From the Sector

Reset
519 results
Photo: Sellers Textile Engineers
Hybrid Shearing Cylinder
10.10.2022

The Hybrid Shear by Sellers Textile Engineers

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

“The Hybrid Shearing Cylinder has all the advantages of the ‘strap-on’ spiral blade to provide a sharper and cleaner cut, along with enhanced rigidity which significantly lengthens the intervals between the necessary regrinding of the blade,” explains Sellers Director Neil Miller. “We currently have six Hybrid Shearing Cylinders operating in the field and the earliest, which has been installed in both No1 Head position, where the majority of the shearing operation and heaviest cut is performed, and also in No3 Head, where the sharper cutting angle has resulted in a much improved surface quality.”

Sellers shearing machines have led the field in carpet finishing for many decades, enabling the leading manufacturers to stay competitive by enabling the highest quality of finish to be achieved economically and efficiently.

The latest advanced features of these machines include a load cell tension control drive system, an automated touchscreen for easy operator control and fault diagnosis, an enhanced cleaning system including cylinder and blade separation and fully controllable pivoting beds. Further options include thickness monitoring, seam detection and metal detection systems.

“The Hybrid Shearing Cylinder will become standard on our latest machines and also be made available for retrofitting, to provide significant benefits to our existing users,” says Miller. “All of our equipment is designed, manufactured, assembled and tested at our plant in the UK, and as one of the few remaining European engineering companies to make all of our components in-house – with now over a century of accumulated know-how – flexibility in design allows our finishing solutions to be targeted to specific customers and their product requirements. Aligned to this is a lead in process control systems which ensure the accurate control, reliability and repeatability of the processing parameters on all of our machines.”

Sellers remains committed to providing complete finishing solutions for all carpet, tile and artificial grass products. Its range includes machines for tufted secondary backing, both conventional, powder and extrusion lamination, Wilton and Axminster products, artificial grass and foam lines, coating lines for bitumen, PVC, PU and other polymers, as well as shearing for all carpet products.

Ongoing developments on the company’s coating and drying lines have resulted in improved guiding and product tension control as well as dryer efficiency, reducing heat loss and optimising energy use. These include a re-design of the fan pressure boxes and impingement nozzles to increase airflow efficiency, modulating gas burners and introducing easy clean, accessible filters.

In addition, the proven dual zone system has been enhanced, giving a temperature differential of up to 80°C between top and bottom zones. Dryers can be heated by either gas or steam and operation and access have been simplified with controls via touchscreen and PLC.

An extensive range of ancillary equipment is available to provide maximum flexibility to cover product requirements, for both new processing lines and as upgrades to existing equipment.

“Carpet manufacturing is now based on well-established, tried and trusted processes and it’s rare for new innovations to be introduced into this sector,” says Jason Kent, CEO of the British Textile Machinery Association. “The new Sellers Hybrid Shearing Cylinder can provide a competitive edge for manufacturers which is currently being proven in the field. It’s one of a number of new innovations the company is planning to showcase at next year’s ITMA exhibition in Milan.”

(c) CSR Europe
07.10.2022

Epson at EUROPEAN SDG ROUNDTABLE about Sustainable Fashion

The fashion industry currently produces 20% of global wastewater and 10% of global carbon emissions. Improvements can be made for example localizing fashion, using more on-demand digital printing (it can save up to 4kg of CO2 per item) and digital textile printers (they reduce water use by up to 90% and energy use by up to 30%). Increasing the use of sustainable materials is vital and extending the lifecycle of use would make a serious difference.

Together with designers, producers, retailers, and customers, Paolo Crespi, Sales & Marketing Director Printing Technologies at Epson, will discuss how each stage of the fashion production can be made more sustainable, and how circularity and longevity can be build into the lifecycle of fashion.

The panel will take place on Tuesday, 11 October 2022 at 09:30-11:00 am CET.

Click here for more information.

The fashion industry currently produces 20% of global wastewater and 10% of global carbon emissions. Improvements can be made for example localizing fashion, using more on-demand digital printing (it can save up to 4kg of CO2 per item) and digital textile printers (they reduce water use by up to 90% and energy use by up to 30%). Increasing the use of sustainable materials is vital and extending the lifecycle of use would make a serious difference.

Together with designers, producers, retailers, and customers, Paolo Crespi, Sales & Marketing Director Printing Technologies at Epson, will discuss how each stage of the fashion production can be made more sustainable, and how circularity and longevity can be build into the lifecycle of fashion.

The panel will take place on Tuesday, 11 October 2022 at 09:30-11:00 am CET.

Click here for more information.

Source:

Epson and CSR Europe

HeiQ
06.10.2022

HeiQ launches upgrade to the HeiQ Eco Dry range at TITAS 2022

HeiQ will showcase some of its latest technologies at the Taipei Innovative Textile Application Show – TITAS 2022, from the 12th to the 14th of October, at the Taipei Nangang Exhibition Center. A newly launched, upgraded formula - HeiQ Barrier Eco Dry New, is added to the company’s fluorocarbon-free water repellent technology range and will be one of the highlights.

