From the Sector

Reset
66 results
01.07.2022

Award for best master's thesis of the German Textile Mechanical Engineering 2022 goes to young engineer of ITA Aachen

The 2002 prize of the Walter Reiners Foundation of the VDMA Textile Machinery Association for the best Master's thesis in German textile mechanical engineering was awarded to a young engineer from the ITA Institut für Textiltechnik of RWTH Aachen University. The prize ceremony took place at Techtextil 2022 in Frankfurt am Main, Germany. Peter D. Dornier, Chairman of the Board of the Walter Reiners Foundation, presented the award at the VDMA Textile Machinery Association’s booth.

Felix Xaver Zerbes, M.Sc., was awarded the "Promotional Prize for the Best Master's Thesis of the German Textile Machinery Industry 2022", endowed with 3,500 EUR, for his master's thesis "Development and Construction of a Separation Unit for Weft Yarns in Air Jet Weaving".

The 2002 prize of the Walter Reiners Foundation of the VDMA Textile Machinery Association for the best Master's thesis in German textile mechanical engineering was awarded to a young engineer from the ITA Institut für Textiltechnik of RWTH Aachen University. The prize ceremony took place at Techtextil 2022 in Frankfurt am Main, Germany. Peter D. Dornier, Chairman of the Board of the Walter Reiners Foundation, presented the award at the VDMA Textile Machinery Association’s booth.

Felix Xaver Zerbes, M.Sc., was awarded the "Promotional Prize for the Best Master's Thesis of the German Textile Machinery Industry 2022", endowed with 3,500 EUR, for his master's thesis "Development and Construction of a Separation Unit for Weft Yarns in Air Jet Weaving".

The subject of the master's thesis was the development of a mechanism with which faulty sections in the weft yarn can be sorted out before they are woven into the textile. This way, both yarn-related weft defects and material defects can be drastically reduced. The prototype developed by Mr Zerbes shows how this can be done even during the ongoing weaving process without having to stop production. Due to its modular design, the yarn rejection unit can be retrofitted to many different types of air-jet weaving machines, which represents an enormous savings potential not only in Germany but in weaving mills all over the world.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

(c) VDMA
Award winners with foundation chairman and professors
23.06.2022

VDMA: Junior engineers with focus on sustainability

On the occasion of the Techtextil fair in Frankfurt, the Chairman of VDMA’s Walter Reiners-Stiftung Foundation, Peter D. Dornier, has awarded prizes to seven successful young engineers. For the first time, the Foundation awarded two Sustainability Awards. They are awarded to academic works in which, for example, solutions for resource-saving products and technologies are developed.

A Sustainability Prize in the category Project Work, endowed with 3.000 euros was awarded to Simon Hoebel, TU Dresden, for his thesis on recycled thermoplastic fibres for composite components.
Marina Michel, TU Dresden, received a Sustainability Award in the category Master, worth 3.500 euros. The topic of her master thesis was the functionalisation of yarns for the filtration of micro- and nanoplastics from water.

A Promotion Prize in the category Project Work, endowed with 4.000 euros, was awarded to a student group from RWTH Aachen. The teamwork of Luis Gleissner, Leopold Habersbrunner, Frederic Olbrich and Frederik Schicks was the construction of a test rig for tests on oil-adsorbing textiles.

On the occasion of the Techtextil fair in Frankfurt, the Chairman of VDMA’s Walter Reiners-Stiftung Foundation, Peter D. Dornier, has awarded prizes to seven successful young engineers. For the first time, the Foundation awarded two Sustainability Awards. They are awarded to academic works in which, for example, solutions for resource-saving products and technologies are developed.

A Sustainability Prize in the category Project Work, endowed with 3.000 euros was awarded to Simon Hoebel, TU Dresden, for his thesis on recycled thermoplastic fibres for composite components.
Marina Michel, TU Dresden, received a Sustainability Award in the category Master, worth 3.500 euros. The topic of her master thesis was the functionalisation of yarns for the filtration of micro- and nanoplastics from water.

A Promotion Prize in the category Project Work, endowed with 4.000 euros, was awarded to a student group from RWTH Aachen. The teamwork of Luis Gleissner, Leopold Habersbrunner, Frederic Olbrich and Frederik Schicks was the construction of a test rig for tests on oil-adsorbing textiles.

Felix Zerbes, RWTH Aachen, was awarded a Promotion Prize of 3.500 euros in the category Master. He developed a technical solution for air jet weaving to improve the quality of woven fabric.

Source:

VDMA e. V.

JEC World: METYX and ITA officially join forces (c) METYX
METYX and ITA officially join forces
11.05.2022

JEC World: METYX and ITA officially join forces

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA) and their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new partnership with METYX Composites, Turkey today at JEC World in Paris. METYX is a globally leading manufacturer of high-performance technical textiles for applications in the transportation, wind energy, construction, sports and leisure industries.

Ugur Ustunel, CEO METYX Composites: “The access to ITA´s competences along the entire textile composite value chain and to the impressive machine parks with over 250 machines from lab scale to industrial scale and the exchange with other partners will be very welcome for our future pre-competitive developments.” Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to welcome METYX to our
network and to collaborate in many joint projects and studies on topics like recycling and sustainability, tapes and hybrid yarns or natural fibres just to name a few.”

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support ITA in developing and growing their network. ITA is located in the centre of the RWTH Aachen University Campus in close proximity to numerous other institutes for lightweight developments.”

(c) ITA
16.12.2021

International Sustainable Aviation and Energy Society Award for Professor Thomas Gries

On 27 November 2021, the Scientific Award for International Sustainable Aviation and Energy Society (SARES Award) was awarded to Professor Dr Thomas Gries from the Institut für Textiltechnik of RWTH Aachen University. The award ceremony took place during the closing ceremony of the International Symposium on Sustainable Aviation (ISSA) in a hybrid format online and simultaneously at Kasetsart University, Bangkok, Thailand.
 
With the award, the committee recognised the ongoing contribution of Pro-fessor Gries and the Institut für Textiltechnik to the digitisation and bio-transformation of the textile sector, as well as the Institute as a place of innovation for sustainable aviation.

On 27 November 2021, the Scientific Award for International Sustainable Aviation and Energy Society (SARES Award) was awarded to Professor Dr Thomas Gries from the Institut für Textiltechnik of RWTH Aachen University. The award ceremony took place during the closing ceremony of the International Symposium on Sustainable Aviation (ISSA) in a hybrid format online and simultaneously at Kasetsart University, Bangkok, Thailand.
 
