From the Sector

Reset
The insulation of various aerogel fibres is illustrated using the example of a cushion Source: ITA
The insulation of various aerogel fibres is illustrated using the example of a cushion
18.04.2024

Bio-based insulation textiles instead of synthetic insulation materials

Using bio-based and bio-degradable, recyclable insulation textiles to sustainably insulate heat and reduce energy consumption and the carbon footprint - the Aachen-based start-up SA-Dynamics has developed a solution for this dream of many building owners together with industrial partners. SA-Dynamics won the second Innovation Award in the "New Technologies on Sustainability & Recycling" category at the leading textile trade fairs Techtextil and Texprocess for this development.

The bio-based recyclable insulation textiles consist of 100 percent bio-based aerogel-fibres. They contain up to 90 percent air, trapped in the nano-pore system of the aerogel-fibres. The bio-based raw material is sustainably sourced and certified. The insulation textiles made from bio-based aerogel fibres are said to insulate the same or even better than synthetic insulating materials of fossil origin like PET, PE or PP and mineral or stone wool.

Using bio-based and bio-degradable, recyclable insulation textiles to sustainably insulate heat and reduce energy consumption and the carbon footprint - the Aachen-based start-up SA-Dynamics has developed a solution for this dream of many building owners together with industrial partners. SA-Dynamics won the second Innovation Award in the "New Technologies on Sustainability & Recycling" category at the leading textile trade fairs Techtextil and Texprocess for this development.

The bio-based recyclable insulation textiles consist of 100 percent bio-based aerogel-fibres. They contain up to 90 percent air, trapped in the nano-pore system of the aerogel-fibres. The bio-based raw material is sustainably sourced and certified. The insulation textiles made from bio-based aerogel fibres are said to insulate the same or even better than synthetic insulating materials of fossil origin like PET, PE or PP and mineral or stone wool.

"By using bio-based aerogels, we are doing away with fossil-based materials and doing something for the environment and climate," explains Maximilian Mohr, Chief Technical Officer (CTO) at SA-Dynamics. "We are thus meeting the regulatory measures of the EU and the governments of many countries for more climate and environmental protection. By using bio-based, recyclable aerogels, we can revolutionise the world of construction.“

The Aachen-based start-up SA-Dynamics is made up of researchers from the Institut für Textiltechnik (ITA) and the Institute of Industrial Furnace Construction and Heat Engineering (IOB) at RWTH Aachen University.

The bio-based aerogel fibres originate from the LIGHT LINING research project of the BIOTEXFUTURE innovation area. The LIGHT LINING research project focussed on sports and outdoor textiles. The research results are transferable to the construction sector.

The Techtextil and Texprocess Innovation Awards ceremony will take place on 23 April 2024 at 12.30 pm in Hall 9.0 in Frankfurt/Main, Germany.

Source:

RWTH Aachen, ITA

Graniteville Specialty Fabrics installs Baldwin’s TexCoat™ G4 (c) Baldwin Technology Company Inc.
17.04.2024

Graniteville Specialty Fabrics installs Baldwin’s TexCoat™ G4

Graniteville Specialty Fabrics has set new standards by challenging the traditional pad finishing process. With Baldwin Technology’s spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.
 
Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets. The installation of Baldwin’s TexCoat™ G4 is part of a facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

Graniteville Specialty Fabrics has set new standards by challenging the traditional pad finishing process. With Baldwin Technology’s spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.
 
Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets. The installation of Baldwin’s TexCoat™ G4 is part of a facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

With sustainability benefits, tracking and process control, and Industry 4.0 integration, the TexCoat™ G4 provides high-quality fabric finishing, with no chemistry waste, as well as minimal water and energy consumption. This system utilizes non-contact precision-spray technology, ensuring precise finishing coverage with the exact amount of chemistry. Changeovers (pad bath emptying, cleaning and refilling) are reduced, resulting in substantial chemical conservation and increased productivity.

Cavitec: Technology for breathable laminates at Techtextil 2024 (c) Cavitec, Santex Rimar Group
03.04.2024

Cavitec: Technology for breathable laminates at Techtextil 2024

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

Cavitec, part of Santex Rimar Group, presents the redesigned Caviscreen at Techtextil Frankfurt. Caviscreen features latest technology for breathable laminates.

Caviscreen was developed as a hotmelt coating and laminating unit for breathable sportswear, rainwear and protective clothing – with and without applying a membrane. The redesigned machine shows a brand-new method to supply adhesive more evenly and precisely. Using PUR adhesive (polyurethane reactive adhesive) goes with additional benefits like strong bonding capabilities and versatility.

Caviscreen’s hotmelt screen printing is a special system for high-end application garments. With this Caviscreen system, a PUR adhesive is transferred onto the substrate through a rotary screen, similar to the well-established textile printing method. The adhesives are fed from the drum melter through a heated hose to the traversing adhesive distribution system inside the rotary screen, just behind the doctor blade.

The adhesive is pressed by the doctor blade through the screen holes and transferred to the substrate. Different dot pattern (mesh or irregularly) and different screen thicknesses allow different coating weight and adhesive coverages.