As urbanization and modern lifestyles cause an estimated 40% of the global population to be afflicted by allergies, HeiQ recently launched HeiQ Allergen Tech, a finish based on bio-based synbiotic technology to combat inanimate allergens on textiles. It will also be introduced at TITAS.

HeiQ will showcase some of its latest technologies at the Taipei Innovative Textile Application Show – TITAS 2022, from the 12th to the 14th of October, at the Taipei Nangang Exhibition Center. A newly launched, upgraded formula - HeiQ Barrier Eco Dry New, is added to the company’s fluorocarbon-free water repellent technology range and will be one of the highlights.

As urbanization and modern lifestyles cause an estimated 40% of the global population to be afflicted by allergies, HeiQ recently launched HeiQ Allergen Tech, a finish based on bio-based synbiotic technology to combat inanimate allergens on textiles. It will also be introduced at TITAS.

HeiQ innovations driving change
The global call for sustainability has put the textile industry, as the second-highest generator of CO2 emissions, under the spotlight. Most of the marine pollution is caused by non-degradable micro-and nanoparticle emissions from washing clothes, and tons of textile items pile up in landfills. Clothing a potential 8Bn global population by 2023 doesn’t have to be a problem, and HeiQ is driving change in the textile industry so that every player can be part of the solution. In response to the ongoing energy crisis, HeiQ will emphasize the use of HeiQ Clean Tech, a polyester dyeing auxiliary system that helps mills save energy by 30-35%, thereby reducing the carbon footprint of the finished product.

Source:

HeiQ

Graphic Hologenix
06.10.2022

CELLIANT® Viscose now as flock coating and flock fabric

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

  • Partnership with Spectro Coating Corp. Expands Horizons for the World’s First In-fiber Sustainable Infrared Viscose

CELLIANT® Viscose, which converts body heat into energy, is a combination of nature and performance. It was developed by materials science leader Hologenix®, creators of CELLIANT, a natural blend of IR-generating bioceramics used in textiles, and Kelheim Fibres, a leading manufacturer of viscose specialty fibers. It is the world’s first in-fiber sustainable infrared viscose.  Now Hologenix has partnered with Spectro Coating Corp., the largest vertically integrated flock coating and flock fabric manufacturer in the world, to create the first flocked infrared material with CELLIANT Viscose.

Flocking is an application method in which tiny fibers are piled on to the surface of a textile, creating textures for both decorative and functional purposes. CELLIANT Viscose in a flocked material has many potential applications in the medical field for tapes, bandages, braces and orthopedic products, home textiles and decor, dog beds, clothing, and more.  CELLIANT features natural, ethically sourced minerals, which convert body heat into infrared energy for increased local circulation and cellular oxygenation.  These CELLIANT minerals are then embedded into viscose plant-based fibers. The Viscose fibers are then flocked onto a base material. CELLIANT Viscose provides all the benefits of being a viscose fiber — lightweight, soft, highly breathable, excellent moisture management — as well as the fiber enhancements from CELLIANT infrared technology.

CELLIANT Viscose is the first IR flocked material that Spectro is producing. CELLIANT Viscose also represents a further expansion into sustainable products for Spectro. In addition, Spectro products are made in the USA, as is CELLIANT’s mineral blend.

Source:

Hologenix

(c) Lenzing AG
03.10.2022

Lenzing: Ground-mounted photovoltaic system becomes operational

The Lenzing Group and VERBUND, an energy transition company, launched the first development stage of the largest ground-mounted photovoltaic system in Upper Austria. Together with its energy partner VERBUND, Lenzing is also paving the way for the transition to zero-emission mobility. The installation of electric vehicle charging infrastructure at the company’s premises underlines Lenzing’s commitment to the energy transition process.

The Lenzing Group and VERBUND, an energy transition company, launched the first development stage of the largest ground-mounted photovoltaic system in Upper Austria. Together with its energy partner VERBUND, Lenzing is also paving the way for the transition to zero-emission mobility. The installation of electric vehicle charging infrastructure at the company’s premises underlines Lenzing’s commitment to the energy transition process.

Thanks to the ground-mounted photovoltaic system at the “Ofenloch” landfill site, Lenzing, in conjunction with VERBUND, is consistently moving forward on the path to a carbon-free energy supply and has commissioned the first half of the new photovoltaic system with a peak power of 2,780 kWp. Full commissioning of the system with a peak power of 5,560 kWp is envisaged in mid-October. Annual electricity production will amount to 6,000,000 kWh, which is expected to cut CO2 emissions by some 4,400 tonnes per year. The Austrian pioneer in fiber production already commissioned three rooftop photovoltaic systems in spring/summer of 2022, with a peak power of 1,454 kWp and annual electricity production of some 1,508,000 kWh. The electricity flows directly into the company’s on-site production and will also power electric charging stations in future. In the first development stage, 16 wallboxes are set to be installed by the end of the year. A further 32 charging points are planned for 2023. The charging stations will be accessible to staff, visitors and the company’s own vehicle fleet.