With the award, the committee recognised the ongoing contribution of Pro-fessor Gries and the Institut für Textiltechnik to the digitisation and bio-transformation of the textile sector, as well as the Institute as a place of innovation for sustainable aviation.

Examples of this include the development of 3D braided ceramic matrix composite components for aircraft engines, which were researched together with partners in a Horizon 2020 project (EU project AllOxITD). The ongoing Chrysomallos research project as another example, funded under the national aeronautics research programme in Germany, aims to develop a completely new and sustainable high-performance insulator for aircraft cabins based on aerogels. These have a significantly lower weight than the glass fibre mats used up to now, while providing the same insulation performance, and solve the problem of the previously high manufacturing costs of aerogels. The aim of the project is to develop an insulation material with reduced density (reduction of more than 20 percent). To this end, a new type of insulation material based on aerogel is to be developed. The basis is an aerogel fleece (0.06 W/mK at 28 kg/m³), which has already been developed as part of a dissertation at the Institut für Textiltechnik of RWTH Aachen University (Mroszczok, J.: 2019).

The aviation industry is one of the fastest growing industries in the world. Due to this fact and its importance for society and the global economy, it needs to make special efforts towards sustainability. The ISSA, an international multi-disciplinary symposium, aims to address current issues in aviation such as improving aircraft fuel efficiency, promoting the use of biofuels, minimising environmental impact, mitigating greenhouse gas emissions and reducing engine and aircraft noise. ^

Through the award, SARES honours scientists and researchers whose work on sustainable aviation issues has made an important contribution at the international level. The selection is based on the scientific publications of the applicant or nominee, the h-index, i.e. the key figure for the worldwide perception of a scientist in professional circles, the project topics and the project results.

New Opportunities for Cellulose Fibres in Replacing Plastics (c) nova-Institut
Nicolas Hark - nova-Institut (DE)
08.12.2021

New Opportunities for Cellulose Fibres in Replacing Plastics

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

  • Second Session of the International Conference on Cellulose Fibres 2022

Cellulose fibers are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibers through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp, cellulosic fibers and yarns. In addition, examples of non-wovens, packaging and composites will offer a look beyond the horizon of conventional application fields.

The second session of the conference: "New Opportunities for Cellulose Fibres in Replacing Plastics", will focus on questions such as: "What is the impact of the ban on plastics on single-use products?" and "What are the latest regulatory issues and policy opportunities for cellulose fibres?".  This section presents new opportunities for replacing fossil-based insulating materials with cellulose-based technologies that can be used for a variety of applications, from aerospace to mobility, as well as in construction. For the program just click here.

Speakers of the Session "New Opportunities for Cellulose Fibres in Replacing Plastics":

  • Nicolas Hark - nova-Institut (DE): Opportunities in Policy for Cellulose Fibres
  • Paula Martirez - Stora Enso (SE): Last years Winner Papira® – an Eco-revolution in Foam Packaging
  • Stefanie Schlager - Lenzing (AT): LENZING™ Fibres for Sustainable Single use Products
  • Sascha Schriever - Institut für Textiltechnik der RWTH Aachen University (DE): Cellulose Aerogel Non-wovens – Sustainable Insulators of Tomorrow
(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – presents its Innovation Awards 2021

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

The AVK – Industrievereinigung Verstärkte Kunststoffe – has once again presented its Innovation Awards to companies, institutes and their partners. Three composites innovations were recognised in each of the three categories – “Innovative Products/Applications”, “Innovative Processes” and “Research and Science” – at the new event JEC Forum DACH on 23 November 2021, the first edition of which was held in Frankfurt.

“As usual, the submissions included a lot of very interesting and promising products and processes this year. The Innovation Awards highlight the outstanding efficiency, cost-effectiveness and sustainability of fibre-reinforced plastics as well as the companies and institutes operating in the sector,” explains Dr. Elmar Witten, Managing Director of the AVK. The jury of leading experts from the industry honoured the following innovations this year:

Category “Research and Science”
First place in the “Research and Science” category was awarded to the German Aerospace Center (DLR) for its Bondline Control Technology (BCT). This innovative process is used for quality control and assurance of bonded joints. The core element is a porous fabric which is applied to a joining surface using an epoxy adhesive or matrix resin. Peeling away the fabric creates a chemically reactive and undercut surface and can also be used as a test to check adhesion to the substrate. BCT has potential in a variety of possible applications. For example, peel ply can be replaced by BCT fabric to produce composite components with an optimised joining surface. The cost-effective BCT peel test is suitable for coupon testing and process control. In addition, the combined adhesion test and surface pre-treatment can be used for quality assurance of bonded repairs on fibre composite structures.

Second place was taken by the Institute of Textile Technology (ITA) at RWTH Aachen University and its partners AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR with “StoneBlade – Lightweight construction with granite for the wind industry”. This innovation enables manufacturers to reduce the amount of non-recyclable materials used in rotor blade construction. At the same time, it reduces the weight of these components and improves the mechanical properties relating to the stability of wind turbines. The innovative approach replaces glass-fibre reinforced plastic in the blade components with hard rock – a natural, cost-effective and recyclable lightweight material. The slabs of rock are cut and ground to a thickness of just a few millimetres and embedded in a fibre composite laminate with carbon fibre, which stabilises them for alternating load cases. The pre-stressed material is pressure-stable in the composite and can absorb tensile forces in the event of continuously alternating loads without any loss of stiffness.

Third place went to the Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK) with its partner Mercedes Benz AG for the interdisciplinary development of a highly integrated inductive charging module for electric vehicles. The ultra-thin charging module was designed to make optimum use of space in the vehicle underbody without reducing ground clearance. An interdisciplinary approach was adopted for the development process. This involved the electrical, mechanical and process characterisation of high-frequency Litz wires, ferromagnetic foil and metal wire cloth as well as the creation of a simulation model. The result is a demonstrator for a charging system with a structural height of 15 mm and a total weight of 8 kg. It achieves a transmission efficiency of up to 92 percent at 7.2 kW nominal power and active air cooling. The hardware demonstrator was fabricated in a 3-step process using RTM and VARI techniques.

