this day, the leading manufacturer of manmade fiber spinning systems and texturing machines in Remscheid – a brand under the aegis of the Swiss Oerlikon Group since 2007 – has shaped technological progress in this sector; in future, with ever more innovations focusing on sustainability and digitalization.

  • Innovation begins with creativity
  • A pioneer of the manmade fiber industry

When the manmade fiber age began a century ago, a German company was responsible for the pioneering work involved. Barmag, established in 1922, was one of the world’s first companies to construct machines for the large-scale production of synthetic staple fibers. To this day, the leading manufacturer of manmade fiber spinning systems and texturing machines in Remscheid – a brand under the aegis of the Swiss Oerlikon Group since 2007 – has shaped technological progress in this sector; in future, with ever more innovations focusing on sustainability and digitalization.

Barmer Maschinenfabrik Aktiengesellschaft (Barmag) is founded in Barmen, located in the Bergische Land region, on March 27, 1922. The German and Dutch founders enter unchartered technological territory, one created as the result of a groundbreaking invention: in 1884, French chemist Count Hilaire Bernigaud de Chardonnet used nitrocellulose to produce the first so-called artificial silk, later known as rayon. The following decades see rapid development focusing on the search for synthetic textile fibers and their manufacturing technologies. As one of the first machine factories, Barmag battles its way through the eventful early years of the manmade fiber industry, the ‘Roaring Twenties’ and the Great Depression – and suffers the extensive destruction of its factories at the end of World War Two. Rebuilding is successful. With the unstoppable success story of purely synthetic plastic fibers such as polyamide, the company flourishes from the 1950s through to the 1970s, establishing sites in all international, for the textile industry at the time important, industrial regions and garnering prestige across the globe in the process. In the ups and downs of expansion, global competition and crises, Barmag reaches the very pinnacle of the market and becomes the preferred technological development partner for the manmade fiber industries in China, India and Turkey. The company has been a high-impact brand under the umbrella of the Oerlikon Group since 2007.

On the wings of innovation
Today, Oerlikon Barmag is a leading supplier of manmade fiber filament spinning systems and part of the Manmade Fibers Solutions business unit of the Oerlikon Polymer Processing Solutions Division. And our aspirations have not diminished: “The striving towards innovation and technological leadership has been, is and will always be part of our DNA”, emphasizes Georg Stausberg, CEO of Oerlikon Polymer Processing Solutions. In the past, this has been observable in such trailblazing innovations as the revolutionary WINGS generation of winders for POY in 2007 and WINGS for FDY in 2012. Currently, the focus of new and further developments is very much on digitalization and sustainability. Here, Oerlikon Barmag has – as one of the world’s first systems manufacturers – been implementing fully-networked smart factories for globally-leading polyester manufacturers since the end of the last decade. Within this context, digital solutions and automation are also helping to provide greater climate and environmental compatibility. This sustainability commitment is not only evidenced by the e-save label introduced for all products back in 2004: Oerlikon is endeavoring to also make all its sites carbon-neutral by 2030 and to acquire its energy exclusively from renewable sources. An ambitious target, whose achievement could be helped by the Oerlikon Barmag anniversary, states Georg Stausberg: “Innovation begins with creativity. And remembering the past provides plenty of motivation and inspiration for the future.”

PCMC’s new Paragon reimagines the possibilities of tissue rewinding (c) PCMC
08.06.2021

PCMC’s new Paragon reimagines the possibilities of tissue rewinding

Winding technology offers simplicity, productivity and product control for premium tissue products

Paper Converting Machine Company (PCMC)—a division of Barry-Wehmiller and a global supplier of high-performance converting machinery for the tissue, nonwovens, package-printing and bag-converting industries— is pleased to announce the launch of its Paragon tissue rewinder.

Paragon features a patent-pending center-surface design that produces superior caliper, bulk and diameter flexibility. Log winding takes place in a new-concept nest, comprised of a winding drum, winding belt, compound-motion rider roll and center drives.

"Paragon offers a completely new method of tissue rewinding,” said Andrew Green, PCMC Vice President of Tissue and Folding. “It is radical only in the sense that we made the wind nest as simple as possible. Usually when you increase a machine’s speed, you sacrifice ease of use, but we know customers want both. With Paragon, we created a machine capable of higher speeds that is easier to operate. It’s remarkable.”

Winding technology offers simplicity, productivity and product control for premium tissue products

Paper Converting Machine Company (PCMC)—a division of Barry-Wehmiller and a global supplier of high-performance converting machinery for the tissue, nonwovens, package-printing and bag-converting industries— is pleased to announce the launch of its Paragon tissue rewinder.

Paragon features a patent-pending center-surface design that produces superior caliper, bulk and diameter flexibility. Log winding takes place in a new-concept nest, comprised of a winding drum, winding belt, compound-motion rider roll and center drives.

"Paragon offers a completely new method of tissue rewinding,” said Andrew Green, PCMC Vice President of Tissue and Folding. “It is radical only in the sense that we made the wind nest as simple as possible. Usually when you increase a machine’s speed, you sacrifice ease of use, but we know customers want both. With Paragon, we created a machine capable of higher speeds that is easier to operate. It’s remarkable.”

Many of Paragon’s subsystems are proven technology solutions in use on PCMC’s trusted Forte rewinder, with several upgrades. Paragon’s enhanced web handling and grade changes are mainly recipe-driven, and its specially designed tools guide fast calibrations. Like the Forte rewinder, Paragon has an intentional open-access design, plus, typical areas to clean require less frequent attention, and recovery and restart occur safely and quickly. Paragon also closes the gap between humans and machines with a new Smart Touch human-machine interface (HMI), which delivers Industry 4.0 tools that transform data to action. Following high-performance design principles, the clean and modern interface provides enhanced operator help, and new smart analytic features offer insights to improve overall equipment effectiveness. The Smart Touch HMI works much like today’s mobile devices with swipe functionality, enabling a short learning curve and improved productivity.

“While the focus is on the new wind nest, a Paragon line is more than that,” said Green. “We added elements like advanced web handling and a state-of-the-art HMI. At PCMC, we are not into hyperbole, but we believe that this machine has raised the bar and is what future tissue-converting machines will be judged against. And, that’s why we called it Paragon.” 

Source:

Paper Converting Machine Company