“VERBUND’s photovoltaic operator model allows us to make the transition to solar power without incurring investment costs or risks. Thanks to the constant expansion in renewable energy, we remain on course to ecologize the value chain, while optimizing our carbon footprint, cutting costs and reducing the load on the grid, as we are using nearly 100 percent of photovoltaic power in our production,” explains Christian Skilich, Chief Pulp Officer of the Lenzing Group.

More information:
Lenzing energy consumption CO2
Source:

Lenzing AG

(c) AkzoNobel
22.09.2022

AkzoNobel on schedule with warehousing base in China

A huge logistics hub which is set to become AkzoNobel’s largest warehousing base in China is on course to be completed by the middle of 2023.

Located at the company’s decorative paints site in Songjiang, Shanghai, the new €10.3 million facility – a nerve center for production, storage and transport – will use intelligent digital technologies and advanced security management to customize storage and operation modes for different product categories.

“Eastern China is a strategically important region for us and the new facility will ensure that we’re well placed to meet the steady growth in demand which is expected over the next ten years,” says Mark Kwok, AkzoNobel’s President of China/North Asia and Business Director for Decorative Paints China/North Asia.

Equipped with a heat-insulating and light-permeable roof – along with nearly 5,000 solar panels that will generate 1.6 million kWh of electricity – the new facility will collect clean energy and use it for warehouse and office lighting, as well as charging forklifts.

A huge logistics hub which is set to become AkzoNobel’s largest warehousing base in China is on course to be completed by the middle of 2023.

Located at the company’s decorative paints site in Songjiang, Shanghai, the new €10.3 million facility – a nerve center for production, storage and transport – will use intelligent digital technologies and advanced security management to customize storage and operation modes for different product categories.

“Eastern China is a strategically important region for us and the new facility will ensure that we’re well placed to meet the steady growth in demand which is expected over the next ten years,” says Mark Kwok, AkzoNobel’s President of China/North Asia and Business Director for Decorative Paints China/North Asia.

Equipped with a heat-insulating and light-permeable roof – along with nearly 5,000 solar panels that will generate 1.6 million kWh of electricity – the new facility will collect clean energy and use it for warehouse and office lighting, as well as charging forklifts.

The use of clean energy, logistics optimization and the automation of warehouse operations will make an important contribution to the company’s ambition of cutting carbon emissions by 50% and moving to 100% renewable electricity by 2030.

Earlier this year, AkzoNobel also announced that it was investing in a new production line for water-based texture paints in Songjiang. The new 2,500 square meter plant will boost capacity for producing Dulux products for various markets.

The new warehousing facility is scheduled for completion in May 2023.

More information:
AkzoNobel Coatings China
Source:

AkzoNobel

© Freudenberg Performance Materials
19.09.2022

Freudenberg hosts German National Hydrogen Council meeting

Freudenberg Performance Materials – the Freudenberg Group’s nonwovens specialist – was hosting a meeting of the German National Hydrogen Council at the Freudenberg headquarters in Weinheim, Germany, on September 16. As a leading global supplier of technical textiles, Freudenberg Performance Materials provides fuel cell components for mobility applications and for electrolyzers used to produce CO2-free hydrogen.

Freudenberg Performance Materials – the Freudenberg Group’s nonwovens specialist – was hosting a meeting of the German National Hydrogen Council at the Freudenberg headquarters in Weinheim, Germany, on September 16. As a leading global supplier of technical textiles, Freudenberg Performance Materials provides fuel cell components for mobility applications and for electrolyzers used to produce CO2-free hydrogen.

The German National Hydrogen Council was appointed by the German government and acts as an independent, non-partisan advisory board. The council board currently consists of 25 high-ranking experts in the fields of economy, science and civil society. The objective is to assist and advise the State Secretaries’ Committee on Hydrogen in the further development and implementation of Germany’s National Hydrogen Strategy. Council meetings are hosted by one of the board members to enable the council to deepen its knowledge of the relevant technologies, value chain roles and challenges. Dr. Silke Wagener is a member of the council board, and represents the Freudenberg technology group, giving input on suppliers’ know-how as well as contributing her decades-long expertise in technological solutions for the hydrogen industry.

During a tour of the factory organized for the council board members, Freudenberg Performance Materials explained the development and production of performance-critical gas diffusion layers manufactured from carbon fiber-based nonwovens for fuel cells and porous transport layers for electrolyzers. The tour highlighted the potential for improvements from a supplier’s perspective, such as the need for very timely exchange and collaboration along the value chain. Functioning, unbroken and scalable value chains, in parallel with the development and scaling of hydrogen infrastructure, are key prerequisites for the hydrogen industry to fulfill its vital role in the transformation to climate neutrality.

Gas diffusion layers are one of the main components at the heart of the fuel cell. Their function is to transport gases and liquids in the cells. They have a significant impact on system performance and costs, and are indispensable for the functioning of fuel cells. The same applies for porous transport layers that are the key component of electrolyzers for the CO2-free production of what is called green hydrogen.