Overview of all the winners in the three categories:
Category “Innovative Products/Applications”
1st Place: “Traffic signs from Nabasco (N-BMC)” – Nabasco Products BV and Lorenz Kunststofftechnik GmbH, partners: Pol Heteren BV and NPSP BV
2nd Place: “Novel, ultratough vinyl ester resin for the construction of large marine vessels” Evonik Operations GmbH
3rd Place: “Air intake housing with a multi-material design for gas turbines” – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH and Leichtbau-Systemtechnologien KORROPOL GmbH.
Category “Innovative Processes”
1st Place: “In-mould wrapping” off-tool, film-coated, fibre composite components for exterior applications – BMW Group, Partner: Renolit SE
2nd Place: “Adaptive automated repair of composite structural components in the aviation sector” – Lufthansa Technik AG, Partner: iSAM AG
3rd Place: “Automated surface pre-treatment using VUV excimer lamps” – CTC GmbH
Category “Research and Science”
1st Place: “Bondline Control Technology (BCT)” – German Aerospace Center (DLR)
2nd Place: “StoneBlade – Lightweight construction with granite for the wind industry” – Institute of Textile Technology at RWTH Aachen University, Partners: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3rd Place: “Interdisciplinary development of a highly integrated inductive charging module for electric vehicles” – Dresden University of Technology – Institute for Lightweight Construction and Plastics Technology (ILK), Partner: Mercedes Benz AG

Submissions for the next Innovation Award can be made from the end of January 2022.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

© Digital Capability Center
17.11.2021

Competence Centre WIRKsam - Shaping Work with AI

  •  14 million for the Rhenish coal region

Shaping economic change in the Rhenish textile and coal region together with artificial intelligence (AI) - this is the goal of the WIRKsam competence centre launched at the beginning of November. The joint project, funded by the Federal Ministry of Education and Research, is researching innovative forms of work to secure employment, create attractive jobs and strengthen regional companies.
 

With a focus on the strengths of the Rhenish mining area, WIRKsam is to establish itself as a central point of contact and align various scientific institutions and their research specifically to the challenges of the regional working world. Funded by the BMBF with 14 million euros over five years, the project is fundamentally about transferring scientific findings into company practice and into the wider society. After the funding phase, the centre of excellence will continue to work independently.

  •  14 million for the Rhenish coal region

Shaping economic change in the Rhenish textile and coal region together with artificial intelligence (AI) - this is the goal of the WIRKsam competence centre launched at the beginning of November. The joint project, funded by the Federal Ministry of Education and Research, is researching innovative forms of work to secure employment, create attractive jobs and strengthen regional companies.
 

With a focus on the strengths of the Rhenish mining area, WIRKsam is to establish itself as a central point of contact and align various scientific institutions and their research specifically to the challenges of the regional working world. Funded by the BMBF with 14 million euros over five years, the project is fundamentally about transferring scientific findings into company practice and into the wider society. After the funding phase, the centre of excellence will continue to work independently.

Prospects: Attractive jobs in the lignite mining region
The region on the left bank of the Rhine is not only a lignite mining area, but also a historically grown textile region where technical textiles are produced today, for example for medical technology or plant and vehicle construction. This offers valuable future prospects for the employees affected by the lignite phase-out.

Against this background, the aim of the WIRKsam centre of excellence is to research the extensive possibilities of artificial intelligence for shaping the future world of work and to transfer them to companies. AI applications are used to develop innovative work and process flows to create attractive workplaces and increase the competitiveness of local companies.

Together: business and science
The special feature: research institutions and companies from the Rhenish textile industry and related sectors work together in the centre of excellence. Research partners are the Institut für Textiltechnik (ITA) of RWTH Aachen University and the Institute for Mobile Autonomous Systems and Cognitive Robotics (MASCOR) of FH Aachen University of Applied Sciences, headed by ifaa - Institut für angewandte Arbeitswissenschaft e.V. (Institute for Applied Work Science).

Nine regional companies are involved so far; more will join. AI applications are being developed and exemplarily implemented for their respective needs. In this way, the diverse potentials of AI for work design are being tested and qualification requirements derived. These results will not only increase the global competitiveness of the textile industry and other sectors; they will also secure jobs and make an important contribution to overcoming structural change in the Rhenish lignite mining area.

WIRKsam is funded by the Federal Ministry of Education and Research as part of the funding measure "Regional Competence Centres for Labour Research" and is supervised by the Karlsruhe Project Management Agency (PTKA) (funding code: 02L19C600). The WIRKsam competence centre will be based in Hürth, Germany, on the edge of the Rhenish mining area as soon as the conversion work on the former TV studios on the Euronova campus is completed.

More information:
AI
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

(c) Kai-Chieh Kuo
17.11.2021

ITA PhD student Kai-Chieh Kuo was awarded Best Master’s Thesis Award of Walter Reiners-Stiftung

Kai-Chieh Kuo, PhD student at the Institut für Textiltechnik (ITA) of RWTH Aachen University, was awarded the German Textile Mechanical Engineering 2021 Best Master's Thesis Award for his master's thesis entitled "Modification of the tube weaving process of fine yarns for the production of woven ultra-low profile stent grafts". The prize is endowed with 3,500€. Peter D. Dornier, Chairman of the Board of the Walter Reiners-Stiftung (Foundation), virtually presented the award on the occasion of the ADD International Textile Conference on 9 November 2021.

Kai-Chieh Kuo, PhD student at the Institut für Textiltechnik (ITA) of RWTH Aachen University, was awarded the German Textile Mechanical Engineering 2021 Best Master's Thesis Award for his master's thesis entitled "Modification of the tube weaving process of fine yarns for the production of woven ultra-low profile stent grafts". The prize is endowed with 3,500€. Peter D. Dornier, Chairman of the Board of the Walter Reiners-Stiftung (Foundation), virtually presented the award on the occasion of the ADD International Textile Conference on 9 November 2021.

Minimally invasive endovascular aortic repair (EVAR) with textile stent-graft systems is nowadays a clinically established therapy procedure for the treatment of abdominal aortic aneurysms (AAA) – pathological bulges of the aorta. Due to the thick profile of the folded stent graft systems, there is currently a high risk of injuring narrowed or highly angulated access vessels from the inside during implantation. Stent graft systems with smaller profiles could provide an improvement, which could overcome complicated access routes through a lower bending stiffness. One possible approach for reducing the system profiles is the use of thin-walled tubular woven fabrics made of ultrafine multifilament yarns (≤20 dtex) as graft material.

Up to now, it has not been possible to process the fine yarns with the required high thread density (>200 threads/cm) and the available weaving technology in order to guarantee sufficient tightness against blood.