The traversing adhesive dispenser is used to distribute the adhesive automatically over the set working width that – an additional technical benefit – can be set without any mechanical changes.

Cavitec’s screen coating system achieves high bonding strength while using less adhesive than other coating processes, because of applying the coating on the surface of the substrate and like this, the adhesive has less tendency to penetrate the substrate.

Bonding strength, softness of the fabric and the breathability are defined by the coating weight and the coverage. The rotary screen allows users to regulate and adapt the coverage respectively the coating weight. Cavitec offers a large selection of screens that are essential to fulfil the fabric requirements. A further advantage is the ease and efficiency of switching from one screen to another by simply unlocking the bayonet fitting. The IR-heater cover opens pneumatically and the lightweight screen can be easily removed by hand. Unlike with other methods, there's no need to deal with hot oil or any other heated liquid that requires cooling down.

The Caviscreen technology supports manufacturers by reducing costs with screens priced at a mere fraction, just 10%, of common gravure roller prices.

 

Source:

Aepli Communication GmbH

27.03.2024

KARL MAYER GROUP at SaigonTex 2024

At the upcoming SaigonTex, taking place from April 10th to 13th in Ho Chi Minh City, the KARL MAYER GROUP will present its innovations.

DThe KARL MAYER exhibition for warp preparation is entirely dedicated to sustainability. With BLUEDYE, an innovative machine is introduced, which ensures more sustainability and lower costs in the process of indigo dyeing. Thanks to innovative technological solutions, the amounts of water and chemicals used are significantly reduced. Additionally, less yarn waste is generated. Another innovation for more sustainability is CASCADE, a steam and condensation system that requires significantly less steam in the drying process of sizing and indigo dyeing plants by using a solution for energy recycling that is protected against imitation.

For the warp knitting sector, the group of companies presents its latest technological developments. Highlights include a digital solution from KM.ON for optimizing production management (DPM), innovations for enhancing performance in the HKS segment, and a double raschel machine that enables unique creative multi-color designs in spacer textiles with more colour and new Jacquard techniques.

At the upcoming SaigonTex, taking place from April 10th to 13th in Ho Chi Minh City, the KARL MAYER GROUP will present its innovations.

DThe KARL MAYER exhibition for warp preparation is entirely dedicated to sustainability. With BLUEDYE, an innovative machine is introduced, which ensures more sustainability and lower costs in the process of indigo dyeing. Thanks to innovative technological solutions, the amounts of water and chemicals used are significantly reduced. Additionally, less yarn waste is generated. Another innovation for more sustainability is CASCADE, a steam and condensation system that requires significantly less steam in the drying process of sizing and indigo dyeing plants by using a solution for energy recycling that is protected against imitation.

For the warp knitting sector, the group of companies presents its latest technological developments. Highlights include a digital solution from KM.ON for optimizing production management (DPM), innovations for enhancing performance in the HKS segment, and a double raschel machine that enables unique creative multi-color designs in spacer textiles with more colour and new Jacquard techniques.

"Vietnam is a growing market for textile production, which is gaining importance especially for major international sports brands," says Eddy Ho, Senior Sales Manager at KARL MAYER.
The sales professional expects a large number of visitors, especially from Vietnam, China, Taiwan, and South Korea. SaigonTex is one of the most important textile machinery exhibitions in East Asia, located in close proximity to production centres. Vietnam is, in turn, the second most important market for the KARL MAYER GROUP after China. It benefits from increasing foreign direct investments in textile production from China, Taiwan, and South Korea.

Source:

KARL MAYER GROUP

(c) TMAS
25.03.2024

TMAS: Microfactory for filter bags in Sweden

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

ACG Kinna Automatic and ACG Nyström – members of TMAS, the Swedish textile machinery association – have delivered the first microfactory for the production of fully finished filter bags to an international filtration industry customer, in cooperation with JUKI Central Europe.

The microfactory’s configuration is based on two separate interconnecting modules – the Smart Filter Line (SFL) and the Filtermaster 2.0. The SFL handles the fabric feeding from rolls and its folding prior to seam construction, which can either be by automatic sewing, welding or with sewing and taping, depending on specifications. Very rapid changeover of the modular seaming methods can be achieved during product changes. The specific size of the now fully-tubular fabric is then precisely cut to size for each individual unit and further folded ready to be fed into the Filtermaster 2.0. The Filtermaster 2.0 then automatically attaches the reinforcement, bottom and snap rings onto the filter tube with a second Juki sewing head on a robotic arm, to form the fully finished filter bag ready for packaging.

Filter bags are employed in a wide range of industrial processes and while they may be largely under the radar as products, they represent a pretty significant percentage of overall technical textiles production.
They are used in foundries, smelters, incinerators, asphalt plants and energy production plants. Other key manufacturing fields – often where dust is generated – include the production of timber, textiles, composites, waste handling and minerals, in addition to chemicals, food production, pharmaceuticals, electronics and agriculture.

As a further example of the scale of the industry and the high volumes of fabrics involved, one supplier has delivered a single order of 30,000 filter bags to be used for flue gas cleaning at a European power plant. The bags can also be anywhere up to twelve metres in length and frequently have to be replaced.

Source:

Textile Machinery Association of Sweden

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.