Fuel cells in combination with green hydrogen are an important technology for CO2-free mobility, in particular with reference to buses, heavy-duty trucks and trains. Other uses include stationary applications such as stationary power generation or heat generation in buildings or industry.
Apart from mobility, green hydrogen also plays a key role in climate-neutral energy supplies in the industrial sector, particularly in the chemical and steel industries.

Source:

Freudenberg Performance Materials

19.09.2022

Lenzing suspends guidance for 2022

In view of the drastic deterioration of the market environment in the current quarter, the Lenzing Group suspends its guidance for the development of earnings in the 2022 financial year.

The further course of the 2022 financial year can only be estimated to a limited extent due to the extremely low visibility on the demand side and the high volatility of energy and raw material costs.

In view of the drastic deterioration of the market environment in the current quarter, the Lenzing Group suspends its guidance for the development of earnings in the 2022 financial year.

The further course of the 2022 financial year can only be estimated to a limited extent due to the extremely low visibility on the demand side and the high volatility of energy and raw material costs.

More information:
prognosis Inflation Ukraine
Source:

Lenzing Group

Photo: Reifenhäuser
15.09.2022

PFNonwovens invests in Reicofil RF5 technology in South Africa

RF5 SMMS 3200 nonwovens line is scheduled to be commissioned in the fourth quarter of 2022, and will be the first Reicofil 5 (RF5) line operating in Africa.

PFNonwovens is one of the most innovative nonwoven companies in the world, and continues to grow its footprint in the US, Europe and Africa. PFN wants to set a new benchmark of high-quality and innovative products for the Southern African markets with this purchase.

RF5 SMMS 3200 nonwovens line is scheduled to be commissioned in the fourth quarter of 2022, and will be the first Reicofil 5 (RF5) line operating in Africa.

PFNonwovens is one of the most innovative nonwoven companies in the world, and continues to grow its footprint in the US, Europe and Africa. PFN wants to set a new benchmark of high-quality and innovative products for the Southern African markets with this purchase.

Markus Mueller, Sales Director of Reifenhäuser Reicofil and Key Account Manager for PFNonwovens, adds: “Since 2018, Reicofil has been delivering RF5 lines to support the global hygiene industry across four continents. The hygiene industry values the consistent product quality provided by RF5 and the key product performance properties it delivers at lower basis weights helping to drive industry sustainability goals. With an energy requirement of 1-1.2 kilowatt hours per kilogram produced, Reicofil 5 manages the conversion from raw material to nonwoven more efficiently than any other technology on the market. We are very pleased that after many years of partnership cooperation with PFNonwovens, we are now able to establish this technology at their South Africa location and look forward to our further collaboration to serve the hygiene and medical market in the whole region with top quality products.”

Source:

Reifenhäuser

15.09.2022

YesAnd & Kornit Digital: Customizable On-Demand Printing Collaboration with Fashinnovation

Sustainable fashion brands YesAnd & Kornit Digital are teaming up with the global platform fostering innovation in the fashion industry, Fashinnovation. This month, the three like-minded companies will be unveiling a direct-to-garment printing collaboration.
 
YesAnd & Kornit Digital are (e)co-creating digital, on-demand printed certified organic blank merchandise, with graphic designs by artists, celebrities, influencers, musicians, fashion VIPs, NGO’s and more. Sharing core values of fashion & innovation & non-toxic, zero-waste production, and the fusion of technology to accelerate impact, this launch represents a cutting-edge and sustainable solution that’s accessible, traceable, customizable, and scalable. By joining forces, this collaboration will educate, engage, and activate both consumers and industry alike.
 

Sustainable fashion brands YesAnd & Kornit Digital are teaming up with the global platform fostering innovation in the fashion industry, Fashinnovation. This month, the three like-minded companies will be unveiling a direct-to-garment printing collaboration.
 
YesAnd & Kornit Digital are (e)co-creating digital, on-demand printed certified organic blank merchandise, with graphic designs by artists, celebrities, influencers, musicians, fashion VIPs, NGO’s and more. Sharing core values of fashion & innovation & non-toxic, zero-waste production, and the fusion of technology to accelerate impact, this launch represents a cutting-edge and sustainable solution that’s accessible, traceable, customizable, and scalable. By joining forces, this collaboration will educate, engage, and activate both consumers and industry alike.
 
"We at Fashinnovation have a strong belief that the fashion industry must walk side-by-side with innovation, in order to ensure a sustainable future. We are thrilled for this collaboration with YesAnd and Kornit, as we hope to set an example when it comes to the power of unity. In our minds, it's not about a person's wins, but rather it's about our collective progress," said Jordana & Marcelo Guimaraes, Founders of Fashinnovation.
 
Debuting the first of their brand collaborations with farm-to-print organic merchandise, this collaboration will together minimize waste, water, chemical use, and energy, while celebrating climate action, manufacturing efficiencies, and sustainable innovation—representing a true and timely fashion statement. The brands will be debuting their select blank styles of digitally-printed designs from the initial capsule collection—including the YesAnd Frida Hoodie, Gloria Hoodie Tee, Dominique Tee, and the Samata Dress, with a graphic option aligning the missions of YesAnd, Fashinnovation and Kornit Digital, “Don’t Wear Clothes, Wear Change.”