In his master's thesis, Kai-Chieh Kuo made high-density tubular weaving of ultra-fine filament yarns possible for the first time by means of suitable modifications to a shuttle loom as well as adaptations in the weaving preparation. In particular, he developed a new innovative reed technology that reduces warp thread friction during the shedding process and thus improves the process stability of the dense tube weaving process of fine yarns.

With the help of the process modification, it was then possible to produce high-density, thin-walled tubular woven fabrics, which were positively evaluated with regard to their suitability for a stent graft. Above all the potential of these tubular fabrics lies in their extremely thin-walled fabric profile, which seals well against blood. By using these new types of tubular fabrics as graft material for stent grafts, the system profile of the folded stent graft system can be reduced without having to compromise the blood tightness of the implant. The technology developed by Mr Kuo is not only applicable to stent graft systems, but also offers great possibilities for use in all other endovascular implants such as trans catheter heart valves, covered stents and small-lumen vascular prostheses.

VDMA: Top young talent with cutting-edge topics  (c) VDMA
The 2021 winners (from top left to right): Dr Martin Hengstermann, Irina Kuznik, Kai-Chieh Kuo.
10.11.2021

VDMA: Top young talent with cutting-edge topics

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

The Chairman of the Walter Reiners-Stiftung foundation of the VDMA Textile Machinery Association, Peter D. Dornier has awarded prizes to three successful young engineers. The award-winning works provide practical solutions on the topic of circular economy. For example, the recycling of carbon fibres, which are used to produce lightweight components for the automotive industry. Or the environmentally friendly production of yarns from crab shells. Another topic was medical applications: The processing of ultra-fine yarns into stents for aortic repair. The award ceremony took place online on 9 November as part of the Aachen-Dresden-Denkendorf International Textile Conference.  

With a creativity prize, endowed with 3,000 euros, the foundation honoured the diploma thesis of Irina Kuznik, TU Dresden. She used a creative approach to realise solutions for processing chitosan into fibre yarn.

Mr Kai-Chieh Kuo was awarded the diploma/master's thesis promotion prize of 3,500 euros. With his master's thesis, which was written at RWTH Aachen University, Mr Kuo contributes to the production of vital components used in medicine. The stents made of ultra-fine yarns are made possible by an innovative modification of the classic tube weaving process.

The Walter Reiners Foundation rewarded the doctoral thesis of Dr. Martin Hengstermann with the promotional prize in the dissertation category, endowed with 5,000 euros. The thesis deals with the production of recycled carbon fibres. These can be used to produce lightweight components for motor vehicle and aircraft construction or the wind energy sector.

New Prize Sustainability / Circular Economy
The environmental conditions of the textile industry and machine construction are changing. Topics such as climate protection and the circular economy are becoming central. From this perspective, the board of the Walter Reiners Foundation has decided to further develop the foundation's prize system.

In 2022, the foundation will for the first time offer a prize with a focus on design / sustainability. Peter D. Dornier, Chairman of the Foundation, explained: "Already in the design phase, one can set the parameters so that a textile product can be reintroduced after use into the economic cycle for a high-quality application. For example, through the appropriate use of materials and finishing. We are looking for solutions for resource-saving design, technology and manufacturing processes."   

26.10.2021

ITA: New pre-competitive partnership model for industrial companies

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

The ITA Group, consisting of the Institute for Textile Technology of RWTH Aachen University (ITA), their research and development service provider ITA Technologietransfer GmbH (ITA GmbH) are proud to announce their new strategic positioning: in order to better respond to actual industrial demands and needs, ITA decided to install a partnership model as of January, 25 2022.

The ITA Group comprises the ITA of RWTH Aachen University, a leading research and qualification research institute with 400 employees in the areas of fibre-based high-performance materials, textile semi-finished products and their manufacturing processes and the ITA Technologietransfer GmbH, the partner of the industry in R&D, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the new partnership model:” The impact of the Covid-19-crisis has shown once more the importance of long-term trustworthy business relationships. Therefore, we are establishing our new partnership model where we will even more closely cooperate with our actual and future industrial partners, providing them with the latest technologies and innovations from R&D side. We will initiate networking and workgroup meetings, offer access to ITA´s large machine parks and labs, carry out joint partner projects and commonly organized publicly-funded projects as well as training for partner´s employees and HR opportunities.”

Dr. Christoph Greb, Scientific Director of ITA: “We are very happy to initiate this new partnership model where science, research and industry are working shoulder to shoulder in pre-competitive projects on our future projects along the entire value-chain from the fibre to the final component in order to close a missing gap and form innovative paths forward in various industrial fields.”

During an initial session of three Innovation days in hybrid format, ITA successfully introduced in September 2021 the first industrial partner projects which will be carried out, among them “Recycling of composite battery cases”, “Recycling of composite pressure vessels”, “Natural Fibre Composites”, “Textile Structures with focus on biaxial Warp-Knitted Structures”, “Factory of the Future”, “Tapes and Hybrid Yarns”.

The next opportunity to meet with ITA is at JEC DACH in Frankfurt (November 23 and 24 2021).

Source:

ITA

(c) Tom Schulze. “IQ Innovationspreis Mitteldeutschland“, overall winner (from left to right) FibreCoat GmbH from Aachen, ITA graduate Dr Robert Brüll, Deutsche Basalt Fiber GmbH from Sangerhausen, Georgi Gogoladze.
28.06.2021

Overall prize of the “IQ Innovationspreis Mitteldeutschland“ for FibreCoat GmbH and DBF Deutsche Basalt Faser GmbH

FibreCoat GmbH from Aachen, Germany, together with DBF Deutsche Basalt GmbH, developed a completely new type of fibre material to shield electromagnetic radiation from digital end devices, medical technology or e-car batteries cheaply and effectively. The joint project was awarded the overall prize of the“ IQ Innovationspreises Mitteldeutschland“ on 24 June in an online event broadcast live from Leipzig.

The prize is endowed with €15,000 and was sponsored by the Halle-Dessau, Leipzig and East Thuringia Chambers of Industry and Commerce.

FibreCoat GmbH from Aachen, Germany, together with DBF Deutsche Basalt GmbH, developed a completely new type of fibre material to shield electromagnetic radiation from digital end devices, medical technology or e-car batteries cheaply and effectively. The joint project was awarded the overall prize of the“ IQ Innovationspreises Mitteldeutschland“ on 24 June in an online event broadcast live from Leipzig.

The prize is endowed with €15,000 and was sponsored by the Halle-Dessau, Leipzig and East Thuringia Chambers of Industry and Commerce.

Electromagnetic radiation from smartphones, hospital diagnostics and electric car batteries must be shielded so that they do not inter-fere with each other. To prevent mutual interference, they have so far been covered with metal fibre fabrics, a very time- and energy-consuming and thus expensive procedure. The new material from Basalt Faser GmbH and FibreCoat GmbH prevents this with a fibre core made of melted, thinly drawn basalt, which is coated with aluminium and bundled into the so-called AluCoat yarn. This yarn remains just as conductive and shielding, but is lighter, stronger, cheaper and more sustainable than previous alternatives. In addition, there are further advantages:

  • The number of process steps required is reduced from ten to one.
  • 1,500 metres of yarn are produced per minute instead of the previous five metres.
  • The energy required is only 10 per cent of the previous amount.

The result is a price that is twenty times lower.

The textile made of AluCoat fibres is versatile and flexible: as wallpaper it can shield 5G radiation in offices or medical rooms or encase batteries and thus ensure the smooth functioning of electric cars. AluCoat is already being used in some companies. A European fibre centre in Sangerhausen is being planned for mass production.

The two innovative companies DBF Deutsche Basalt GmbH and FibreCoat GmbH from East and West combine the two materials basalt and aluminium to protect against electromagnetic radiation. In doing so, they coat basalt with aluminium and, through this novel combination, create an inexpensive, sustainable and quickly produced alter-native for a market worth billions.

FibreCoat GmbH from Aachen is a spin-off of the Institut für Textiltechnik (ITA) of RWTH Aachen University; the managing directors Dr Robert Brüll and Alexander Lüking and Richard Haas have completed their doctorates at the ITA or are in the process of preparing their doctorates. Georgi Gogoladze, Managing Director of Deutsche Basaltfaser GmbH, also studied at RWTH Aachen University. The two managing directors Brüll and Gogoladze know each other from their student days.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Digital Pioneer Awards ceremony at the digitalCHURCH (c) digitalHUB Aachen e.V.; photo: Thomas Langens
Digital Pioneer Awards ceremony at the digitalCHURCH
15.06.2021

ITA Academy GmbH wins Digital Pioneer Award 2021

  • Digital Pioneer Awards ceremony at the digitalCHURCH
  • ITA Academy GmbH was honoured to receive the Digital Pioneer Award at the Digital Summit Event in Aachen on June 09, 2021.

The Digital Pioneer Award is given to companies that drive digitalisation with digital business models, processes or digital products. ITA Academy GmbH was honoured with the Digital Capability Center (DCC) Aachen and its support of companies in their digital transformation.

  • Digital Pioneer Awards ceremony at the digitalCHURCH
  • ITA Academy GmbH was honoured to receive the Digital Pioneer Award at the Digital Summit Event in Aachen on June 09, 2021.

The Digital Pioneer Award is given to companies that drive digitalisation with digital business models, processes or digital products. ITA Academy GmbH was honoured with the Digital Capability Center (DCC) Aachen and its support of companies in their digital transformation.

Using the latest didactic methods, sophisticated solution concepts and state-of-the-art technologies, the DCC Aachen supports people in keeping up with the digital future and becoming pioneers in digital transformation. In order to make innovative solutions such as AI and digital assistance systems tangible, the ITA Academy founded the Digital Capability Center (DCC) Aachen together with McKinsey & Company in 2017. The DCC is a model factory 4.0 in which digital applications are demonstrated and taught using the example of a realistic factory. The DCC thus offers a learning environment for companies in which participants are supported in building up competencies in the field of digital transformation in the form of practical work-shops.

The digital pioneers are to be publicised as best-practice examples in order to sensitize regional SMEs to the topic of digitisation. Around the award of the digital pioneers, the digitalHUB Aachen e.V. rolls out effective marketing activities. The pioneers achieve high visibility through the various planned campaigns and advertising opportunities.

ITA
04.05.2021

2021 Aachen Reinforced! Symposium free of charge for all attendees

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

Institut für Textiltechnik of RWTH Aachen University has changed the format of the 2021 Aachen Reinforced! Symposium to an online only format. The programme was shortened to suit the new format, with presentations taking place on Monday 10th May and Tuesday 11th May.

The conference program for Monday, 10th May:
The programme will begin with exciting presentations on glass chemistry and fibres. A talk by Dr Anne Berthereau (Owens Corning Composites) on the race for always higher modulus glass fibres will be followed by a talk from Dr Hong Li (Nippon Electric Glass) on the potential of new high-strength and high-modulus glass fibres.
After two further presentations on high modulus and bioactive glass fibres from Muawia Dafir and Julia Eichhorn (TU Bergakademie Freiberg), we will learn about furnace efficiency as well as process monitoring and digitalisation in glass fibre production from René Meulemann (CelSian), Hans Gedon (Gedonsoft) and Julius Golovatchev (Incotelogy) respectively.
A presentation by Felix Quintero Martínez (Universidade de Vigo) will explore a novel method to produce ultra-flexible glass nanofibers.
The afternoon will continue with two presentations by Dr Christina Scheffler (Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)) and Professor James Thomason (University of Strathclyde) in the field of glass fibre sizings and fibre-matrix interfaces. Finally, a closing presentation by Steve Bassetti (Michelman) will conclude the first day of the Symposium.

The entire conference programme is available on the website https://aachen-fibres.com/aachen-reinforced/general-information.
To register for the Symposium, use the following link: https://aachen-fibres.com/aachen-reinforced/registration

AMAC kooperiert mit ITA (Institut für Textiltechnik der RWTH Aachen und deren ITA GmbH) für die weitere Geschäftsentwicklung im Bereich Composites  © AMAC
fltr: Markus Beckmann, Prof. Thomas Gries, Dr. Michael Effing, Dr. Christoph Greb
19.04.2021

AMAC cooperates with ITA

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

AMAC cooperates with ITA (Institute for Textile Technology of RWTH Aachen University and their ITA GmbH) for the business development in composites 

As of April 19th, 2021, AMAC is pleased to announce its cooperation with the Institute for Textile Technology, ITA, of RWTH Aachen University and their ITA GmbH. The aim of the cooperation is to strengthen and develop their business activities in composites.

ITA, as one of the largest institutes on the campus of the excellence University RWTH Aachen, Germany, develops complete solutions from the manufacturing of the fiber itself over the processing of textile intermediates with thermoplastic and thermoset resins, textile-based part manufacturing, capabilities such as braiding, pultrusion and in-situ impregnation of textile preforms. Top 3 focused industries are transportation and particularly the e-mobility sector, building and construction as well as the wind energy sector. Additionally, ITA GmbH is the partner of the industry in R&D, focusing on 8 business segments, providing technology and knowledge transfer, as well as offering comprehensive solutions along the entire textile value chain.