Source:

Kornit Digital

15.09.2022

DyStar cautiously optimistic about the financial and environmental performance

  • Integrated Sustainability Report 2021 – 2022 published

DyStar, a leading specialty chemical company released its twelfth annual Sustainability Performance Report. The report is prepared in accordance with the updated GRI Standards 2021: Core option. DyStar continues to adopt the Integrated Reporting <IR> framework to communicate how the group has successfully created tangible value across multiple stakeholder groups in six major capitals.

DyStar reports that they have inched themselves closer to some of their 2025 target of reducing the environmental footprint by 30% for every ton of product, from 2011 levels. Here are some key highlights for FY2021:

  • Integrated Sustainability Report 2021 – 2022 published

DyStar, a leading specialty chemical company released its twelfth annual Sustainability Performance Report. The report is prepared in accordance with the updated GRI Standards 2021: Core option. DyStar continues to adopt the Integrated Reporting <IR> framework to communicate how the group has successfully created tangible value across multiple stakeholder groups in six major capitals.

DyStar reports that they have inched themselves closer to some of their 2025 target of reducing the environmental footprint by 30% for every ton of product, from 2011 levels. Here are some key highlights for FY2021:

  • Recorded more than 29% increase in revenue compared to 2020
  • Zero workplace fatalities, high-consequence injuries, and work-related ill health
  • 40% reduction in Greenhouse gas (GHG) emission intensity, compared to 2011
  • 37% decrease in wastewater emission intensity, compared to 2011

The Group was able to remain resilient and steer itself toward optimistic growth and recovery from the global pandemic in FY2021. In face of recent geopolitical events and macroeconomic factors such as soaring energy costs, DyStar and the wider supply chain will continue to face challenges. As a result, the company believes it is crucial to stay committed to their 2025 Sustainability goals to continue generating value for all stakeholders in the longer term, well beyond these turbulent times.

The report communicates DyStar’s progress towards its sustainability agenda and material topics. As part of our commitment to environmental sustainability, only an e-magazine and a PDF version will be made available for download from www.DyStar.com/sustainability-reports/

More information:
DyStar Sustainability Report
Source:

DyStar

(c) AkzoNobel
15.09.2022

Nature gives life to AkzoNobel’s Color of the Year 2023

Wild Wonder – a hue inspired by the warm tones of harvested crops – is AkzoNobel’s Color of the Year 2023. Its upbeat glow connects with nature, creating a sense of energy and positivity.

As people search for support, connection, inspiration and balance in the world today, they’re diving into the wonders of the natural world to find it. Extensive research conducted by a team of in-house paints and coatings color experts and international design professionals found hope at the heart of global social, design and consumer trends.

“Wild Wonder speaks to us in a language we instinctively understand,” says Heleen van Gent, Creative Director of AkzoNobel’s Global Aesthetic Center. “Nature is what inspires us and makes us feel better in our lives and in our homes. That’s why, for the first time in 20 years, our entire color palette is inspired by the rhythms of nature.”

Wild Wonder – a hue inspired by the warm tones of harvested crops – is AkzoNobel’s Color of the Year 2023. Its upbeat glow connects with nature, creating a sense of energy and positivity.

As people search for support, connection, inspiration and balance in the world today, they’re diving into the wonders of the natural world to find it. Extensive research conducted by a team of in-house paints and coatings color experts and international design professionals found hope at the heart of global social, design and consumer trends.

“Wild Wonder speaks to us in a language we instinctively understand,” says Heleen van Gent, Creative Director of AkzoNobel’s Global Aesthetic Center. “Nature is what inspires us and makes us feel better in our lives and in our homes. That’s why, for the first time in 20 years, our entire color palette is inspired by the rhythms of nature.”

Four decorative paint color palettes have been designed around Wild Wonder: Lush Colors (the forest hues), Buzz Colors (meadow brights), Raw Colors (harvest shades) and Flow Colors (seashore tones). For consumers personalizing their homes and urban environments, the palettes make it easy to choose wall colors for a timeless look that’s also bang on trend.

Color of the Year is the spark of inspiration that ignites a long-term design partnership with industrial coatings customers. On-trend colors, textures and special effects have been designed for the aerospace, automotive, consumer electronics, metal furniture, lighting, cabinetry, flooring, building products and architecture markets, as well as decorative paints. Using innovative digital tools such as the AkzoNobel Design app, coatings experts and customers work together to create the best finish for their products. 2

The year 2023 brings two major milestones to the Global Aesthetic Center. Its ColourFutures trend forecast will celebrate its 20th anniversary, while the team also reaches three decades of trend analysis, color research, color design and art direction at AkzoNobel.