Prof. Dr. Thomas Gries, Director of ITA, explains the background of the strategic cooperation with focus on composites: „Our long-term experience and unmatched know-how with all aspects of continuous fibers, non-wovens and web-based reinforcements allows us to deliver to the composite manufacturers a complete technology and service offer around the development of technical textiles, from the development of glass and carbon fibers to the textile-based processing of composite parts. In all process steps of our research and developments, we focus on sustainable and recyclable solutions, an efficient cost-performance ratio, the possible use of bio-based materials and the reduction of the CO2 footprint. We are glad to cooperate with Dr. Michael Effing and AMAC in order to benefit from his door-opening network in the composites industry. “

Dr. Michael Effing, Managing Director of AMAC GmbH: „I am very happy to support the ITA to generate innovation thanks to further industrial networking and pre-competitive joint projects. ITA is indeed a one-stop source for composite solutions from the fiber to the cost-efficient manufacturing of final parts. In the context of the Covid-19 impact to the entire industry, it makes sense to bundle forces. Furthermore, ITA, with its long tradition and satisfied customers offers further valuable networking opportunities to the composites industry as well as access to relevant complementary fiber-based excellence and 250 different technologies in their machine-park with an outstanding infrastructure in Aachen.”

23.11.2020

AMAC cooperates with start-up FibreCoat

Cooperation and business development with AMAC
As of November 1st, 2020, AMAC is pleased to announce its cooperation with company FibreCoat for the market introduction of their products and global business development. FibreCoat is a young, award-winning start-up and spin-off of the RWTH Aachen University in Germany and develops multi-filament coated yarns, fabrics and composites based on glass or basalt fibres.

Dr. Michael Effing, CEO AMAC GmbH: „FibreCoat is a very promising newcomer in the electro-magnetic shielding and composites industry and their innovations are very cost-efficient for new technologies such as e-mobility or telecommunications. I am very pleased to introduce them to relevant key players in the industry and accompany them in their growth strategy.“

Product Launch
FibreCoat develops metal-coated fibres like bi-component multi-filament yarns with basalt core and aluminum coating which can be used for EMI-shielding and heat sinks in battery casings, electric diverters in filters, reinforcement of cast aluminum parts o ras conductive yarns in smart textiles.

Cooperation and business development with AMAC
As of November 1st, 2020, AMAC is pleased to announce its cooperation with company FibreCoat for the market introduction of their products and global business development. FibreCoat is a young, award-winning start-up and spin-off of the RWTH Aachen University in Germany and develops multi-filament coated yarns, fabrics and composites based on glass or basalt fibres.

Dr. Michael Effing, CEO AMAC GmbH: „FibreCoat is a very promising newcomer in the electro-magnetic shielding and composites industry and their innovations are very cost-efficient for new technologies such as e-mobility or telecommunications. I am very pleased to introduce them to relevant key players in the industry and accompany them in their growth strategy.“

Product Launch
FibreCoat develops metal-coated fibres like bi-component multi-filament yarns with basalt core and aluminum coating which can be used for EMI-shielding and heat sinks in battery casings, electric diverters in filters, reinforcement of cast aluminum parts o ras conductive yarns in smart textiles.

FibreCoat launches ALUCOAT™, an aluminum-coated glass or basalt fibre which is suitable as electro-magnetic shielding material in automotive applications such as radar, antennas or for autonomous driving as well as for mobile phones and applications in buildings. Due to its extraordinary thermal conductivity and better heat transfer compared to traditional composite material, it can be used for the manufacturing of automotive battery trays or industrial applications such as fine particulate air filters.

ALUCOAT™ is available as of January 1st 2021 as a yarn, fabric or non-woven with a wide range of possible titers and areal weight. The material will offer an electrical conductivity of 100 Ωm and a working temperature of at least 400 °C. Furthermore, it can be used for the shielding of low to high frequencies with an effectiveness of 80 to 120 dB.

Source:

AMAC GmbH

12.11.2020

WISO: 5G für die vernetzte Industrie

  • WISO-Publikation der Friedrich-Ebert-Stiftung zeigt Chancen und Potenziale

Berlin - Die nächste Generation der drahtlosen Konnektivität, 5G, entwickelt sich in der Industrie zu einem allgegenwärtigen Thema. Gleichzeitig gilt es für einen Erfolg der Technologie noch einige Aufgaben zu lösen. Das wird in dem Papier „5G für die vernetzte Industrie“ der Friedrich-Ebert-Stiftung in der Reihe „WISO Direkt“ deutlich, das maßgeblich am FIR an der RWTH Aachen entstand, einem Mitgliedsinstitut der Zuse-Gemeinschaft.

  • WISO-Publikation der Friedrich-Ebert-Stiftung zeigt Chancen und Potenziale

Berlin - Die nächste Generation der drahtlosen Konnektivität, 5G, entwickelt sich in der Industrie zu einem allgegenwärtigen Thema. Gleichzeitig gilt es für einen Erfolg der Technologie noch einige Aufgaben zu lösen. Das wird in dem Papier „5G für die vernetzte Industrie“ der Friedrich-Ebert-Stiftung in der Reihe „WISO Direkt“ deutlich, das maßgeblich am FIR an der RWTH Aachen entstand, einem Mitgliedsinstitut der Zuse-Gemeinschaft.

Die neue FES-Publikation rückt 5G aus der Perspektive der angewandten Forschung in den aktuellen gesellschaftlichen und wirtschaftlichen Kontext und zeigt industrielle Anwendungsfälle von 5G auf. Chancen von 5G für fahrerlose Transportsysteme (FTS) in der Intralogistik werden ebenso vorgestellt wie vorausschauende Wartung, die sogenannte „Predictive Maintenance“ und Möglichkeiten zur Nutzung von Augmented Reality, einer Technologie, welche die Sicht des Nutzers auf die reale Welt mit computergenerierten Bildern anreichert. „5G kann den Übergang zu Industrie 4.0 vereinfachen und intensivieren, doch ist die Übernahme der Technologie in Unternehmen kein Selbstläufer. Denn noch ist der Markt relativ intransparent. Anwender wissen häufig noch nicht, wofür sie 5G einsetzen können und welche Kosten mit den Netzen verbunden sind“, erklärt Lead-Autor Vasco Seelmann, Gruppenleiter am FIR.