More information:
AkzoNobel color solutions
Source:

AkzoNobel

15.09.2022

Lenzing also switches to green electricity at its Chinese site

The Lenzing Group, a leading provider of wood-based specialty fibers, is expanding its global clean electricity portfolio by gradually transitioning to green energy at its production site in Nanjing. This will enable its Chinese subsidiary Lenzing Nanjing Fibers to use electricity derived solely from renewable sources from 2023 onwards and reduce the site’s carbon emissions by 100,000 tonnes annually. Lenzing only recently announced the transition to green electricity at its Indonesian production facility.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Nanjing, Lenzing is currently investing in cutting its carbon emissions and converting a standard viscose production line to 35,000 tonnes of TENCEL™ branded modal fibers. Thanks to this move, the Chinese site will exclusively produce eco-friendly specialty fibers.

The Lenzing Group, a leading provider of wood-based specialty fibers, is expanding its global clean electricity portfolio by gradually transitioning to green energy at its production site in Nanjing. This will enable its Chinese subsidiary Lenzing Nanjing Fibers to use electricity derived solely from renewable sources from 2023 onwards and reduce the site’s carbon emissions by 100,000 tonnes annually. Lenzing only recently announced the transition to green electricity at its Indonesian production facility.

In 2019, Lenzing became the first fiber producer to set a target of halving its carbon emissions by 2030 and becoming climate neutral by 2050. This carbon reduction target has been recognized by the Science Based Targets Initiative. In Nanjing, Lenzing is currently investing in cutting its carbon emissions and converting a standard viscose production line to 35,000 tonnes of TENCEL™ branded modal fibers. Thanks to this move, the Chinese site will exclusively produce eco-friendly specialty fibers.

The company aims to generate more than 75 percent of its fiber revenue from the wood-based, biodegradable specialty fibers business under the TENCEL™, LENZING™, ECOVERO™ and VEOCEL™ brands by 2024. With the launch of the lyocell plant in Thailand in March 2022 and the investments in existing production sites in China and Indonesia, the share of specialty fibers in Lenzing’s fiber revenue is set to exceed the 75 percent target by a significant margin as early as 2023.

09.09.2022

Lenzing invests in renewable energy expansion

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

In 2019, Lenzing became the first fiber manufacturer to set a target to reduce its carbon emissions by 50 percent by 2030 and to be climate neutral by 2050. This carbon reduction target has been confirmed by the Science Based Targets Initiative. Lenzing is also currently investing in reducing carbon emissions at other sites worldwide. Only recently, the Lenzing Group announced that its Indonesian site will also be relying on green energy in the future.

Source:

Lenzing AG

(c) Borealis
08.09.2022

Borealis and Trexel develop fully recyclable lightweight bottle

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

  • Monomaterial solution contains renewably-sourced polypropylene from the Bornewables™ portfolio of circular polyolefins
  • Trexel employs its proprietary MuCell® technology to deliver a range of lightweighting benefits
  • EverMinds™ in action: reuse and design for recycling are focus of value chain collaboration

Borealis and Trexel, an expert in foaming injection and blow moulded parts, announce that they have co-developed a new plastic bottle based on a grade from the Bornewables™ portfolio of polyolefins made using renewable feedstocks derived 100% from waste and residue streams. The lightweight bottle – which will be showcased at the Borealis stand at the K 2022 (from 19 to 26 October 2022 in Düsseldorf) – is reusable and fully recyclable. It boasts a significantly lower overall CO2 footprint because it is composed of renewably-sourced feedstock and produced in the foaming process.

The Bornewables™ portfolio of circular polyolefins helps reduce the carbon footprint while offering material performance equal to virgin polymers. Using Bornewables grades allows for design freedom and colour flexibility, and helps retain a premium look and feel. The grades – which are commercially available in Europe – help conserve natural resources because they are derived solely from waste and residue streams, for example from used cooking oil. Reusing waste already in circulation instead of fossil fuel-based feedstocks enhances the sustainability of applications made using the Bornewables grades.

The reusable new bottle developed by Borealis and Trexel retains its value over many life cycles thanks to the use of Trexel’s proprietary technology in tandem with Bornewables grades; as a material solution, the new bottle minimises the use of valuable raw materials. Moreover, converters consume less energy in the production process when using the MuCell® technology. The bottle thus helps close the loop on plastics circularity by way of design for recycling, the use of renewable feedstocks, and excellent material performance across multiple life cycles.

Source:

Borealis

06.09.2022

Suominen: New energy surcharge on all products in Europe

Suominen’s energy costs have increased significantly during the recent months and continue to rise during the coming autumn and winter months.

As announced by the company, Suominen can no longer absorb the full extent of these unprecedented increases and hence will implement a new energy surcharge on all its products in Europe.

“Suominen has been preparing for energy shortages and mitigating possible energy interruptions in order to secure business continuity. Naturally this comes with additional cost, but we have decided to remain committed to serve our customers during this difficult period,“ says Markku Koivisto, SVP Europe, Suominen.

Details of the surcharge will be communicated to customers via Suominen sales organization. 

Suominen’s energy costs have increased significantly during the recent months and continue to rise during the coming autumn and winter months.