Einen eigenen Weg geht Deutschland mit dem Vorhalten von 5G-Frequenzen für die Industrie, was sogenannte Campus-Netze ermöglicht. Unternehmen und andere Organisationen können so unabhängig von einem Mobilfunkan-bieter auf ihrem Gelände ein eigenes Netz betreiben. Allerdings stellt die Nutzung der neuen Technologie gerade Mittelständler vor erhebliche Hürden. „Gemeinnützige, angewandte Forschung aus der Zuse-Gemeinschaft unter-stützt Unternehmen darin auszutesten, ob 5G für sie eine sinnvolle Option ist. Im internationalen Rahmen kann die praxisorientierte Forschung bei der Gestaltung von Standards als Scharnier zwischen Großunternehmen und Mittelstand wirken“, erklärt die Geschäftsführerin der Zuse-Gemeinschaft, Dr. Annette Treffkorn.

Source:

Zuse-Gemeinschaft

Warden Schijve joins the AZL team (c) AZL
Dr. Michael Emonts, Warden Schijve, Philipp Fröhlig und Dr. Kai Fischer (von links nach rechts) im AZL Tech Center
02.11.2020

Warden Schijve joins the AZL team

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

Aachen - Warden Schijve, former Chief Scientist Composites at SABIC, recently joined the AZL engineering team in October. As Design Leader, he is further expanding the product and application development division of the service provider for business development and technology development in lightweight.

AZL Aachen GmbH supports companies along the entire value chain in implementing competitive lightweight technologies. "We develop component and production concepts for companies, including the analysis of costs and production-relevant KPIs. With our broad range of material and production technologies, we provide a comprehensive solution for the development and evaluation of products and identify the most suitable paths to implementation. Warden Schijve will use his many years of experience to support our partners in the efficient development, evaluation and implementation of component and production solutions through to market readiness," says Dr. Kai Fischer, Managing Partner of AZL Aachen GmbH.

From his 35 years in the composites industry with Fokker, DSM and SABIC, Warden Schijve brings a broad and deep expertise in structural design, plastics and composites, as well as processing technology.
Warden Schijve: “In my career I’ve always seen that it pays off to evaluate various different design concepts, which may use different materials or material combinations, to finally come to the most cost-competitive lightweight applications. Taking into account different manufacturing technologies right from the beginning can save a lot in later stages of component development. And this is what fascinates me about AZL and its eco-system: the available knowledge on a wide variation of process and production technologies, including cutting edge equipment, at both the AZL Tech Center, and the various institutes present in the total RWTH Aachen Campus.”

Dr. Michael Emonts, Managing Partner of AZL Aachen GmbH: "We are delighted that Warden Schijve, as a well-known face from the AZL community, will enrich us in developing lightweight applications, production systems and processes, identifying competitive technology optimizations through the analysis of markets and applications, and supporting our customers in the industrial implementation of the developed technologies."

Warden Schijve will also lead the project for a concept study for future battery casings based on composite-based multi-material systems. The AZL started the project in October together with 30 participating companies from the entire value chain to get an overview of existing component solutions, evaluate the advantages of a multi-material approach and develop a multi-material component design including a production concept for battery casings.

Wilhelm-Lorch-Stiftung awards ITA graduate and a project at ITA with sponsorship prizes (c) Wilhelm-Lorch-Stiftung
Wilhelm-Lorch-Stiftung sponsorship award winner picture 2020 (Ricarda Wissel: row 1, first from right, Simon Kammler, row 4, first from right)
25.06.2020

Wilhelm-Lorch-Stiftung awards ITA graduate and a project at ITA with sponsorship prizes

Carbon dioxide-based fibre for climate protection and interdisciplinary training with novel Smart Textiles test rig

The Wilhelm-Lorch-Stiftung, based in Frankfurt am Main, Germany, honours a project of the Institut für Textiltechnik of RWTH Aachen University, short ITA, and awards a sponsorship prize to the ITA graduate Ricarda Wissel on 25 June 2020. She is awarded for her outstanding bachelor thesis " Implementation of elastic yarns made from carbon dioxide based thermoplastic polyurethane in socks " with funding for a subject-specific continuation of her education. The ITA receives the project sponsorship prize for the project "Smart Textiles - an interdisciplinary training course to promote young scientists in future technologies", which was submitted to the Wilhelm-Lorch-Stiftung by ITA´s PhD candidate Simon Kammler.

Carbon dioxide-based fibre from industrial waste contributes to climate protection

Carbon dioxide-based fibre for climate protection and interdisciplinary training with novel Smart Textiles test rig

The Wilhelm-Lorch-Stiftung, based in Frankfurt am Main, Germany, honours a project of the Institut für Textiltechnik of RWTH Aachen University, short ITA, and awards a sponsorship prize to the ITA graduate Ricarda Wissel on 25 June 2020. She is awarded for her outstanding bachelor thesis " Implementation of elastic yarns made from carbon dioxide based thermoplastic polyurethane in socks " with funding for a subject-specific continuation of her education. The ITA receives the project sponsorship prize for the project "Smart Textiles - an interdisciplinary training course to promote young scientists in future technologies", which was submitted to the Wilhelm-Lorch-Stiftung by ITA´s PhD candidate Simon Kammler.

Carbon dioxide-based fibre from industrial waste contributes to climate protection

ITA scientist Dr.-Ing. Pavan Manvi has developed a melt spinning process at ITA for the production of elastic yarn from thermoplastic polyurethane, in which carbon dioxide is used as one of the raw materials. In her bachelor thesis, Ricarda Wissel successfully developed a process chain for the CO2-based yarn in a textile end product for the first time. In cooperation with the company FALKE and Dr Manvi, who supervised Ms. Wissel's work, the yarn was used to produce a sock (see figure "FALKE sock with carbon dioxide filaments").

By reusing carbon dioxide from industrial waste as a raw material for textile and clothing products, the carbon dioxide balance can be improved and thus contributes directly to climate protection. The sponsorship prize of the Wilhelm-Lorch-Stiftung is endowed with 6,000 € for the specialist further training of Ms. Wissel.

Interdisciplinary training with development of a new type of measuring stand for the future-oriented research field "Smart Textiles

The development of textiles with additional digital functions, so-called "Smart Textiles", is considered a future-oriented field of research. In his project submission, ITA´s doctoral candidate Simon Kammler presented a concept for a lecture series on Smart Textiles at ITA and develops a new type of measuring stand for measuring the capacity and conductivity of fibres. The project is funded by the Wilhelm-Lorch-Stiftung with a prize money of 10,000 Euro.