As announced by the company, Suominen can no longer absorb the full extent of these unprecedented increases and hence will implement a new energy surcharge on all its products in Europe.

“Suominen has been preparing for energy shortages and mitigating possible energy interruptions in order to secure business continuity. Naturally this comes with additional cost, but we have decided to remain committed to serve our customers during this difficult period,“ says Markku Koivisto, SVP Europe, Suominen.

Details of the surcharge will be communicated to customers via Suominen sales organization. 

More information:
Suominen nonwovens wipes
Source:

SUOMINEN CORPORATION

(c) AZL. Comparison of battery casing in modular design and “cell-to-pack” design
Comparison of battery casing in modular design and “cell-to-pack” design
02.09.2022

AZL: Plastic-based multi-material solutions for cell-to-pack battery enclosures

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The design of battery housings is crucial for safety, capacity, performance, and economics. The Cell-to-Pack project, which is starting now, will focus on developing concepts for structural components and for producing them based on a variety of materials and design approaches. The concepts will be compared in terms of performance, weight and production costs, creating new know-how for OEMs, producers and their suppliers throughout the battery vehicle value chain. Companies are now invited to participate in this new cross-industry project to develop battery enclosure concepts for the promising and trend-setting cell-to-pack technology.

The basis for the project is the lightweight engineering expertise of the AZL experts, which they have already demonstrated in previous projects for multi-material solutions for module-based battery housings. Together with 46 industry partners, including Audi, Asahi Kasei, Covestro, DSM, EconCore, Faurecia, Hutchinson, Johns Manville, Magna, Marelli and Teijin, 20 different multi-material concepts were optimized in terms of weight and cost and compared with a reference component made from aluminum. All production steps were modelled in detail to obtain reliable cost estimates for each variant. Result: depending on the concept, 20% weight or 36% cost savings potential could be identified by using multi-material composites compared to the established aluminum reference.

It is expected that the design concept of battery enclosures will develop in the direction of a more efficient layout. In this case, the cells are no longer combined in modules in additional production steps, but are integrated directly into the battery housing. The elimination of battery modules and the improved, weight-saving use of space will allow for higher packing density, reduced overall height and cost saving. In addition, various levels of structural integration of the battery housing into the body structure are expected. These new designs bring specific challenges, including ensuring protection of the battery cells from external damage and fire protection. In addition, different recyclability and repair requirements may significantly impact future designs. How the different material and structural options for future generations of battery enclosures for the cell-to-pack technology might look like and how they compare in terms of cost and environmental impact will be investigated in the new AZL project. In addition to the material and production concepts from the concept study for module-based battery enclosures, results from a currently ongoing benchmarking of different materials for the impact protection plate and a new method for determining mechanical properties during a fire test will also be incorporated.

The project will start on October 27, 2022 with a kick-off meeting of the consortium, interested companies can still apply for participation until then.

02.09.2022

RGE: Closed-loop urban-fit textile-to-textile recycling solutions in Singapore

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings.

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings. The research centre will develop new technologies to recycle textile waste into fibre and create new, next-generation eco-friendly and sustainable textiles.

This move comes on the back of the tightening of waste import bans in countries such as China, India and Indonesia, which are among the world’s largest waste processors. The stricter import bans have left cities in need of viable local textile recycling solutions to tackle the immense textile waste generated.

RGE Executive Director, Mr Perry Lim, said, “Current textile recycling technologies, which rely primarily on a bleaching and separation process using heavy chemicals, cannot be implemented due to environmental laws. At the same time, there is an urgent need to keep textiles out of the brimming landfills.” He added, “As the world’s largest viscose producer, we aim to catalyse closed-loop, textile-to-textile recycling by developing optimal urban-fit solutions that can bring the world closer to a circular textile economy.”

Globally, an estimated 90 million tonnes of textile waste is generated and disposed of every year, with less than 1% being upcycled into new clothing or other textile materials. By 2030, the amount of global textile waste, which currently accounts for almost 10% of municipal solid waste, is expected to reach more than 134 million tonnes. The textile industry is also responsible for 10% of global greenhouse gas emissions – more than international flights and maritime shipping combined.

At present, most of the available textile recycling technologies are open-loop, where textile waste is typically downcycled to lower-quality products (insulating materials, cleaning cloths, etc.) or be used in waste-to-heat recycling.

“Closed-loop textile-to-textile recycling processes, particularly chemical recycling, are still under development. Scaling up the technologies to industrial scale remains a challenge. A key bottleneck is that refabricating textile waste into fibre needs purity standards for feedstock. However, most of the clothes that we wear are made of a mixture of different synthetic and natural fibres, which makes separating the complex blends of materials challenging for effective recycling.

“Our aim is to address this industry pain point by developing viable solutions that use less energy, fewer chemicals and produces harmless and less effluents, and then potentially scale up across our global operations,” Mr Lim said.