Smart Textiles enable the textile to interact with the environment and the human user. Today they are therefore in demand in many areas of everyday life such as sport, health, living, life and mobility and offer completely new practical solutions. In combination with digital networked services, Smart Textiles promise support and innovation in almost all situations of daily life.

With the conception of a new lecture series, Mr. Simon Kammler is supporting ITA in its goal of providing the best possible training for young scientists. The focus is on imparting far-reaching interdisciplinary skills in order to master the challenges of current fields of research.

Background:

The Wilhelm-Lorch-Stiftung supports particularly talented young people from all areas of the textile industry. Its purpose is the promotion of subject-specific education and further education as well as the promotion of projects at universities, academic schools and vocational schools, which are characterised by the sustainable communication of innovative learning content in science and research. In total, thirteen sponsorship prizes were awarded in 2020. Due to the Corona crisis, the forum of TextilWirtschaft, which is normally the venue for the awards ceremony, unfortunately had to be cancelled in 2020.

Carbon reinforced concrete today: thin-walled curved barrel shells as roof elements at ITA (c) ITA. Carbon reinforced concrete today: thin-walled curved barrel shells as roof elements at ITA
05.06.2020

DFG funds Collaborative Research Centre / Transregio 280 on carbon reinforced concrete

  • Joint proposal of TUD and RWTH Aachen University

On 29 May, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) decided to fund the Collaborative Research Centre (CRC)/Transregio 280 "Carbon reinforced concrete" at Technische Universität Dresden, short TUD, and RWTH Aachen University with the participation of the Institut für Textiltechnik, short ITA, with 12 million euros over the next four years.

The CRC/Transregio 280 “Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction” breaks with the traditional way of designing reinforced concrete plants. The interdependence of reinforcement and matrix is being investigated in depth and a completely new design and construction strategy for building with carbon reinforced concrete is being developed.

  • Joint proposal of TUD and RWTH Aachen University

On 29 May, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) decided to fund the Collaborative Research Centre (CRC)/Transregio 280 "Carbon reinforced concrete" at Technische Universität Dresden, short TUD, and RWTH Aachen University with the participation of the Institut für Textiltechnik, short ITA, with 12 million euros over the next four years.

The CRC/Transregio 280 “Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction” breaks with the traditional way of designing reinforced concrete plants. The interdependence of reinforcement and matrix is being investigated in depth and a completely new design and construction strategy for building with carbon reinforced concrete is being developed.

Carbon reinforced concrete enables completely new design and construction possibilities in the building industry. The reasons for this are its very high strength and the possibility of a very low concrete overlay of only a few millimetres, as carbon, unlike structural steel, does not rust. However, the successful use of the new material, which was awarded the German Future Prize in 2016, requires completely new design and production strategies, which are being investigated in the CRC/Transregio.

Up to now, textile reinforcements have been coated and cured prior to component manufacture. This process is called offline consolidation. These stiff semi-finished products are not suitable for the production of complex components based on new, digital and continuous manufacturing processes (including 3D concrete printing and concrete extrusion). Therefore, ITA is investigating in the sub-project B02 of the CRC/Transregio how forming and consolidation steps are shifted in time by prepreg systems into the concreting process and how they can be applied within the new digital continuous manufacturing processes. In addition to established curing mechanisms, such as by heat or UV radiation, new approaches are also being researched. These new approaches include activation via the alkalinity of the concrete, microwaves and induction

The TUD and RWTH Aachen were awarded the grant on the basis of many years of experience in the research field of textile reinforced concrete. The material textile reinforced concrete was developed in two special research areas at both universities from 1999-2011 and was first fundamentally researched.

19 individual institutes are involved in the CRC/Transregio 280. The spokesman of the TUD is Professor Dr Manfred Curbach, the spokesman of the RWTH is Professor Dr Josef Hegger.

Source:

Institut für Textiltechnik der RWTH Aachen University, ITA

Innovationen durch Digitalisierung Quelle: Institut für Arbeitswissenschaft (IAW) der RWTH Aachen University
Innovationen durch Digitalisierung
17.12.2019

Informationen zur BMBF-Förderlinie „Zukunft der Arbeit: Mittelstand – innovativ und sozial“

Für kleine und mittelständische Betriebe sind technologische und soziale Innovationen von entscheidender Bedeutung, um im globalen Wettbewerb bestehen zu können. Die Entwicklung neuartiger Konzepte und Werkzeuge für die Arbeitsgestaltung und -organisation in und mit mittelständischen Unternehmen ist dazu dringend erforderlich.

Das Projekt „WissProKMU – Zukunft der Arbeit: Gestalten und Vernetzen“ unterstützt deutschlandweit 26 Verbundvorhaben mit kleinen und mittelständischen Unternehmen bei der Umsetzung ihrer Digitalisierungsstrategie. Ziel von WissProKMU ist es, die Verbundprojekte miteinander zu vernetzen und den Ergebnistransfer zu unterstützen.

Die Verbundvorhaben werden im Rahmen des Programms „Zukunft der Arbeit" vom Bundesministerium für Bildung und Forschung (BMBF) und dem Europäischen Sozialfonds (ESF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut.

 

Eine Übersicht über die Projekte finden Sie in der angehängten PDF.

Für kleine und mittelständische Betriebe sind technologische und soziale Innovationen von entscheidender Bedeutung, um im globalen Wettbewerb bestehen zu können. Die Entwicklung neuartiger Konzepte und Werkzeuge für die Arbeitsgestaltung und -organisation in und mit mittelständischen Unternehmen ist dazu dringend erforderlich.

Das Projekt „WissProKMU – Zukunft der Arbeit: Gestalten und Vernetzen“ unterstützt deutschlandweit 26 Verbundvorhaben mit kleinen und mittelständischen Unternehmen bei der Umsetzung ihrer Digitalisierungsstrategie. Ziel von WissProKMU ist es, die Verbundprojekte miteinander zu vernetzen und den Ergebnistransfer zu unterstützen.

Die Verbundvorhaben werden im Rahmen des Programms „Zukunft der Arbeit" vom Bundesministerium für Bildung und Forschung (BMBF) und dem Europäischen Sozialfonds (ESF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut.

 

Eine Übersicht über die Projekte finden Sie in der angehängten PDF.