To tackle the key challenges in closed-loop textile recycling, RGE-NTU SusTex is looking into four key research areas, namely cleaner and more energy efficient methods of recycling into new raw materials, automated sorting of textile waste, eco-friendly dye removal, and development of a new class of sustainable textiles that is durable for wear and, at the same time, lends itself to easier recycling.

Technologies developed by RGE-NTU SusTex will be test bedded at RGE’s pilot urban-fit textile recycling plant in Singapore, which is projected for completion as early as 2024. If successful, RGE has plans to replicate the plant in other urban cities within its footprint.

 

Source:

Royal Golden Eagle

(c) Adient
As a symbol for a sustainable cooperation, Michel Berthelin (Executive Vice President EMEA, 2nd from left) and Henrik Henriksson (CEO H2 Green Steel, 1st from right) planted a ginkgo tree together with their teams in front of the Adient EMEA headquarters in Burscheid, Germany.
01.09.2022

Adient: Cooperation with H2 Green Steel to reduce carbon footprint

Adient, a supplier of seating systems for the automotive industry, has entered into a cooperation with Swedish steelmaker H2 Green Steel (H2GS) to reduce the carbon footprint in its value chain.
 
On 1st September Michel Berthelin, Executive Vice President Adient EMEA, and Henrik Henriksson, CEO of H2 Green Steel, have mutually signed an agreement to supply fossil-free steel with low carbon footprint from 2026 on and subsequently use it in Adient's metal products.

Adient, a supplier of seating systems for the automotive industry, has entered into a cooperation with Swedish steelmaker H2 Green Steel (H2GS) to reduce the carbon footprint in its value chain.
 
On 1st September Michel Berthelin, Executive Vice President Adient EMEA, and Henrik Henriksson, CEO of H2 Green Steel, have mutually signed an agreement to supply fossil-free steel with low carbon footprint from 2026 on and subsequently use it in Adient's metal products.

Michel Berthelin explains the background to the cooperation: “As a company, we are committed to the Science Based Targets Initiative, a collaboration between leading global institutions to set a science-based climate target. We also support the Carbon Disclosure Project, which helps companies and cities to understand and disclose their environmental impacts. The decision to shift parts of the steel volume sourced for our production to a steel with low carbon footprint is part of our sustainability strategy. It is our goal to reduce emissions at our production sites that are caused directly by our own sources or indirectly by our energy suppliers by 75% by 2030. In parallel, we aim to reduce emissions along our supply chains by 35% over the same period. In doing so, Adient actively fosters the industry's transformation towards a more responsible use of natural resources.”

Steel from H2 Green Steel is produced with up to 95% less CO2 emissions compared to conventional steel production. The company achieves this by replacing coal with green hydrogen in production and by the use of electricity from non-fossil sources. In this way, mainly water and heat are produced as waste products.

Source:

Adient

25.08.2022

Indorama Ventures committed to Science Based Targets initiative

Indorama Ventures Public Company Limited (IVL), a global sustainable chemical company, announced its commitment to science-based targets by the Science Based Targets initiative (SBTi) to help drive its ambitious sustainability programs. The company will also participate in the SBTi Expert Advisory Group for the chemicals industry.

SBTi is a collaboration between CDP, the United Nations Global Compact, the World Resources Institute, and the World Wide Fund for Nature to help businesses set emissions reduction targets based on the most recent climate science. IVL has committed to science-based targets under its purpose of “Reimagining chemistry together to create a better world” which aims to reduce global warming in line with the 1.5°C Paris Climate Agreement.

Indorama Ventures Public Company Limited (IVL), a global sustainable chemical company, announced its commitment to science-based targets by the Science Based Targets initiative (SBTi) to help drive its ambitious sustainability programs. The company will also participate in the SBTi Expert Advisory Group for the chemicals industry.

SBTi is a collaboration between CDP, the United Nations Global Compact, the World Resources Institute, and the World Wide Fund for Nature to help businesses set emissions reduction targets based on the most recent climate science. IVL has committed to science-based targets under its purpose of “Reimagining chemistry together to create a better world” which aims to reduce global warming in line with the 1.5°C Paris Climate Agreement.

Under its Vision 2030 ambition, Indorama Ventures aims to build on its global industry leadership in sustainability, including by reducing GHG intensity by 30% and increasing renewable electricity consumption to 25%. Green projects are helping the company to achieve its operational efficiency targets, increase its use of renewable energy (especially renewable electricity – both onsite generation and offsite procurement through power purchase agreements), implement new decarbonization technologies including carbon capture, introduce bio-feedstock to its petrochemical value chain, and expand its PET recycling capability.

To meet its targets, IVL recognizes the importance of collaboration between the public and private sectors to decarbonize its operations through a variety of strategies. The established targets help its customers and suppliers to achieve their own sustainability goals, particularly their science-based targets.

Yash Lohia, Chairman of ESG Council at Indorama Ventures, said, "We are pleased to make our sustainability commitment more practical and measurable through science-based targets. We are dedicated to finding new technologies that can transform our operations and products towards net-zero. The efforts are not only for our sustainable business but also to support our customers and suppliers to achieve their own sustainability goals."

Source:

IVL